Citation: Chenyue Huang, Hongfei Zheng, Ning Qin, Canpei Wang, Liguang Wang, Jun Lu. Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230805. doi: 10.3866/PKU.WHXB202308051
-
Over the past three decades, significant advancements in lithium-ion battery technology have greatly improved human convenience, particularly in today's thriving electric vehicle industry. Further enhancements in the energy density, cycle life, and safety of lithium-ion batteries are crucial for the widespread adoption of electric vehicles. In recent years, transition metal layered oxides have garnered significant attention in the industrial power battery sector due to their advantages, including high specific capacity, commendable low-temperature performance, and cost-effectiveness. Increasing the nickel content and adjusting the charging cut-off voltage are recognized as effective means to enhance the energy density of transition metal layered oxides. However, these strategies tend to degrade cycling stability and thermal safety in conventional polycrystalline layered cathode materials. Benefiting from the mechanical stability of intact primary particles, the single-crystal structure of layered cathode materials can effectively mitigate intergranular cracking issues associated with high charging voltages. Nevertheless, due to the intrinsic structural properties of layered materials, single-crystal structures still face challenges related to sluggish Li+ transport kinetics, heterogeneous state of charge, anisotropic changes in lattice parameters, cation mixing, and chemo-mechanical degradation. The temporal and spatial evolution of the physicochemical properties within the internal microstructure of materials still requires comprehensive analysis using advanced operando characterization techniques. Currently, there is limited understanding of the intricate interplay between thermodynamics and kinetics in the synthesis process of single-crystal cathode materials. A more profound exploration of the structural degradation and synthesis mechanisms of single-crystal materials will serve as a fundamental basis for targeted modification strategies. Regrettably, existing single-crystal synthesis processes and modification approaches still fall short of market expectations. This shortfall is especially noticeable in future applications in solid-state batteries, where interface issues related to solid-state-electrolyte and cathode material are serious. Addressing these challenges necessitates the precise regulation of the microstructure of composite cathodes. Therefore, this review systematically analyzes and summarizes common issues related to the failure of both polycrystal and single-crystal structures, taking into account the intrinsic structural evolution at various temporal and spatial scales. We also outline strategies for regulating the synthesis process, element doping, and surface-interface modification of single-crystal nickel-rich layered cathode materials from the perspective of coherent structural design. We also intent to elucidate the essential connection between structural design and electrochemical performance. The microstructural design of single-crystal nickel-rich cathode materials should emphasize the alignment of lattice parameters between heterostructures and layered oxides, as well as the modulation of their spatial distribution, thereby ensuring the long-term efficacy of element doping and surface-interface modification. Finally, we offer a perspective on the future development of single-crystal nickel-rich cathode materials, highlighting their potential success in the realm of power batteries.
-
-
[1]
(1) Frith, J. T.; Lacey, M. J.; Ulissi, U. Nat. Commun. 2023, 14 (1), 420. doi: 10.1038/s41467-023-35933-2
-
[2]
(2) Manthiram, A.; Knight, J. C.; Myung, S.-T.; Oh, S.-M.; Sun, Y.-K. Adv. Energy Mater. 2016, 6 (1), 201501010. doi: 10.1002/aenm.201501010
-
[3]
(3) Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51 (40), 9994. doi: 10.1002/anie.201201429
-
[4]
(4) Liang, L.; Li, X.; Su, M.; Wang, L.; Sun, J.; Liu, Y.; Hou, L.; Yuan, C. Angew. Chem. Int. Ed. 2023, 62 (11), e202216155. doi: 10.1002/anie.202216155
-
[5]
(5) Xue, W.; Huang, M.; Li, Y.; Zhu, Y. G.; Gao, R.; Xiao, X.; Zhang, W.; Li, S.; Xu, G.; Yu, Y.; et al. Nat. Energy 2021, 6 (5), 495. doi: 10.1038/s41560-021-00792-y
-
[6]
-
[7]
(7) Nomura, Y.; Yamamoto, K.; Yamagishi, Y.; Igaki, E. ACS Nano 2021, 15 (12), 19806. doi: 10.1021/acsnano.1c07252
-
[8]
(8) Lou, S.; Liu, Q.; Zhang, F.; Liu, Q.; Yu, Z.; Mu, T.; Zhao, Y.; Borovilas, J.; Chen, Y.; Ge, M.; et al. Nat. Commun. 2020, 11 (1), 5700. doi: 10.1038/s41467-020-19528-9
-
[9]
(9) Xu, X.; Huo, H.; Jian, J.; Wang, L.; Zhu, H.; Xu, S.; He, X.; Yin, G.; Du, C.; Sun, X. Adv. Energy Mater. 2019, 9 (15), 201803963. doi: 10.1002/aenm.201803963
-
[10]
(10) Yang, Y.; Xu, R.; Zhang, K.; Lee, S. J.; Mu, L.; Liu, P.; Waters, C. K.; Spence, S.; Xu, Z.; Wei, C.; et al. Adv. Energy Mater. 2019, 9 (25), 201900674. doi: 10.1002/aenm.201900674
-
[11]
(11) Kim, U. H.; Ryu, H. H.; Kim, J. H.; Mücke, R.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Adv. Energy Mater. 2019, 9 (15), 201803902. doi: 10.1002/aenm.201803902
-
[12]
(12) Besli, M. M.; Xia, S.; Kuppan, S.; Huang, Y.; Metzger, M.; Shukla, A. K.; Schneider, G.; Hellstrom, S.; Christensen, J.; Doeff, M. M.; et al. Chem. Mater. 2018, 31 (2), 491. doi: 10.1021/acs.chemmater.8b04418
-
[13]
(13) Sun, Y.-K. ACS Energy Lett. 2019, 4 (5), 1042. doi: 10.1021/acsenergylett.9b00652
-
[14]
(14) You, B.; Wang, Z.; Shen, F.; Chang, Y.; Peng, W.; Li, X.; Guo, H.; Hu, Q.; Deng, C.; Yang, S.; Yan, G.; Wang, J. Small Methods 2021, 5 (8), e2100234. doi: 10.1002/smtd.202100234
-
[15]
(15) Zhu, H.; Tang, Y.; Wiaderek, K. M.; Borkiewicz, O. J.; Ren, Y.; Zhang, J.; Ren, J.; Fan, L.; Li, C. C.; Li, D.; et al. Nano Lett. 2021, 21 (23), 9997. doi: 10.1021/acs.nanolett.1c03613
-
[16]
(16) Fan, X. M.; Huang, Y. D.; Wei, H. X.; Tang, L. B.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zheng, J. C. Adv. Funct. Mater. 2021, 32 (6), 202109421. doi: 10.1002/adfm.202109421
-
[17]
(17) Yang, S.-Q.; Wang, P.-B.; Wei, H.-X.; Tang, L.-B.; Zhang, X.-H.; He, Z.-J.; Li, Y.-J.; Tong, H.; Zheng, J.-C. Nano Energy 2019, 63, 103889. doi: 10.1016/j.nanoen.2019.103889
-
[18]
(18) Song, Y.; Cui, Y.; Li, B.; Geng, L.; Yan, J.; Zhu, D.; Zhou, P.; Zhou, J.; Yan, Z.; Xue, Q.; Tang, Y.; Xing, W. Nano Energy 2023, 116, 108846. doi: 10.1016/j.nanoen.2023.108846
-
[19]
(19) Kong, X.; Zhang, Y.; Li, J.; Yang, H.; Dai, P.; Zeng, J.; Zhao, J. Chem. Eng. J. 2022, 434, 134638. doi: 10.1016/j.cej.2022.134638
-
[20]
(20) Wang, L.; Wang, R.; Zhong, C.; Lu, L.; Gong, D.; Shi, Q.; Fan, Y.; Wang, X.; Zhan, C.; Liu, G. J. Energy Chem. 2022, 72, 265. doi: 10.1016/j.jechem.2022.04.006
-
[21]
(21) Xu, Z.; Jiang, Z.; Kuai, C.; Xu, R.; Qin, C.; Zhang, Y.; Rahman, M. M.; Wei, C.; Nordlund, D.; Sun, C. J.; et al. Nat. Commun. 2020, 11 (1), 83. doi: 10.1038/s41467-019-13884-x
-
[22]
(22) Zhang, F.; Lou, S.; Li, S.; Yu, Z.; Liu, Q.; Dai, A.; Cao, C.; Toney, M. F.; Ge, M.; Xiao, X.; et al. Nat. Commun. 2020, 11 (1), 3050. doi: 10.1038/s41467-020-16824-2
-
[23]
(23) Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Science 2015, 348 (6241), 1344. doi: 10.1126/science.aaa1313
-
[24]
(24) Robinson, I.; Harder, R. Nat. Mater. 2009, 8 (4), 291. doi: 10.1038/nmat2400
-
[25]
(25) Li, H.; Li, J.; Zaker, N.; Zhang, N.; Botton, G. A.; Dahn, J. R. J. Electrochem. Soc. 2019, 166 (10), A1956. doi: 10.1149/2.0681910jes
-
[26]
(26) Gao, H.; Wu, Q.; Hu, Y.; Zheng, J. P.; Amine, K.; Chen, Z. J. Phys. Chem. Lett. 2018, 9 (17), 5100. doi: 10.1021/acs.jpclett.8b02229
-
[27]
(27) Zhou, H.; Xin, F.; Pei, B.; Whittingham, M. S. ACS Energy Lett. 2019, 4 (8), 1902. doi: 10.1021/acsenergylett.9b01236
-
[28]
(28) Kang, S.-H.; Yoon, W.-S.; Nam, K.-W.; Yang, X.-Q.; Abraham, D. P. J. Mater. Sci. 2008, 43 (14), 4701. doi: 10.1007/s10853-007-2355-6
-
[29]
(29) Ryu, H.-H.; Namkoong, B.; Kim, J.-H.; Belharouak, I.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2021, 6 (8), 2726. doi: 10.1021/acsenergylett.1c01089
-
[30]
(30) Hu, Q.; Wu, Y.; Ren, D.; Liao, J.; Song, Y.; Liang, H.; Wang, A.; He, Y.; Wang, L.; Chen, Z.; He, X. Energy Storage Mater. 2022, 50, 373. doi: 10.1016/j.ensm.2022.05.038
-
[31]
(31) Trevisanello, E.; Ruess, R.; Conforto, G.; Richter, F. H.; Janek, J. Adv. Energy Mater. 2021, 11 (18), 202003400. doi: 10.1002/aenm.202003400
-
[32]
(32) Ge, M.; Wi, S.; Liu, X.; Bai, J.; Ehrlich, S.; Lu, D.; Lee, W. K.; Chen, Z.; Wang, F. Angew. Chem. Int. Ed. 2021, 60 (32), 17350. doi: 10.1002/anie.202012773
-
[33]
(33) Deng, X.; Zhang, R.; Zhou, K.; Gao, Z.; He, W.; Zhang, L.; Han, C.; Kang, F.; Li, B. Energy Environm. Mater. 2022, 6, e12331. doi: 10.1002/eem2.12331
-
[34]
(34) Han, G.-M.; Kim, Y.-S.; Ryu, H.-H.; Sun, Y.-K.; Yoon, C. S. ACS Energy Lett. 2022, 7 (9), 2919. doi: 10.1021/acsenergylett.2c01521
-
[35]
(35) Zhong, Z.; Chen, L.; Huang, S.; Shang, W.; Kong, L.; Sun, M.; Chen, L.; Ren, W. J. Mater. Sci. 2019, 55 (7), 2913. doi: 10.1007/s10853-019-04133-z
-
[36]
(36) Li, S.; Tian, G.; Xiong, R.; He, R.; Chen, S.; Zhou, H.; Wu, Y.; Han, Z.; Yu, C.; Cheng, S.; Xie, J. Energy Storage Mater. 2022, 46, 443. doi: 10.1016/j.ensm.2022.01.035
-
[37]
(37) Lin, F.; Zhao, K.; Liu, Y. ACS Energy Lett. 2021, 6 (11), 4065. doi: 10.1021/acsenergylett.1c02135
-
[38]
(38) Tian, C.; Xu, Y.; Nordlund, D.; Lin, F.; Liu, J.; Sun, Z.; Liu, Y.; Doeff, M. Joule 2018, 2 (3), 464. doi: 10.1016/j.joule.2017.12.008
-
[39]
(39) Park, K.-Y.; Park, J.-W.; Seong, W. M.; Yoon, K.; Hwang, T.-H.; Ko, K.-H.; Han, J.-H.; Jaedong, Y.; Kang, K. J. Power Sources 2020, 468, 228369. doi: 10.1016/j.jpowsour.2020.228369
-
[40]
(40) Merryweather, A. J.; Schnedermann, C.; Jacquet, Q.; Grey, C. P.; Rao, A. Nature 2021, 594 (7864), 522. doi: 10.1038/s41586-021-03584-2
-
[41]
(41) Xu, C.; Merryweather, A. J.; Pandurangi, S. S.; Lun, Z.; Hall, D. S.; Deshpande, V. S.; Fleck, N. A.; Schnedermann, C.; Rao, A.; Grey, C. P. Joule 2022, 6 (11), 2535. doi: 10.1016/j.joule.2022.09.008
-
[42]
(42) Kuppan, S.; Xu, Y.; Liu, Y.; Chen, G. Nat. Commun. 2017, 8, 14309. doi: 10.1038/ncomms14309
-
[43]
(43) Wang, L.; Liu, T.; Dai, A.; De Andrade, V.; Ren, Y.; Xu, W.; Lee, S.; Zhang, Q.; Gu, L.; Wang, S.; et al. Nat. Commun. 2021, 12 (1), 5370. doi: 10.1038/s41467-021-25686-1
-
[44]
(44) Liu, T.; Liu, J.; Li, L.; Yu, L.; Diao, J.; Zhou, T.; Li, S.; Dai, A.; Zhao, W.; Xu, S.; et al. Nature 2022, 606 (7913), 305. doi: 10.1038/s41586-022-04689-y
-
[45]
(45) Ulvestad, A.; Singer, A.; Cho, H. M.; Clark, J. N.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Nano Lett. 2014, 14 (9), 5123. doi: 10.1021/nl501858u
-
[46]
(46) Radin, M. D.; Alvarado, J.; Meng, Y. S.; Van der Ven, A. Nano Lett. 2017, 17 (12), 7789. doi: 10.1021/acs.nanolett.7b03989
-
[47]
(47) Wang, L.; Liu, T.; Wu, T.; Lu, J. Nature 2022, 611 (7934), 61. doi: 10.1038/s41586-022-05238-3
-
[48]
(48) Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Joule 2022, 6 (5), 984. doi: 10.1016/j.joule.2022.04.001
-
[49]
(49) Liang, C.; Jiang, L.; Wei, Z.; Zhang, W.; Wang, Q.; Sun, J. J. Energy Chem. 2022, 65, 424. doi: 10.1016/j.jechem.2021.06.010
-
[50]
(50) Yu, H.; Cao, Y.; Chen, L.; Hu, Y.; Duan, X.; Dai, S.; Li, C.; Jiang, H. Nat. Commun. 2021, 12 (1), 4564. doi: 10.1038/s41467-021-24893-0
-
[51]
(51) Xu, J.; Hu, E.; Nordlund, D.; Mehta, A.; Ehrlich, S. N.; Yang, X. Q.; Tong, W. ACS Appl. Mater. 2016, 8 (46), 31677. doi: 10.1021/acsami.6b11111
-
[52]
(52) Zhang, S. S. J. Energy Chem. 2020, 41, 135. doi: 10.1016/j.jechem.2019.05.013
-
[53]
(53) Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Adv. Energy Mater. 2020, 11 (7), 202003404. doi: 10.1002/aenm.202003404
-
[54]
(54) Ryu, H.-H.; Park, K.-J.; Yoon, C. S.; Sun, Y.-K. Chem. Mater. 2018, 30 (3), 1155. doi: 10.1021/acs.chemmater.7b05269
-
[55]
(55) Li, J.; Li, W.; You, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8 (29), 201801957. doi: 10.1002/aenm.201801957
-
[56]
(56) Xu, Y.; Hu, E.; Zhang, K.; Wang, X.; Borzenets, V.; Sun, Z.; Pianetta, P.; Yu, X.; Liu, Y.; Yang, X.-Q.; et al. ACS Energy Lett. 2017, 2 (5), 1240. doi: 10.1021/acsenergylett.7b00263
-
[57]
(57) Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q. NPG Asia Mater. 2018, 10 (7), 563. doi: 10.1038/s41427-018-0056-z
-
[58]
(58) Zhu, J.; Sharifi-Asl, S.; Garcia, J. C.; Iddir, H. H.; Croy, J. R.; Shahbazian-Yassar, R.; Chen, G. ACS Appl. Energ. Mater. 2020, 3 (5), 4799. doi: 10.1021/acsaem.0c00411
-
[59]
(59) Tang, Z.; Wang, S.; Liao, J.; Wang, S.; He, X.; Pan, B.; He, H.; Chen, C. Research 2019, 2019, 2198906. doi: 10.34133/2019/2198906
-
[60]
(60) Luo, Y.-H.; Pan, Q.-L.; Wei, H.-X.; Huang, Y.-D.; Tang, L.-B.; Wang, Z.-Y.; He, Z.-J.; Yan, C.; Mao, J.; Dai, K.-H.; et al. Nano Energy 2022, 102, 107626. doi: 10.1016/j.nanoen.2022.107626
-
[61]
(61) Wei, W.; Ding, Z.; Chen, C.; Yang, C.; Han, B.; Xiao, L.; Liang, C.; Gao, P.; Cho, K. Acta Materialia 2021, 212, 116914. doi: 10.1016/j.actamat.2021.116914
-
[62]
(62) Sun, H.-H.; Manthiram, A. Chem. Mater. 2017, 29 (19), 8486. doi: 10.1021/acs.chemmater.7b03268
-
[63]
(63) Zou, L.; Zhao, W.; Jia, H.; Zheng, J.; Li, L.; Abraham, D. P.; Chen, G.; Croy, J. R.; Zhang, J.-G.; Wang, C. Chem. Mater. 2020, 32 (7), 2884. doi: 10.1021/acs.chemmater.9b04938
-
[64]
(64) Ku, K.; Kim, B.; Jung, S.-K.; Gong, Y.; Eum, D.; Yoon, G.; Park, K.-Y.; Hong, J.; Cho, S.-P.; Kim, D.-H.; et al. Energy Environm. Sci. 2020, 13 (4), 1269. doi: 10.1039/c9ee04123k
-
[65]
(65) Kim, U.-H.; Park, G.-T.; Conlin, P.; Ashburn, N.; Cho, K.; Yu, Y.-S.; Shapiro, D. A.; Maglia, F.; Kim, S.-J.; Lamp, P.; et al. Energy Environm. Sci. 2021, 14 (3), 1573. doi: 10.1039/d0ee03774e
-
[66]
(66) Li, M.; Lu, J. Science 2020, 367 (6481), 979. doi: 10.1126/science.aba9168
-
[67]
(67) Zheng, J.; Teng, G.; Xin, C.; Zhuo, Z.; Liu, J.; Li, Q.; Hu, Z.; Xu, M.; Yan, S.; Yang, W.; Pan, F. J. Phys. Chem. Lett. 2017, 8 (22), 5537. doi: 10.1021/acs.jpclett.7b02498
-
[68]
(68) Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Ed. 2015, 54 (15), 4440. doi: 10.1002/anie.201409262
-
[69]
(69) Myung, S.-T.; Maglia, F.; Park, K.-J.; Yoon, C. S.; Lamp, P.; Kim, S.-J.; Sun, Y.-K. ACS Energy Lett. 2016, 2 (1), 196. doi: 10.1021/acsenergylett.6b00594
-
[70]
(70) Chu, B.; Guo, Y.-J.; Shi, J.-L.; Yin, Y.-X.; Huang, T.; Su, H.; Yu, A.; Guo, Y.-G.; Li, Y. J. Power Sources 2022, 544, 231873. doi: 10.1016/j.jpowsour.2022.231873
-
[71]
(71) Hwang, S.; Chang, W.; Kim, S. M.; Su, D.; Kim, D. H.; Lee, J. Y.; Chung, K. Y.; Stach, E. A. Chem. Mater. 2014, 26 (2), 1084. doi: 10.1021/cm403332s
-
[72]
(72) Kondrakov, A. O.; Geßwein, H.; Galdina, K.; de Biasi, L.; Meded, V.; Filatova, E. O.; Schumacher, G.; Wenzel, W.; Hartmann, P.; Brezesinski, T.; et al. J. Phys. Chem. C 2017, 121 (44), 24381. doi: 10.1021/acs.jpcc.7b06598
-
[73]
(73) de Biasi, L.; Schwarz, B.; Brezesinski, T.; Hartmann, P.; Janek, J.; Ehrenberg, H. Adv. Mater. 2019, 31 (26), e1900985. doi: 10.1002/adma.201900985
-
[74]
(74) Xu, C.; Marker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Mehdi, B. L.; et al. Nat. Mater. 2021, 20 (1), 84. doi: 10.1038/s41563-020-0767-8
-
[75]
(75) Park, K.-J.; Jung, H.-G.; Kuo, L.-Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y.-K. Adv. Energy Mater. 2018, 8 (25), 201801202. doi: 10.1002/aenm.201801202
-
[76]
(76) Bi, Y.; Tao, J.; Wu, Y.; Li, L.; Xu, Y.; Hu, E.; Wu, B.; Hu, J.; Wang, C.; Zhang, J. G.; Qi, Y.; Xiao, J. Science 2020, 370 (6522), 1313. doi: 10.1126/science.abc3167
-
[77]
(77) Meng, X. H.; Lin, T.; Mao, H.; Shi, J. L.; Sheng, H.; Zou, Y. G.; Fan, M.; Jiang, K.; Xiao, R. J.; Xiao, D.; et al. J. Am. Chem. Soc. 2022, 144 (25), 11338. doi: 10.1021/jacs.2c03549
-
[78]
(78) Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Nat. Commun. 2017, 8, 14101. doi: 10.1038/ncomms14101
-
[79]
(79) Shadow Huang, H.-Y.; Wang, Y.-X. J. Electrochem. Soc. 2012, 159 (6), A815. doi: 10.1149/2.090206jes
-
[80]
(80) Li, W.; Kim, U. H.; Dolocan, A.; Sun, Y. K.; Manthiram, A. ACS Nano 2017, 11 (6), 5853. doi: 10.1021/acsnano.7b01494
-
[81]
(81) Yoon, C. S.; Park, K.-J.; Kim, U.-H.; Kang, K. H.; Ryu, H.-H.; Sun, Y.-K. Chem. Mater. 2017, 29 (24), 10436. doi: 10.1021/acs.chemmater.7b04047
-
[82]
(82) Kim, H.; Kim, M. G.; Jeong, H. Y.; Nam, H.; Cho, J. Nano Lett. 2015, 15 (3), 2111. doi: 10.1021/acs.nanolett.5b00045
-
[83]
(83) Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135 (4), 1167. doi: 10.1021/ja3091438
-
[84]
(84) Liu, H.; Harris, K. J.; Jiang, M.; Wu, Y.; Goward, G. R.; Botton, G. A. ACS Nano 2018, 12 (3), 2708. doi: 10.1021/acsnano.7b08945
-
[85]
(85) Steiner, J. D.; Mu, L.; Walsh, J.; Rahman, M. M.; Zydlewski, B.; Michel, F. M.; Xin, H. L.; Nordlund, D.; Lin, F. ACS Appl. Mater. 2018, 10 (28), 23842. doi: 10.1021/acsami.8b06399
-
[86]
(86) Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J.; Cho, S. P.; Yoon, G.; Lee, M. H.; Jung, S. K.; Yang, W.; et al. Nat. Mater. 2020, 19 (4), 419. doi: 10.1038/s41563-019-0572-4
-
[87]
(87) House, R. A.; Rees, G. J.; Pérez-Osorio, M. A.; Marie, J.-J.; Boivin, E.; Robertson, A. W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P. G. Nat. Energy 2020, 5 (10), 777. doi: 10.1038/s41560-020-00697-2
-
[88]
(88) Csernica, P. M.; Kalirai, S. S.; Gent, W. E.; Lim, K.; Yu, Y.-S.; Liu, Y.; Ahn, S.-J.; Kaeli, E.; Xu, X.; Stone, K. H.; et al. Nat. Energy 2021, 6 (6), 642. doi: 10.1038/s41560-021-00832-7
-
[89]
(89) Hou, X.-Y.; Kimura, Y.; Tamenori, Y.; Nitta, K.; Yamagishi, H.; Amezawa, K.; Nakamura, T. ACS Energy Lett. 2022, 7 (5), 1687. doi: 10.1021/acsenergylett.2c00353
-
[90]
(90) Shi, C. G.; Peng, X.; Dai, P.; Xiao, P.; Zheng, W. C.; Li, H. Y.; Li, H.; Indris, S.; Mangold, S.; Hong, Y. H.; et al. Adv. Energy Mater. 2022, 12 (20), 202200569. doi: 10.1002/aenm.202200569
-
[91]
(91) Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A. Mater. Today 2018, 21 (8), 825. doi: 10.1016/j.mattod.2018.03.037
-
[92]
(92) Wan, G.; Dou, W.; Zhu, H.; Zhang, W.; Liu, T.; Wang, L.; Lu, J. Interdisciplinary Mater. 2023, 2 (3), 416. doi: 10.1002/idm2.12091
-
[93]
(93) Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Adv. Energy Mater. 2019, 9 (22), 201900551. doi: 10.1002/aenm.201900551
-
[94]
(94) Wang, K.; Wan, J.; Xiang, Y.; Zhu, J.; Leng, Q.; Wang, M.; Xu, L.; Yang, Y. J. Power Sources 2020, 460, 228062. doi: 10.1016/j.jpowsour.2020.228062
-
[95]
(95) Li, F.; Kong, L.; Sun, Y.; Jin, Y.; Hou, P. J. Mater. Chem. A 2018, 6 (26), 12344. doi: 10.1039/c8ta03363c
-
[96]
(96) Jiao, J.; Lai, G.; Qin, S.; Fang, C.; Xu, X.; Jiang, Y.; Ouyang, C.; Zheng, J. Acta Mater. 2022, 238, 118229. doi: 10.1016/j.actamat.2022.118229
-
[97]
(97) Ni, L.; Guo, R.; Deng, W.; Wang, B.; Chen, J.; Mei, Y.; Gao, J.; Gao, X.; Yin, S.; Liu, H.; et al. Chem. Eng. J. 2022, 431, 133731. doi: 10.1016/j.cej.2021.133731
-
[98]
(98) Wang, J.; Lu, X.; Zhang, Y.; Zhou, J.; Wang, J.; Xu, S. J. Energy Chem. 2022, 65, 681. doi: 10.1016/j.jechem.2021.06.017
-
[99]
(99) Shi, J. L.; Sheng, H.; Meng, X. H.; Zhang, X. D.; Lei, D.; Sun, X.; Pan, H.; Wang, J.; Yu, X.; Wang, C.; et al. Natl Sci Rev 2023, 10 (2), nwac226. doi: 10.1093/nsr/nwac226
-
[100]
(100) Kim, Y. ACS Appl. Mater. 2012, 4 (5), 2329. doi: 10.1021/am300386j
-
[101]
(101) Liang, C.; Longo, R. C.; Kong, F.; Zhang, C.; Nie, Y.; Zheng, Y.; Cho, K. ACS Appl. Mater. 2018, 10 (7), 6673. doi: 10.1021/acsami.7b17424
-
[102]
(102) Zhu, J.; Chen, G. J. Mater. Chem. A 2019, 7 (10), 5463. doi: 10.1039/c8ta10329a
-
[103]
(103) Lu, Y.; Zhu, T.; McShane, E.; McCloskey, B. D.; Chen, G. Small 2022, 18 (12), e2105833. doi: 10.1002/smll.202105833
-
[104]
(104) Zhang, H.; Omenya, F.; Yan, P.; Luo, L.; Whittingham, M. S.; Wang, C.; Zhou, G. ACS Energy Lett. 2017, 2 (11), 2607. doi: 10.1021/acsenergylett.7b00907
-
[105]
(105) Garcia, J. C.; Bareño, J.; Yan, J.; Chen, G.; Hauser, A.; Croy, J. R.; Iddir, H. J. Phys. Chem. C 2017, 121 (15), 8290. doi: 10.1021/acs.jpcc.7b00896
-
[106]
(106) Ryu, H.-H.; Lee, S.-B.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2022, 7 (9), 3072. doi: 10.1021/acsenergylett.2c01670
-
[107]
(107) Liu, J.; Yuan, Y.; Zheng, J.; Wang, L.; Ji, J.; Zhang, Q.; Yang, L.; Bai, Z.; Lu, J. Angew. Chem. Int. Ed. 2023, 62 (20), e202302547. doi: 10.1002/anie.202302547
-
[108]
(108) Kimijima, T.; Zettsu, N.; Teshima, K. Crystal Growth Des. 2016, 16 (5), 2618. doi: 10.1021/acs.cgd.5b01723
-
[109]
(109) Jeon, H.; Kwon, D.-H.; Kim, H.; Lee, J.-H.; Jun, Y.; Son, J.-W.; Park, S. Chem. Eng. J. 2022, 445. doi: 10.1016/j.cej.2022.136828
-
[110]
(110) Huang, H.; Zhang, L.; Tian, H.; Yan, J.; Tong, J.; Liu, X.; Zhang, H.; Huang, H.; Hao, S. M.; Gao, J.; et al. Adv. Energy Mater. 2022, 13 (3), 202203188. doi: 10.1002/aenm.202203188
-
[111]
(111) Yoon, M.; Dong, Y.; Huang, Y.; Wang, B.; Kim, J.; Park, J.-S.; Hwang, J.; Park, J.; Kang, S. J.; Cho, J.; et al. Nat. Energy 2023, 8 (5), 482. doi: 10.1038/s41560-023-01233-8
-
[112]
(112) Yin, S.; Deng, W.; Chen, J.; Gao, X.; Zou, G.; Hou, H.; Ji, X. Nano Energy 2021, 83, 105854. doi: 10.1016/j.nanoen.2021.105854
-
[113]
(113) Oh, P.; Yun, J.; Park, S.; Nam, G.; Liu, M.; Cho, J. Adv. Energy Mater. 2020, 11 (15), 202003197. doi: 10.1002/aenm.202003197
-
[114]
(114) Ko, G.; Jeong, S.; Park, S.; Lee, J.; Kim, S.; Shin, Y.; Kim, W.; Kwon, K. Energy Storage Mater. 2023, 60, 102840. doi: 10.1016/j.ensm.2023.102840
-
[115]
(115) Kim, U.-H.; Kuo, L.-Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2019, 4 (2), 576. doi: 10.1021/acsenergylett.8b02499
-
[116]
(116) Li, C.; Kan, W. H.; Xie, H.; Jiang, Y.; Zhao, Z.; Zhu, C.; Xia, Y.; Zhang, J.; Xu, K.; Mu, D.; Wu, F. Adv. Sci. 2019, 6 (4), 1801406. doi: 10.1002/advs.201801406
-
[117]
-
[118]
(118) Mu, L.; Kan, W. H.; Kuai, C.; Yang, Z.; Li, L.; Sun, C. J.; Sainio, S.; Avdeev, M.; Nordlund, D.; Lin, F. ACS Appl. Mater. 2020, 12 (11), 12874. doi: 10.1021/acsami.0c00111
-
[119]
(119) Zheng, H.; Zhang, C.; Zhang, Y.; Lin, L.; Liu, P.; Wang, L.; Wei, Q.; Lin, J.; Sa, B.; Xie, Q.; et al. Adv. Funct. Mater. 2021, 31 (30), 202100783. doi: 10.1002/adfm.202100783
-
[120]
(120) Liu, Q.; Xie, T.; Xie, Q.; He, W.; Zhang, Y.; Zheng, H.; Lu, X.; Wei, W.; Sa, B.; Wang, L.; et al. ACS Appl. Mater. 2021, 13 (7), 8239. doi: 10.1021/acsami.0c19040
-
[121]
(121) Yao, W.; Liu, Y.; Li, D.; Zhang, Q.; Zhong, S.; Cheng, H.; Yan, Z. J. Phys. Chem. C 2020, 124 (4), 2346. doi: 10.1021/acs.jpcc.9b10526
-
[122]
(122) Li, Y.; Wang, X.; Zhang, W.; He, Y.; Ma, Z. Chin. J. Process Eng. 2018, 18 (2), 422. doi: 10.12034/j.issn.1009-606X.217296
-
[123]
(123) Ding, X.; Li, Y.-X.; Deng, M.-M.; Wang, S.; Aqsa, Y.; Hu, Q.; Chen, C.-H. J. Alloy. Compd. 2019, 791, 100. doi: 10.1016/j.jallcom.2019.03.297
-
[124]
(124) Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. ACS Energy Lett. 2019, 4 (2), 508. doi: 10.1021/acsenergylett.8b02302
-
[125]
(125) Rajkamal, A.; Kim, H. ACS Appl. Energ. Mater. 2021, 4 (12), 14068. doi: 10.1021/acsaem.1c02837
-
[126]
-
[127]
(127) Gao, S.; Cheng, Y. T.; Shirpour, M. ACS Appl. Mater. 2019, 11 (1), 982. doi: 10.1021/acsami.8b19349
-
[128]
(128) Qian, G.; Huang, H.; Hou, F.; Wang, W.; Wang, Y.; Lin, J.; Lee, S.-J.; Yan, H.; Chu, Y. S.; Pianetta, P.; et al. Nano Energy 2021, 84, 105926. doi: 10.1016/j.nanoen.2021.105926
-
[129]
(129) Kam, D.; Choi, M.; Park, D.; Choi, W. Chem. Eng. J. 2023, 472, 144885. doi: 10.1016/j.cej.2023.144885
-
[130]
(130) Zou, Y. G.; Mao, H.; Meng, X. H.; Du, Y. H.; Sheng, H.; Yu, X.; Shi, J. L.; Guo, Y. G. Angew. Chem. Int. Ed. 2021, 60 (51), 26535. doi: 10.1002/anie.202111954
-
[131]
(131) Jamil, S.; Fasehullah, M.; Jabar, B.; Liu, P.; Aslam, M. K.; Zhang, Y.; Bao, S.; Xu, M. Nano Energy 2022, 94, 106961. doi: 10.1016/j.nanoen.2022.106961
-
[132]
(132) Ou, X.; Liu, T.; Zhong, W.; Fan, X.; Guo, X.; Huang, X.; Cao, L.; Hu, J.; Zhang, B.; Chu, Y. S.; et al. Nat. Commun. 2022, 13 (1), 2319. doi: 10.1038/s41467-022-30020-4
-
[133]
(133) Zhang, Q.; Deng, Q.; Zhong, W.; Li, J.; Wang, Z.; Dong, P.; Huang, K.; Yang, C. Adv. Funct. Mater. 2023, 33 (27), 202301336. doi: 10.1002/adfm.202301336
-
[134]
(134) Guo, Y. J.; Zhang, C. H.; Xin, S.; Shi, J. L.; Wang, W. P.; Fan, M.; Chang, Y. X.; He, W. H.; Wang, E.; Zou, Y. G.; et al. Angew. Chem. Int. Ed. 2022, 61 (21), e202116865. doi: 10.1002/anie.202116865
-
[135]
(135) Ni, L.; Chen, H.; Deng, W.; Wang, B.; Chen, J.; Mei, Y.; Zou, G.; Hou, H.; Guo, R.; Xie, J.; Ji, X. Adv. Energy Mater. 2022, 12 (11), 202103757. doi: 10.1002/aenm.202103757
-
[136]
(136) Li, H.; Zhou, P.; Liu, F.; Li, H.; Cheng, F.; Chen, J. Chem. Sci. 2019, 10 (5), 1374. doi: 10.1039/c8sc03385d
-
[137]
(137) Wu, F.; Liu, N.; Chen, L.; Li, N.; Lu, Y.; Cao, D.; Xu, M.; Wang, Z.; Su, Y. ACS Appl. Mater. 2021, 13 (21), 24925. doi: 10.1021/acsami.1c05486
-
[138]
(138) Zhang, M. J.; Teng, G.; Chen-Wiegart, Y. K.; Duan, Y.; Ko, J. Y. P.; Zheng, J.; Thieme, J.; Dooryhee, E.; Chen, Z.; Bai, J.; et al. J. Am. Chem. Soc. 2018, 140 (39), 12484. doi: 10.1021/jacs.8b06150
-
[139]
(139) Duan, Y.; Yang, L.; Zhang, M.-J.; Chen, Z.; Bai, J.; Amine, K.; Pan, F.; Wang, F. J. Mater. Chem. A 2019, 7 (2), 513. doi: 10.1039/c8ta10553g
-
[140]
(140) Meng, X. H.; Zhang, X. D.; Sheng, H.; Fan, M.; Lin, T.; Xiao, D.; Tian, J.; Wen, R.; Liu, W. Z.; Shi, J. L.; et al. Angew. Chem. Int. Ed. 2023, 62 (22), e202302170. doi: 10.1002/anie.202302170
-
[141]
-
[142]
(142) Liu, Q.; Liu, Y. T.; Zhao, C.; Weng, Q. S.; Deng, J.; Hwang, I.; Jiang, Y.; Sun, C.; Li, T.; Xu, W.; et al. ACS Nano 2022, 16 (9), 14527. doi: 10.1021/acsnano.2c04959
-
[143]
(143) Guo, H. J.; Sun, Y.; Zhao, Y.; Liu, G. X.; Song, Y. X.; Wan, J.; Jiang, K. C.; Guo, Y. G.; Sun, X.; Wen, R. Angew. Chem. Int. Ed. 2022, 61 (48), e202211626. doi: 10.1002/anie.202211626
-
[144]
(144) Li, Y.; Wan, C.; Tian, Y.; Li, J.; Yang, C.; Zhang, W.; Zhang, X.; Hao, Z.; Yang, Z.; Guo, P.; et al. Appl. Surf. Sci. 2023, 609, 155162. doi: 10.1016/j.apsusc.2022.155162
-
[145]
(145) Fan, X.; Ou, X.; Zhao, W.; Liu, Y.; Zhang, B.; Zhang, J.; Zou, L.; Seidl, L.; Li, Y.; Hu, G.; Battaglia, C.; Yang, Y. Nat. Commun. 2021, 12 (1), 5320. doi: 10.1038/s41467-021-25611-6
-
[146]
(146) Bai, H.; Yuan, K.; Zhang, C.; Zhang, W.; Tang, X.; Jiang, S.; Jin, T.; Ma, Y.; Kou, L.; Shen, C.; Xie, K. Energy Storage Mater. 2023, 61, 102879. doi: 10.1016/j.ensm.2023.102879
-
[147]
(147) Jiang, W.; Zhu, X.; Huang, R.; Zhao, S.; Fan, X.; Ling, M.; Liang, C.; Wang, L. Adv. Energy Mater. 2022, 12 (13), 202103473. doi: 10.1002/aenm.202103473
-
[148]
(148) Kim, S. Y.; Cha, H.; Kostecki, R.; Chen, G. ACS Energy Lett. 2022, 8 (1), 521. doi: 10.1021/acsenergylett.2c02414
-
[149]
(149) Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S. T.; Jung, Y. S. Adv. Energy Mater. 2021, 11 (21), 202100126. doi: 10.1002/aenm.202100126
-
[150]
(150) Minnmann, P.; Strauss, F.; Bielefeld, A.; Ruess, R.; Adelhelm, P.; Burkhardt, S.; Dreyer, S. L.; Trevisanello, E.; Ehrenberg, H.; Brezesinski, T.; et al. Adv. Energy Mater. 2022, 12 (35), 202201425. doi: 10.1002/aenm.202201425
-
[151]
-
[152]
(152) Yi, M.; Li, J.; Wang, M.; Fan, X.; Hong, B.; Zhang, Z.; Zhang, Z.; Jiang, H.; Wang, A.; Lai, Y. Energy Storage Mater. 2023, 54, 579. doi: 10.1016/j.ensm.2022.11.007
-
[153]
(153) Su, Y.; Liu, X.; Yan, H.; Zhao, J.; Cheng, Y.; Luo, Y.; Gu, J.; Zhong, H.; Fu, A.; Wang, K.; et al. Nano Energy 2023, 113, 108572. doi: 10.1016/j.nanoen.2023.108572
-
[154]
(154) Tian, R.; Wang, Z.; Liao, J.; Zhang, H.; Song, D.; Zhu, L.; Zhang, L. Adv. Energy Mater. 2023, 13 (26), 202300850. doi: 10.1002/aenm.202300850
-
[1]
-
-
[1]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[2]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[3]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[4]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[5]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[6]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[7]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[10]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[11]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[12]
Guoxian Zhu , Jing Chen , Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027
-
[13]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[14]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[15]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[16]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[17]
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
-
[18]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[19]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[20]
Yinyin Qian , Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(690)
- HTML views(98)