Citation: Chenyue Huang,  Hongfei Zheng,  Ning Qin,  Canpei Wang,  Liguang Wang,  Jun Lu. Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230805. doi: 10.3866/PKU.WHXB202308051 shu

Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies

  • Corresponding author: Liguang Wang,  Jun Lu, 
  • Received Date: 31 August 2023
    Revised Date: 5 October 2023
    Accepted Date: 9 October 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52272241).

  • Over the past three decades, significant advancements in lithium-ion battery technology have greatly improved human convenience, particularly in today's thriving electric vehicle industry. Further enhancements in the energy density, cycle life, and safety of lithium-ion batteries are crucial for the widespread adoption of electric vehicles. In recent years, transition metal layered oxides have garnered significant attention in the industrial power battery sector due to their advantages, including high specific capacity, commendable low-temperature performance, and cost-effectiveness. Increasing the nickel content and adjusting the charging cut-off voltage are recognized as effective means to enhance the energy density of transition metal layered oxides. However, these strategies tend to degrade cycling stability and thermal safety in conventional polycrystalline layered cathode materials. Benefiting from the mechanical stability of intact primary particles, the single-crystal structure of layered cathode materials can effectively mitigate intergranular cracking issues associated with high charging voltages. Nevertheless, due to the intrinsic structural properties of layered materials, single-crystal structures still face challenges related to sluggish Li+ transport kinetics, heterogeneous state of charge, anisotropic changes in lattice parameters, cation mixing, and chemo-mechanical degradation. The temporal and spatial evolution of the physicochemical properties within the internal microstructure of materials still requires comprehensive analysis using advanced operando characterization techniques. Currently, there is limited understanding of the intricate interplay between thermodynamics and kinetics in the synthesis process of single-crystal cathode materials. A more profound exploration of the structural degradation and synthesis mechanisms of single-crystal materials will serve as a fundamental basis for targeted modification strategies. Regrettably, existing single-crystal synthesis processes and modification approaches still fall short of market expectations. This shortfall is especially noticeable in future applications in solid-state batteries, where interface issues related to solid-state-electrolyte and cathode material are serious. Addressing these challenges necessitates the precise regulation of the microstructure of composite cathodes. Therefore, this review systematically analyzes and summarizes common issues related to the failure of both polycrystal and single-crystal structures, taking into account the intrinsic structural evolution at various temporal and spatial scales. We also outline strategies for regulating the synthesis process, element doping, and surface-interface modification of single-crystal nickel-rich layered cathode materials from the perspective of coherent structural design. We also intent to elucidate the essential connection between structural design and electrochemical performance. The microstructural design of single-crystal nickel-rich cathode materials should emphasize the alignment of lattice parameters between heterostructures and layered oxides, as well as the modulation of their spatial distribution, thereby ensuring the long-term efficacy of element doping and surface-interface modification. Finally, we offer a perspective on the future development of single-crystal nickel-rich cathode materials, highlighting their potential success in the realm of power batteries.
  • 加载中
    1. [1]

      (1) Frith, J. T.; Lacey, M. J.; Ulissi, U. Nat. Commun. 2023, 14 (1), 420. doi: 10.1038/s41467-023-35933-2

    2. [2]

      (2) Manthiram, A.; Knight, J. C.; Myung, S.-T.; Oh, S.-M.; Sun, Y.-K. Adv. Energy Mater. 2016, 6 (1), 201501010. doi: 10.1002/aenm.201501010

    3. [3]

      (3) Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2012, 51 (40), 9994. doi: 10.1002/anie.201201429

    4. [4]

      (4) Liang, L.; Li, X.; Su, M.; Wang, L.; Sun, J.; Liu, Y.; Hou, L.; Yuan, C. Angew. Chem. Int. Ed. 2023, 62 (11), e202216155. doi: 10.1002/anie.202216155

    5. [5]

      (5) Xue, W.; Huang, M.; Li, Y.; Zhu, Y. G.; Gao, R.; Xiao, X.; Zhang, W.; Li, S.; Xu, G.; Yu, Y.; et al. Nat. Energy 2021, 6 (5), 495. doi: 10.1038/s41560-021-00792-y

    6. [6]

    7. [7]

      (7) Nomura, Y.; Yamamoto, K.; Yamagishi, Y.; Igaki, E. ACS Nano 2021, 15 (12), 19806. doi: 10.1021/acsnano.1c07252

    8. [8]

      (8) Lou, S.; Liu, Q.; Zhang, F.; Liu, Q.; Yu, Z.; Mu, T.; Zhao, Y.; Borovilas, J.; Chen, Y.; Ge, M.; et al. Nat. Commun. 2020, 11 (1), 5700. doi: 10.1038/s41467-020-19528-9

    9. [9]

      (9) Xu, X.; Huo, H.; Jian, J.; Wang, L.; Zhu, H.; Xu, S.; He, X.; Yin, G.; Du, C.; Sun, X. Adv. Energy Mater. 2019, 9 (15), 201803963. doi: 10.1002/aenm.201803963

    10. [10]

      (10) Yang, Y.; Xu, R.; Zhang, K.; Lee, S. J.; Mu, L.; Liu, P.; Waters, C. K.; Spence, S.; Xu, Z.; Wei, C.; et al. Adv. Energy Mater. 2019, 9 (25), 201900674. doi: 10.1002/aenm.201900674

    11. [11]

      (11) Kim, U. H.; Ryu, H. H.; Kim, J. H.; Mücke, R.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Adv. Energy Mater. 2019, 9 (15), 201803902. doi: 10.1002/aenm.201803902

    12. [12]

      (12) Besli, M. M.; Xia, S.; Kuppan, S.; Huang, Y.; Metzger, M.; Shukla, A. K.; Schneider, G.; Hellstrom, S.; Christensen, J.; Doeff, M. M.; et al. Chem. Mater. 2018, 31 (2), 491. doi: 10.1021/acs.chemmater.8b04418

    13. [13]

      (13) Sun, Y.-K. ACS Energy Lett. 2019, 4 (5), 1042. doi: 10.1021/acsenergylett.9b00652

    14. [14]

      (14) You, B.; Wang, Z.; Shen, F.; Chang, Y.; Peng, W.; Li, X.; Guo, H.; Hu, Q.; Deng, C.; Yang, S.; Yan, G.; Wang, J. Small Methods 2021, 5 (8), e2100234. doi: 10.1002/smtd.202100234

    15. [15]

      (15) Zhu, H.; Tang, Y.; Wiaderek, K. M.; Borkiewicz, O. J.; Ren, Y.; Zhang, J.; Ren, J.; Fan, L.; Li, C. C.; Li, D.; et al. Nano Lett. 2021, 21 (23), 9997. doi: 10.1021/acs.nanolett.1c03613

    16. [16]

      (16) Fan, X. M.; Huang, Y. D.; Wei, H. X.; Tang, L. B.; He, Z. J.; Yan, C.; Mao, J.; Dai, K. H.; Zheng, J. C. Adv. Funct. Mater. 2021, 32 (6), 202109421. doi: 10.1002/adfm.202109421

    17. [17]

      (17) Yang, S.-Q.; Wang, P.-B.; Wei, H.-X.; Tang, L.-B.; Zhang, X.-H.; He, Z.-J.; Li, Y.-J.; Tong, H.; Zheng, J.-C. Nano Energy 2019, 63, 103889. doi: 10.1016/j.nanoen.2019.103889

    18. [18]

      (18) Song, Y.; Cui, Y.; Li, B.; Geng, L.; Yan, J.; Zhu, D.; Zhou, P.; Zhou, J.; Yan, Z.; Xue, Q.; Tang, Y.; Xing, W. Nano Energy 2023, 116, 108846. doi: 10.1016/j.nanoen.2023.108846

    19. [19]

      (19) Kong, X.; Zhang, Y.; Li, J.; Yang, H.; Dai, P.; Zeng, J.; Zhao, J. Chem. Eng. J. 2022, 434, 134638. doi: 10.1016/j.cej.2022.134638

    20. [20]

      (20) Wang, L.; Wang, R.; Zhong, C.; Lu, L.; Gong, D.; Shi, Q.; Fan, Y.; Wang, X.; Zhan, C.; Liu, G. J. Energy Chem. 2022, 72, 265. doi: 10.1016/j.jechem.2022.04.006

    21. [21]

      (21) Xu, Z.; Jiang, Z.; Kuai, C.; Xu, R.; Qin, C.; Zhang, Y.; Rahman, M. M.; Wei, C.; Nordlund, D.; Sun, C. J.; et al. Nat. Commun. 2020, 11 (1), 83. doi: 10.1038/s41467-019-13884-x

    22. [22]

      (22) Zhang, F.; Lou, S.; Li, S.; Yu, Z.; Liu, Q.; Dai, A.; Cao, C.; Toney, M. F.; Ge, M.; Xiao, X.; et al. Nat. Commun. 2020, 11 (1), 3050. doi: 10.1038/s41467-020-16824-2

    23. [23]

      (23) Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Science 2015, 348 (6241), 1344. doi: 10.1126/science.aaa1313

    24. [24]

      (24) Robinson, I.; Harder, R. Nat. Mater. 2009, 8 (4), 291. doi: 10.1038/nmat2400

    25. [25]

      (25) Li, H.; Li, J.; Zaker, N.; Zhang, N.; Botton, G. A.; Dahn, J. R. J. Electrochem. Soc. 2019, 166 (10), A1956. doi: 10.1149/2.0681910jes

    26. [26]

      (26) Gao, H.; Wu, Q.; Hu, Y.; Zheng, J. P.; Amine, K.; Chen, Z. J. Phys. Chem. Lett. 2018, 9 (17), 5100. doi: 10.1021/acs.jpclett.8b02229

    27. [27]

      (27) Zhou, H.; Xin, F.; Pei, B.; Whittingham, M. S. ACS Energy Lett. 2019, 4 (8), 1902. doi: 10.1021/acsenergylett.9b01236

    28. [28]

      (28) Kang, S.-H.; Yoon, W.-S.; Nam, K.-W.; Yang, X.-Q.; Abraham, D. P. J. Mater. Sci. 2008, 43 (14), 4701. doi: 10.1007/s10853-007-2355-6

    29. [29]

      (29) Ryu, H.-H.; Namkoong, B.; Kim, J.-H.; Belharouak, I.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2021, 6 (8), 2726. doi: 10.1021/acsenergylett.1c01089

    30. [30]

      (30) Hu, Q.; Wu, Y.; Ren, D.; Liao, J.; Song, Y.; Liang, H.; Wang, A.; He, Y.; Wang, L.; Chen, Z.; He, X. Energy Storage Mater. 2022, 50, 373. doi: 10.1016/j.ensm.2022.05.038

    31. [31]

      (31) Trevisanello, E.; Ruess, R.; Conforto, G.; Richter, F. H.; Janek, J. Adv. Energy Mater. 2021, 11 (18), 202003400. doi: 10.1002/aenm.202003400

    32. [32]

      (32) Ge, M.; Wi, S.; Liu, X.; Bai, J.; Ehrlich, S.; Lu, D.; Lee, W. K.; Chen, Z.; Wang, F. Angew. Chem. Int. Ed. 2021, 60 (32), 17350. doi: 10.1002/anie.202012773

    33. [33]

      (33) Deng, X.; Zhang, R.; Zhou, K.; Gao, Z.; He, W.; Zhang, L.; Han, C.; Kang, F.; Li, B. Energy Environm. Mater. 2022, 6, e12331. doi: 10.1002/eem2.12331

    34. [34]

      (34) Han, G.-M.; Kim, Y.-S.; Ryu, H.-H.; Sun, Y.-K.; Yoon, C. S. ACS Energy Lett. 2022, 7 (9), 2919. doi: 10.1021/acsenergylett.2c01521

    35. [35]

      (35) Zhong, Z.; Chen, L.; Huang, S.; Shang, W.; Kong, L.; Sun, M.; Chen, L.; Ren, W. J. Mater. Sci. 2019, 55 (7), 2913. doi: 10.1007/s10853-019-04133-z

    36. [36]

      (36) Li, S.; Tian, G.; Xiong, R.; He, R.; Chen, S.; Zhou, H.; Wu, Y.; Han, Z.; Yu, C.; Cheng, S.; Xie, J. Energy Storage Mater. 2022, 46, 443. doi: 10.1016/j.ensm.2022.01.035

    37. [37]

      (37) Lin, F.; Zhao, K.; Liu, Y. ACS Energy Lett. 2021, 6 (11), 4065. doi: 10.1021/acsenergylett.1c02135

    38. [38]

      (38) Tian, C.; Xu, Y.; Nordlund, D.; Lin, F.; Liu, J.; Sun, Z.; Liu, Y.; Doeff, M. Joule 2018, 2 (3), 464. doi: 10.1016/j.joule.2017.12.008

    39. [39]

      (39) Park, K.-Y.; Park, J.-W.; Seong, W. M.; Yoon, K.; Hwang, T.-H.; Ko, K.-H.; Han, J.-H.; Jaedong, Y.; Kang, K. J. Power Sources 2020, 468, 228369. doi: 10.1016/j.jpowsour.2020.228369

    40. [40]

      (40) Merryweather, A. J.; Schnedermann, C.; Jacquet, Q.; Grey, C. P.; Rao, A. Nature 2021, 594 (7864), 522. doi: 10.1038/s41586-021-03584-2

    41. [41]

      (41) Xu, C.; Merryweather, A. J.; Pandurangi, S. S.; Lun, Z.; Hall, D. S.; Deshpande, V. S.; Fleck, N. A.; Schnedermann, C.; Rao, A.; Grey, C. P. Joule 2022, 6 (11), 2535. doi: 10.1016/j.joule.2022.09.008

    42. [42]

      (42) Kuppan, S.; Xu, Y.; Liu, Y.; Chen, G. Nat. Commun. 2017, 8, 14309. doi: 10.1038/ncomms14309

    43. [43]

      (43) Wang, L.; Liu, T.; Dai, A.; De Andrade, V.; Ren, Y.; Xu, W.; Lee, S.; Zhang, Q.; Gu, L.; Wang, S.; et al. Nat. Commun. 2021, 12 (1), 5370. doi: 10.1038/s41467-021-25686-1

    44. [44]

      (44) Liu, T.; Liu, J.; Li, L.; Yu, L.; Diao, J.; Zhou, T.; Li, S.; Dai, A.; Zhao, W.; Xu, S.; et al. Nature 2022, 606 (7913), 305. doi: 10.1038/s41586-022-04689-y

    45. [45]

      (45) Ulvestad, A.; Singer, A.; Cho, H. M.; Clark, J. N.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Nano Lett. 2014, 14 (9), 5123. doi: 10.1021/nl501858u

    46. [46]

      (46) Radin, M. D.; Alvarado, J.; Meng, Y. S.; Van der Ven, A. Nano Lett. 2017, 17 (12), 7789. doi: 10.1021/acs.nanolett.7b03989

    47. [47]

      (47) Wang, L.; Liu, T.; Wu, T.; Lu, J. Nature 2022, 611 (7934), 61. doi: 10.1038/s41586-022-05238-3

    48. [48]

      (48) Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; Boston, R.; Corr, S. A.; De Volder, M. F. L.; Inkson, B. J.; Fleck, N. A. Joule 2022, 6 (5), 984. doi: 10.1016/j.joule.2022.04.001

    49. [49]

      (49) Liang, C.; Jiang, L.; Wei, Z.; Zhang, W.; Wang, Q.; Sun, J. J. Energy Chem. 2022, 65, 424. doi: 10.1016/j.jechem.2021.06.010

    50. [50]

      (50) Yu, H.; Cao, Y.; Chen, L.; Hu, Y.; Duan, X.; Dai, S.; Li, C.; Jiang, H. Nat. Commun. 2021, 12 (1), 4564. doi: 10.1038/s41467-021-24893-0

    51. [51]

      (51) Xu, J.; Hu, E.; Nordlund, D.; Mehta, A.; Ehrlich, S. N.; Yang, X. Q.; Tong, W. ACS Appl. Mater. 2016, 8 (46), 31677. doi: 10.1021/acsami.6b11111

    52. [52]

      (52) Zhang, S. S. J. Energy Chem. 2020, 41, 135. doi: 10.1016/j.jechem.2019.05.013

    53. [53]

      (53) Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Adv. Energy Mater. 2020, 11 (7), 202003404. doi: 10.1002/aenm.202003404

    54. [54]

      (54) Ryu, H.-H.; Park, K.-J.; Yoon, C. S.; Sun, Y.-K. Chem. Mater. 2018, 30 (3), 1155. doi: 10.1021/acs.chemmater.7b05269

    55. [55]

      (55) Li, J.; Li, W.; You, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8 (29), 201801957. doi: 10.1002/aenm.201801957

    56. [56]

      (56) Xu, Y.; Hu, E.; Zhang, K.; Wang, X.; Borzenets, V.; Sun, Z.; Pianetta, P.; Yu, X.; Liu, Y.; Yang, X.-Q.; et al. ACS Energy Lett. 2017, 2 (5), 1240. doi: 10.1021/acsenergylett.7b00263

    57. [57]

      (57) Bak, S.-M.; Shadike, Z.; Lin, R.; Yu, X.; Yang, X.-Q. NPG Asia Mater. 2018, 10 (7), 563. doi: 10.1038/s41427-018-0056-z

    58. [58]

      (58) Zhu, J.; Sharifi-Asl, S.; Garcia, J. C.; Iddir, H. H.; Croy, J. R.; Shahbazian-Yassar, R.; Chen, G. ACS Appl. Energ. Mater. 2020, 3 (5), 4799. doi: 10.1021/acsaem.0c00411

    59. [59]

      (59) Tang, Z.; Wang, S.; Liao, J.; Wang, S.; He, X.; Pan, B.; He, H.; Chen, C. Research 2019, 2019, 2198906. doi: 10.34133/2019/2198906

    60. [60]

      (60) Luo, Y.-H.; Pan, Q.-L.; Wei, H.-X.; Huang, Y.-D.; Tang, L.-B.; Wang, Z.-Y.; He, Z.-J.; Yan, C.; Mao, J.; Dai, K.-H.; et al. Nano Energy 2022, 102, 107626. doi: 10.1016/j.nanoen.2022.107626

    61. [61]

      (61) Wei, W.; Ding, Z.; Chen, C.; Yang, C.; Han, B.; Xiao, L.; Liang, C.; Gao, P.; Cho, K. Acta Materialia 2021, 212, 116914. doi: 10.1016/j.actamat.2021.116914

    62. [62]

      (62) Sun, H.-H.; Manthiram, A. Chem. Mater. 2017, 29 (19), 8486. doi: 10.1021/acs.chemmater.7b03268

    63. [63]

      (63) Zou, L.; Zhao, W.; Jia, H.; Zheng, J.; Li, L.; Abraham, D. P.; Chen, G.; Croy, J. R.; Zhang, J.-G.; Wang, C. Chem. Mater. 2020, 32 (7), 2884. doi: 10.1021/acs.chemmater.9b04938

    64. [64]

      (64) Ku, K.; Kim, B.; Jung, S.-K.; Gong, Y.; Eum, D.; Yoon, G.; Park, K.-Y.; Hong, J.; Cho, S.-P.; Kim, D.-H.; et al. Energy Environm. Sci. 2020, 13 (4), 1269. doi: 10.1039/c9ee04123k

    65. [65]

      (65) Kim, U.-H.; Park, G.-T.; Conlin, P.; Ashburn, N.; Cho, K.; Yu, Y.-S.; Shapiro, D. A.; Maglia, F.; Kim, S.-J.; Lamp, P.; et al. Energy Environm. Sci. 2021, 14 (3), 1573. doi: 10.1039/d0ee03774e

    66. [66]

      (66) Li, M.; Lu, J. Science 2020, 367 (6481), 979. doi: 10.1126/science.aba9168

    67. [67]

      (67) Zheng, J.; Teng, G.; Xin, C.; Zhuo, Z.; Liu, J.; Li, Q.; Hu, Z.; Xu, M.; Yan, S.; Yang, W.; Pan, F. J. Phys. Chem. Lett. 2017, 8 (22), 5537. doi: 10.1021/acs.jpclett.7b02498

    68. [68]

      (68) Liu, W.; Oh, P.; Liu, X.; Lee, M. J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem. Int. Ed. 2015, 54 (15), 4440. doi: 10.1002/anie.201409262

    69. [69]

      (69) Myung, S.-T.; Maglia, F.; Park, K.-J.; Yoon, C. S.; Lamp, P.; Kim, S.-J.; Sun, Y.-K. ACS Energy Lett. 2016, 2 (1), 196. doi: 10.1021/acsenergylett.6b00594

    70. [70]

      (70) Chu, B.; Guo, Y.-J.; Shi, J.-L.; Yin, Y.-X.; Huang, T.; Su, H.; Yu, A.; Guo, Y.-G.; Li, Y. J. Power Sources 2022, 544, 231873. doi: 10.1016/j.jpowsour.2022.231873

    71. [71]

      (71) Hwang, S.; Chang, W.; Kim, S. M.; Su, D.; Kim, D. H.; Lee, J. Y.; Chung, K. Y.; Stach, E. A. Chem. Mater. 2014, 26 (2), 1084. doi: 10.1021/cm403332s

    72. [72]

      (72) Kondrakov, A. O.; Geßwein, H.; Galdina, K.; de Biasi, L.; Meded, V.; Filatova, E. O.; Schumacher, G.; Wenzel, W.; Hartmann, P.; Brezesinski, T.; et al. J. Phys. Chem. C 2017, 121 (44), 24381. doi: 10.1021/acs.jpcc.7b06598

    73. [73]

      (73) de Biasi, L.; Schwarz, B.; Brezesinski, T.; Hartmann, P.; Janek, J.; Ehrenberg, H. Adv. Mater. 2019, 31 (26), e1900985. doi: 10.1002/adma.201900985

    74. [74]

      (74) Xu, C.; Marker, K.; Lee, J.; Mahadevegowda, A.; Reeves, P. J.; Day, S. J.; Groh, M. F.; Emge, S. P.; Ducati, C.; Mehdi, B. L.; et al. Nat. Mater. 2021, 20 (1), 84. doi: 10.1038/s41563-020-0767-8

    75. [75]

      (75) Park, K.-J.; Jung, H.-G.; Kuo, L.-Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y.-K. Adv. Energy Mater. 2018, 8 (25), 201801202. doi: 10.1002/aenm.201801202

    76. [76]

      (76) Bi, Y.; Tao, J.; Wu, Y.; Li, L.; Xu, Y.; Hu, E.; Wu, B.; Hu, J.; Wang, C.; Zhang, J. G.; Qi, Y.; Xiao, J. Science 2020, 370 (6522), 1313. doi: 10.1126/science.abc3167

    77. [77]

      (77) Meng, X. H.; Lin, T.; Mao, H.; Shi, J. L.; Sheng, H.; Zou, Y. G.; Fan, M.; Jiang, K.; Xiao, R. J.; Xiao, D.; et al. J. Am. Chem. Soc. 2022, 144 (25), 11338. doi: 10.1021/jacs.2c03549

    78. [78]

      (78) Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Nat. Commun. 2017, 8, 14101. doi: 10.1038/ncomms14101

    79. [79]

      (79) Shadow Huang, H.-Y.; Wang, Y.-X. J. Electrochem. Soc. 2012, 159 (6), A815. doi: 10.1149/2.090206jes

    80. [80]

      (80) Li, W.; Kim, U. H.; Dolocan, A.; Sun, Y. K.; Manthiram, A. ACS Nano 2017, 11 (6), 5853. doi: 10.1021/acsnano.7b01494

    81. [81]

      (81) Yoon, C. S.; Park, K.-J.; Kim, U.-H.; Kang, K. H.; Ryu, H.-H.; Sun, Y.-K. Chem. Mater. 2017, 29 (24), 10436. doi: 10.1021/acs.chemmater.7b04047

    82. [82]

      (82) Kim, H.; Kim, M. G.; Jeong, H. Y.; Nam, H.; Cho, J. Nano Lett. 2015, 15 (3), 2111. doi: 10.1021/acs.nanolett.5b00045

    83. [83]

      (83) Goodenough, J. B.; Park, K. S. J. Am. Chem. Soc. 2013, 135 (4), 1167. doi: 10.1021/ja3091438

    84. [84]

      (84) Liu, H.; Harris, K. J.; Jiang, M.; Wu, Y.; Goward, G. R.; Botton, G. A. ACS Nano 2018, 12 (3), 2708. doi: 10.1021/acsnano.7b08945

    85. [85]

      (85) Steiner, J. D.; Mu, L.; Walsh, J.; Rahman, M. M.; Zydlewski, B.; Michel, F. M.; Xin, H. L.; Nordlund, D.; Lin, F. ACS Appl. Mater. 2018, 10 (28), 23842. doi: 10.1021/acsami.8b06399

    86. [86]

      (86) Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J.; Cho, S. P.; Yoon, G.; Lee, M. H.; Jung, S. K.; Yang, W.; et al. Nat. Mater. 2020, 19 (4), 419. doi: 10.1038/s41563-019-0572-4

    87. [87]

      (87) House, R. A.; Rees, G. J.; Pérez-Osorio, M. A.; Marie, J.-J.; Boivin, E.; Robertson, A. W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P. G. Nat. Energy 2020, 5 (10), 777. doi: 10.1038/s41560-020-00697-2

    88. [88]

      (88) Csernica, P. M.; Kalirai, S. S.; Gent, W. E.; Lim, K.; Yu, Y.-S.; Liu, Y.; Ahn, S.-J.; Kaeli, E.; Xu, X.; Stone, K. H.; et al. Nat. Energy 2021, 6 (6), 642. doi: 10.1038/s41560-021-00832-7

    89. [89]

      (89) Hou, X.-Y.; Kimura, Y.; Tamenori, Y.; Nitta, K.; Yamagishi, H.; Amezawa, K.; Nakamura, T. ACS Energy Lett. 2022, 7 (5), 1687. doi: 10.1021/acsenergylett.2c00353

    90. [90]

      (90) Shi, C. G.; Peng, X.; Dai, P.; Xiao, P.; Zheng, W. C.; Li, H. Y.; Li, H.; Indris, S.; Mangold, S.; Hong, Y. H.; et al. Adv. Energy Mater. 2022, 12 (20), 202200569. doi: 10.1002/aenm.202200569

    91. [91]

      (91) Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A. Mater. Today 2018, 21 (8), 825. doi: 10.1016/j.mattod.2018.03.037

    92. [92]

      (92) Wan, G.; Dou, W.; Zhu, H.; Zhang, W.; Liu, T.; Wang, L.; Lu, J. Interdisciplinary Mater. 2023, 2 (3), 416. doi: 10.1002/idm2.12091

    93. [93]

      (93) Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Adv. Energy Mater. 2019, 9 (22), 201900551. doi: 10.1002/aenm.201900551

    94. [94]

      (94) Wang, K.; Wan, J.; Xiang, Y.; Zhu, J.; Leng, Q.; Wang, M.; Xu, L.; Yang, Y. J. Power Sources 2020, 460, 228062. doi: 10.1016/j.jpowsour.2020.228062

    95. [95]

      (95) Li, F.; Kong, L.; Sun, Y.; Jin, Y.; Hou, P. J. Mater. Chem. A 2018, 6 (26), 12344. doi: 10.1039/c8ta03363c

    96. [96]

      (96) Jiao, J.; Lai, G.; Qin, S.; Fang, C.; Xu, X.; Jiang, Y.; Ouyang, C.; Zheng, J. Acta Mater. 2022, 238, 118229. doi: 10.1016/j.actamat.2022.118229

    97. [97]

      (97) Ni, L.; Guo, R.; Deng, W.; Wang, B.; Chen, J.; Mei, Y.; Gao, J.; Gao, X.; Yin, S.; Liu, H.; et al. Chem. Eng. J. 2022, 431, 133731. doi: 10.1016/j.cej.2021.133731

    98. [98]

      (98) Wang, J.; Lu, X.; Zhang, Y.; Zhou, J.; Wang, J.; Xu, S. J. Energy Chem. 2022, 65, 681. doi: 10.1016/j.jechem.2021.06.017

    99. [99]

      (99) Shi, J. L.; Sheng, H.; Meng, X. H.; Zhang, X. D.; Lei, D.; Sun, X.; Pan, H.; Wang, J.; Yu, X.; Wang, C.; et al. Natl Sci Rev 2023, 10 (2), nwac226. doi: 10.1093/nsr/nwac226

    100. [100]

      (100) Kim, Y. ACS Appl. Mater. 2012, 4 (5), 2329. doi: 10.1021/am300386j

    101. [101]

      (101) Liang, C.; Longo, R. C.; Kong, F.; Zhang, C.; Nie, Y.; Zheng, Y.; Cho, K. ACS Appl. Mater. 2018, 10 (7), 6673. doi: 10.1021/acsami.7b17424

    102. [102]

      (102) Zhu, J.; Chen, G. J. Mater. Chem. A 2019, 7 (10), 5463. doi: 10.1039/c8ta10329a

    103. [103]

      (103) Lu, Y.; Zhu, T.; McShane, E.; McCloskey, B. D.; Chen, G. Small 2022, 18 (12), e2105833. doi: 10.1002/smll.202105833

    104. [104]

      (104) Zhang, H.; Omenya, F.; Yan, P.; Luo, L.; Whittingham, M. S.; Wang, C.; Zhou, G. ACS Energy Lett. 2017, 2 (11), 2607. doi: 10.1021/acsenergylett.7b00907

    105. [105]

      (105) Garcia, J. C.; Bareño, J.; Yan, J.; Chen, G.; Hauser, A.; Croy, J. R.; Iddir, H. J. Phys. Chem. C 2017, 121 (15), 8290. doi: 10.1021/acs.jpcc.7b00896

    106. [106]

      (106) Ryu, H.-H.; Lee, S.-B.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2022, 7 (9), 3072. doi: 10.1021/acsenergylett.2c01670

    107. [107]

      (107) Liu, J.; Yuan, Y.; Zheng, J.; Wang, L.; Ji, J.; Zhang, Q.; Yang, L.; Bai, Z.; Lu, J. Angew. Chem. Int. Ed. 2023, 62 (20), e202302547. doi: 10.1002/anie.202302547

    108. [108]

      (108) Kimijima, T.; Zettsu, N.; Teshima, K. Crystal Growth Des. 2016, 16 (5), 2618. doi: 10.1021/acs.cgd.5b01723

    109. [109]

      (109) Jeon, H.; Kwon, D.-H.; Kim, H.; Lee, J.-H.; Jun, Y.; Son, J.-W.; Park, S. Chem. Eng. J. 2022, 445. doi: 10.1016/j.cej.2022.136828

    110. [110]

      (110) Huang, H.; Zhang, L.; Tian, H.; Yan, J.; Tong, J.; Liu, X.; Zhang, H.; Huang, H.; Hao, S. M.; Gao, J.; et al. Adv. Energy Mater. 2022, 13 (3), 202203188. doi: 10.1002/aenm.202203188

    111. [111]

      (111) Yoon, M.; Dong, Y.; Huang, Y.; Wang, B.; Kim, J.; Park, J.-S.; Hwang, J.; Park, J.; Kang, S. J.; Cho, J.; et al. Nat. Energy 2023, 8 (5), 482. doi: 10.1038/s41560-023-01233-8

    112. [112]

      (112) Yin, S.; Deng, W.; Chen, J.; Gao, X.; Zou, G.; Hou, H.; Ji, X. Nano Energy 2021, 83, 105854. doi: 10.1016/j.nanoen.2021.105854

    113. [113]

      (113) Oh, P.; Yun, J.; Park, S.; Nam, G.; Liu, M.; Cho, J. Adv. Energy Mater. 2020, 11 (15), 202003197. doi: 10.1002/aenm.202003197

    114. [114]

      (114) Ko, G.; Jeong, S.; Park, S.; Lee, J.; Kim, S.; Shin, Y.; Kim, W.; Kwon, K. Energy Storage Mater. 2023, 60, 102840. doi: 10.1016/j.ensm.2023.102840

    115. [115]

      (115) Kim, U.-H.; Kuo, L.-Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2019, 4 (2), 576. doi: 10.1021/acsenergylett.8b02499

    116. [116]

      (116) Li, C.; Kan, W. H.; Xie, H.; Jiang, Y.; Zhao, Z.; Zhu, C.; Xia, Y.; Zhang, J.; Xu, K.; Mu, D.; Wu, F. Adv. Sci. 2019, 6 (4), 1801406. doi: 10.1002/advs.201801406

    117. [117]

    118. [118]

      (118) Mu, L.; Kan, W. H.; Kuai, C.; Yang, Z.; Li, L.; Sun, C. J.; Sainio, S.; Avdeev, M.; Nordlund, D.; Lin, F. ACS Appl. Mater. 2020, 12 (11), 12874. doi: 10.1021/acsami.0c00111

    119. [119]

      (119) Zheng, H.; Zhang, C.; Zhang, Y.; Lin, L.; Liu, P.; Wang, L.; Wei, Q.; Lin, J.; Sa, B.; Xie, Q.; et al. Adv. Funct. Mater. 2021, 31 (30), 202100783. doi: 10.1002/adfm.202100783

    120. [120]

      (120) Liu, Q.; Xie, T.; Xie, Q.; He, W.; Zhang, Y.; Zheng, H.; Lu, X.; Wei, W.; Sa, B.; Wang, L.; et al. ACS Appl. Mater. 2021, 13 (7), 8239. doi: 10.1021/acsami.0c19040

    121. [121]

      (121) Yao, W.; Liu, Y.; Li, D.; Zhang, Q.; Zhong, S.; Cheng, H.; Yan, Z. J. Phys. Chem. C 2020, 124 (4), 2346. doi: 10.1021/acs.jpcc.9b10526

    122. [122]

      (122) Li, Y.; Wang, X.; Zhang, W.; He, Y.; Ma, Z. Chin. J. Process Eng. 2018, 18 (2), 422. doi: 10.12034/j.issn.1009-606X.217296

    123. [123]

      (123) Ding, X.; Li, Y.-X.; Deng, M.-M.; Wang, S.; Aqsa, Y.; Hu, Q.; Chen, C.-H. J. Alloy. Compd. 2019, 791, 100. doi: 10.1016/j.jallcom.2019.03.297

    124. [124]

      (124) Weigel, T.; Schipper, F.; Erickson, E. M.; Susai, F. A.; Markovsky, B.; Aurbach, D. ACS Energy Lett. 2019, 4 (2), 508. doi: 10.1021/acsenergylett.8b02302

    125. [125]

      (125) Rajkamal, A.; Kim, H. ACS Appl. Energ. Mater. 2021, 4 (12), 14068. doi: 10.1021/acsaem.1c02837

    126. [126]

    127. [127]

      (127) Gao, S.; Cheng, Y. T.; Shirpour, M. ACS Appl. Mater. 2019, 11 (1), 982. doi: 10.1021/acsami.8b19349

    128. [128]

      (128) Qian, G.; Huang, H.; Hou, F.; Wang, W.; Wang, Y.; Lin, J.; Lee, S.-J.; Yan, H.; Chu, Y. S.; Pianetta, P.; et al. Nano Energy 2021, 84, 105926. doi: 10.1016/j.nanoen.2021.105926

    129. [129]

      (129) Kam, D.; Choi, M.; Park, D.; Choi, W. Chem. Eng. J. 2023, 472, 144885. doi: 10.1016/j.cej.2023.144885

    130. [130]

      (130) Zou, Y. G.; Mao, H.; Meng, X. H.; Du, Y. H.; Sheng, H.; Yu, X.; Shi, J. L.; Guo, Y. G. Angew. Chem. Int. Ed. 2021, 60 (51), 26535. doi: 10.1002/anie.202111954

    131. [131]

      (131) Jamil, S.; Fasehullah, M.; Jabar, B.; Liu, P.; Aslam, M. K.; Zhang, Y.; Bao, S.; Xu, M. Nano Energy 2022, 94, 106961. doi: 10.1016/j.nanoen.2022.106961

    132. [132]

      (132) Ou, X.; Liu, T.; Zhong, W.; Fan, X.; Guo, X.; Huang, X.; Cao, L.; Hu, J.; Zhang, B.; Chu, Y. S.; et al. Nat. Commun. 2022, 13 (1), 2319. doi: 10.1038/s41467-022-30020-4

    133. [133]

      (133) Zhang, Q.; Deng, Q.; Zhong, W.; Li, J.; Wang, Z.; Dong, P.; Huang, K.; Yang, C. Adv. Funct. Mater. 2023, 33 (27), 202301336. doi: 10.1002/adfm.202301336

    134. [134]

      (134) Guo, Y. J.; Zhang, C. H.; Xin, S.; Shi, J. L.; Wang, W. P.; Fan, M.; Chang, Y. X.; He, W. H.; Wang, E.; Zou, Y. G.; et al. Angew. Chem. Int. Ed. 2022, 61 (21), e202116865. doi: 10.1002/anie.202116865

    135. [135]

      (135) Ni, L.; Chen, H.; Deng, W.; Wang, B.; Chen, J.; Mei, Y.; Zou, G.; Hou, H.; Guo, R.; Xie, J.; Ji, X. Adv. Energy Mater. 2022, 12 (11), 202103757. doi: 10.1002/aenm.202103757

    136. [136]

      (136) Li, H.; Zhou, P.; Liu, F.; Li, H.; Cheng, F.; Chen, J. Chem. Sci. 2019, 10 (5), 1374. doi: 10.1039/c8sc03385d

    137. [137]

      (137) Wu, F.; Liu, N.; Chen, L.; Li, N.; Lu, Y.; Cao, D.; Xu, M.; Wang, Z.; Su, Y. ACS Appl. Mater. 2021, 13 (21), 24925. doi: 10.1021/acsami.1c05486

    138. [138]

      (138) Zhang, M. J.; Teng, G.; Chen-Wiegart, Y. K.; Duan, Y.; Ko, J. Y. P.; Zheng, J.; Thieme, J.; Dooryhee, E.; Chen, Z.; Bai, J.; et al. J. Am. Chem. Soc. 2018, 140 (39), 12484. doi: 10.1021/jacs.8b06150

    139. [139]

      (139) Duan, Y.; Yang, L.; Zhang, M.-J.; Chen, Z.; Bai, J.; Amine, K.; Pan, F.; Wang, F. J. Mater. Chem. A 2019, 7 (2), 513. doi: 10.1039/c8ta10553g

    140. [140]

      (140) Meng, X. H.; Zhang, X. D.; Sheng, H.; Fan, M.; Lin, T.; Xiao, D.; Tian, J.; Wen, R.; Liu, W. Z.; Shi, J. L.; et al. Angew. Chem. Int. Ed. 2023, 62 (22), e202302170. doi: 10.1002/anie.202302170

    141. [141]

    142. [142]

      (142) Liu, Q.; Liu, Y. T.; Zhao, C.; Weng, Q. S.; Deng, J.; Hwang, I.; Jiang, Y.; Sun, C.; Li, T.; Xu, W.; et al. ACS Nano 2022, 16 (9), 14527. doi: 10.1021/acsnano.2c04959

    143. [143]

      (143) Guo, H. J.; Sun, Y.; Zhao, Y.; Liu, G. X.; Song, Y. X.; Wan, J.; Jiang, K. C.; Guo, Y. G.; Sun, X.; Wen, R. Angew. Chem. Int. Ed. 2022, 61 (48), e202211626. doi: 10.1002/anie.202211626

    144. [144]

      (144) Li, Y.; Wan, C.; Tian, Y.; Li, J.; Yang, C.; Zhang, W.; Zhang, X.; Hao, Z.; Yang, Z.; Guo, P.; et al. Appl. Surf. Sci. 2023, 609, 155162. doi: 10.1016/j.apsusc.2022.155162

    145. [145]

      (145) Fan, X.; Ou, X.; Zhao, W.; Liu, Y.; Zhang, B.; Zhang, J.; Zou, L.; Seidl, L.; Li, Y.; Hu, G.; Battaglia, C.; Yang, Y. Nat. Commun. 2021, 12 (1), 5320. doi: 10.1038/s41467-021-25611-6

    146. [146]

      (146) Bai, H.; Yuan, K.; Zhang, C.; Zhang, W.; Tang, X.; Jiang, S.; Jin, T.; Ma, Y.; Kou, L.; Shen, C.; Xie, K. Energy Storage Mater. 2023, 61, 102879. doi: 10.1016/j.ensm.2023.102879

    147. [147]

      (147) Jiang, W.; Zhu, X.; Huang, R.; Zhao, S.; Fan, X.; Ling, M.; Liang, C.; Wang, L. Adv. Energy Mater. 2022, 12 (13), 202103473. doi: 10.1002/aenm.202103473

    148. [148]

      (148) Kim, S. Y.; Cha, H.; Kostecki, R.; Chen, G. ACS Energy Lett. 2022, 8 (1), 521. doi: 10.1021/acsenergylett.2c02414

    149. [149]

      (149) Han, Y.; Jung, S. H.; Kwak, H.; Jun, S.; Kwak, H. H.; Lee, J. H.; Hong, S. T.; Jung, Y. S. Adv. Energy Mater. 2021, 11 (21), 202100126. doi: 10.1002/aenm.202100126

    150. [150]

      (150) Minnmann, P.; Strauss, F.; Bielefeld, A.; Ruess, R.; Adelhelm, P.; Burkhardt, S.; Dreyer, S. L.; Trevisanello, E.; Ehrenberg, H.; Brezesinski, T.; et al. Adv. Energy Mater. 2022, 12 (35), 202201425. doi: 10.1002/aenm.202201425

    151. [151]

    152. [152]

      (152) Yi, M.; Li, J.; Wang, M.; Fan, X.; Hong, B.; Zhang, Z.; Zhang, Z.; Jiang, H.; Wang, A.; Lai, Y. Energy Storage Mater. 2023, 54, 579. doi: 10.1016/j.ensm.2022.11.007

    153. [153]

      (153) Su, Y.; Liu, X.; Yan, H.; Zhao, J.; Cheng, Y.; Luo, Y.; Gu, J.; Zhong, H.; Fu, A.; Wang, K.; et al. Nano Energy 2023, 113, 108572. doi: 10.1016/j.nanoen.2023.108572

    154. [154]

      (154) Tian, R.; Wang, Z.; Liao, J.; Zhang, H.; Song, D.; Zhu, L.; Zhang, L. Adv. Energy Mater. 2023, 13 (26), 202300850. doi: 10.1002/aenm.202300850

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Guoxian Zhu Jing Chen Rongkai Pan . Enhancing the Teaching Quality of Atomic Structure: Insights and Strategies. University Chemistry, 2024, 39(3): 376-383. doi: 10.3866/PKU.DXHX202305027

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    15. [15]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    18. [18]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    19. [19]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    20. [20]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

Metrics
  • PDF Downloads(0)
  • Abstract views(690)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return