高压锂电池正极电解质界面研究进展

刘建东 张志佳 Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva 马建民

引用本文: 刘建东, 张志佳, Mikhail Kamenskii, Filipp Volkov, Svetlana Eliseeva, 马建民. 高压锂电池正极电解质界面研究进展[J]. 物理化学学报, 2025, 41(2): 100011. doi: 10.3866/PKU.WHXB202308048 shu
Citation:  Jiandong Liu,  Zhijia Zhang,  Mikhail Kamenskii,  Filipp Volkov,  Svetlana Eliseeva,  Jianmin Ma. Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(2): 100011. doi: 10.3866/PKU.WHXB202308048 shu

高压锂电池正极电解质界面研究进展

    通讯作者: 马建民, E-mail: nanoelechem@hnu.edu.cn
  • 基金项目:

    国家自然科学基金(U21A20311)资助项目

摘要: 提高电池的截止电压上限可以显著提升锂电池的能量密度。然而,高截止电压也会导致正极材料在高压下发生不可逆相变和副反应,从而损害电池性能。为了解决这一问题,建立一个稳定的正极电解质界面(CEI)在提高电池性能方面起到了关键作用。本文探讨了CEI的形成机制,并概述了构建CEI的方法,包括人工构建CEI和原位生成CEI。此外,从电解质的角度出发,我们还展望了构建高压正极CEI的设计思路。

English

    1. [1]

      (1) Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438(1) Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135, 1167. doi: 10.1021/ja3091438

    2. [2]

      (2) Jia, H.; Xu, W. Trends Chem. 2022, 4, 627. doi: 10.1016/j.trechm.2022.04.010(2) Jia, H.; Xu, W. Trends Chem. 2022, 4, 627. doi: 10.1016/j.trechm.2022.04.010

    3. [3]

      (3) Wu, Y.; Liu, X.; Wang, L.; Feng, X.; Ren, D.; Li, Y.; Rui, X.; Wang, Y.; Han, X.; Xu, G.-L.; et al. Energy Storage Mater. 2021, 37, 77. doi: 10.1016/j.ensm.2021.02.001(3) Wu, Y.; Liu, X.; Wang, L.; Feng, X.; Ren, D.; Li, Y.; Rui, X.; Wang, Y.; Han, X.; Xu, G.-L.; et al. Energy Storage Mater. 2021, 37, 77. doi: 10.1016/j.ensm.2021.02.001

    4. [4]

      (4) Pham, H. Q.; Chung, G. J.; Han, J.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Chem. Phys. 2020, 152, 094709. doi: 10.1063/1.5144280(4) Pham, H. Q.; Chung, G. J.; Han, J.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Chem. Phys. 2020, 152, 094709. doi: 10.1063/1.5144280

    5. [5]

      (5) Zhang, J.; Wang, P.-F.; Bai, P.; Wan, H.; Liu, S.; Hou, S.; Pu, X.; Xia, J.; Zhang, W.; Wang, Z.; et al. Adv. Mater. 2022, 34, 2108353. doi: 10.1002/adma.202108353(5) Zhang, J.; Wang, P.-F.; Bai, P.; Wan, H.; Liu, S.; Hou, S.; Pu, X.; Xia, J.; Zhang, W.; Wang, Z.; et al. Adv. Mater. 2022, 34, 2108353. doi: 10.1002/adma.202108353

    6. [6]

      (6) Li, W.; Song, B.; Manthiram, A. Chem. Soc. Rev. 2017, 46, 3006. doi: 10.1039/C6CS00875E(6) Li, W.; Song, B.; Manthiram, A. Chem. Soc. Rev. 2017, 46, 3006. doi: 10.1039/C6CS00875E

    7. [7]

      (7) Kong, D.; Hu, J.; Chen, Z.; Song, K.; Li, C.; Weng, M.; Li, M.; Wang, R.; Liu, T.; Liu, J.; et al. Adv. Energy Mater. 2019, 9, 1901756. doi: 10.1002/aenm.201901756(7) Kong, D.; Hu, J.; Chen, Z.; Song, K.; Li, C.; Weng, M.; Li, M.; Wang, R.; Liu, T.; Liu, J.; et al. Adv. Energy Mater. 2019, 9, 1901756. doi: 10.1002/aenm.201901756

    8. [8]

      (8) Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002(8) Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; et al. Chem 2018, 4, 1877. doi: 10.1016/j.chempr.2018.05.002

    9. [9]

      (9) Song, S. H.; Cho, M.; Park, I.; Yoo, J.-G.; Ko, K.-T.; Hong, J.; Kim, J.; Jung, S.-K.; Avdeev, M.; Ji, S.; et al. Adv. Energy Mater. 2020, 10, 2000521. doi: 10.1002/aenm.202000521(9) Song, S. H.; Cho, M.; Park, I.; Yoo, J.-G.; Ko, K.-T.; Hong, J.; Kim, J.; Jung, S.-K.; Avdeev, M.; Ji, S.; et al. Adv. Energy Mater. 2020, 10, 2000521. doi: 10.1002/aenm.202000521

    10. [10]

      (10) Piao, Z.; Gao, R.; Liu, Y.; Zhou, G.; Cheng, H.-M. Adv. Mater.(10) Piao, Z.; Gao, R.; Liu, Y.; Zhou, G.; Cheng, H.-M. Adv. Mater.

    11. [11]

      2023, 35, 2206009. doi: 10.1002/adma.2022060092023, 35, 2206009. doi: 10.1002/adma.202206009

    12. [12]

      (11) Qin, Y.; Cheng, H.; Zhou, J.; Liu, M.; Ding, X.; Li, Y.; Huang, Y.; Chen, Z.; Shen, C.; Wang, D.; et al. Energy Storage Mater. 2023, 57, 411. doi: 10.1016/j.ensm.2023.02.022(11) Qin, Y.; Cheng, H.; Zhou, J.; Liu, M.; Ding, X.; Li, Y.; Huang, Y.; Chen, Z.; Shen, C.; Wang, D.; et al. Energy Storage Mater. 2023, 57, 411. doi: 10.1016/j.ensm.2023.02.022

    13. [13]

      (12) Sun, H. H.; Kim, U.-H.; Park, J.-H.; Park, S.-W.; Seo, D.-H.; Heller, A.; Mullins, C. B.; Yoon, C. S.; Sun, Y.-K. Nat. Commun. 2021, 12, 6552. doi: 10.1038/s41467-021-26815-6(12) Sun, H. H.; Kim, U.-H.; Park, J.-H.; Park, S.-W.; Seo, D.-H.; Heller, A.; Mullins, C. B.; Yoon, C. S.; Sun, Y.-K. Nat. Commun. 2021, 12, 6552. doi: 10.1038/s41467-021-26815-6

    14. [14]

      (13) Zhou, K.; Xie, Q.; Li, B.; Manthiram, A. Energy Storage Mater. 2021, 34, 229. doi: 10.1016/j.ensm.2020.09.015(13) Zhou, K.; Xie, Q.; Li, B.; Manthiram, A. Energy Storage Mater. 2021, 34, 229. doi: 10.1016/j.ensm.2020.09.015

    15. [15]

      (14) Li, J.; Li, W.; Wang, S.; Jarvis, K.; Yang, J.; Manthiram, A. Chem. Mater. 2018, 30, 3101. doi: 10.1021/acs.chemmater.8b01077(14) Li, J.; Li, W.; Wang, S.; Jarvis, K.; Yang, J.; Manthiram, A. Chem. Mater. 2018, 30, 3101. doi: 10.1021/acs.chemmater.8b01077

    16. [16]

      (15) Xie, Q.; Li, W.; Dolocan, A.; Manthiram, A. Chem. Mater. 2019, 31, 8886. doi: 10.1021/acs.chemmater.9b02916(15) Xie, Q.; Li, W.; Dolocan, A.; Manthiram, A. Chem. Mater. 2019, 31, 8886. doi: 10.1021/acs.chemmater.9b02916

    17. [17]

      (16) Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Energy Storage Mater. 2021, 38, 309. doi: 10.1016/j.ensm.2021.03.015(16) Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Energy Storage Mater. 2021, 38, 309. doi: 10.1016/j.ensm.2021.03.015

    18. [18]

      (17) Woo, S. U.; Yoon, C. S.; Amine, K.; Belharouak, I.; Sun, Y. K. J. Electrochem. Soc. 2007, 154, A1005. doi: 10.1149/1.2776160(17) Woo, S. U.; Yoon, C. S.; Amine, K.; Belharouak, I.; Sun, Y. K. J. Electrochem. Soc. 2007, 154, A1005. doi: 10.1149/1.2776160

    19. [19]

      (18) Ahmed, B.; Xia, C.; Alshareef, H. N. Nano Today 2016, 11, 250. doi: 10.1016/j.nantod.2016.04.004(18) Ahmed, B.; Xia, C.; Alshareef, H. N. Nano Today 2016, 11, 250. doi: 10.1016/j.nantod.2016.04.004

    20. [20]

      (19) Li, W.; Liu, X.; Celio, H.; Smith, P.; Dolocan, A.; Chi, M.; Manthiram, A. Adv. Energy Mater. 2018, 8, 1703154. doi: 10.1002/aenm.201703154(19) Li, W.; Liu, X.; Celio, H.; Smith, P.; Dolocan, A.; Chi, M.; Manthiram, A. Adv. Energy Mater. 2018, 8, 1703154. doi: 10.1002/aenm.201703154

    21. [21]

      (20) You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A. Angew. Chem. Int. Ed. 2018, 57, 6480. doi: 10.1002/anie.201801533(20) You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A. Angew. Chem. Int. Ed. 2018, 57, 6480. doi: 10.1002/anie.201801533

    22. [22]

      (21) Gao, S.; Zhan, X.; Cheng, Y.-T. J. Power Sources 2019, 410411, 45. doi: 10.1016/j.jpowsour.2018.10.094(21) Gao, S.; Zhan, X.; Cheng, Y.-T. J. Power Sources 2019, 410411, 45. doi: 10.1016/j.jpowsour.2018.10.094

    23. [23]

      (22) Shu, Y.; Xie, Y.; Yan, W.; Meng, S.; Sun, D.; Jin, Y.; Xiang, L. Ceramics Int. 2020, 46, 14840. doi: 10.1016/j.ceramint.2020.03.009(22) Shu, Y.; Xie, Y.; Yan, W.; Meng, S.; Sun, D.; Jin, Y.; Xiang, L. Ceramics Int. 2020, 46, 14840. doi: 10.1016/j.ceramint.2020.03.009

    24. [24]

      (23) Mou, J.; Deng, Y.; He, L.; Zheng, Q.; Jiang, N.; Lin, D. Electrochim. Acta 2018, 260, 101. doi: 10.1016/j.electacta.2017.11.059(23) Mou, J.; Deng, Y.; He, L.; Zheng, Q.; Jiang, N.; Lin, D. Electrochim. Acta 2018, 260, 101. doi: 10.1016/j.electacta.2017.11.059

    25. [25]

      (24) Cao, G.; Jin, Z.; Zhu, J.; Li, Y.; Xu, B.; Xiong, Y.; Yang, J. J. Alloys Compd. 2020, 832, 153788. doi: 10.1016/j.jallcom.2020.153788(24) Cao, G.; Jin, Z.; Zhu, J.; Li, Y.; Xu, B.; Xiong, Y.; Yang, J. J. Alloys Compd. 2020, 832, 153788. doi: 10.1016/j.jallcom.2020.153788

    26. [26]

      (25) Zhang, Z.; Yang, J.; Huang, W.; Wang, H.; Zhou, W.; Li, Y.; Li, Y.; Xu, J.; Huang, W.; Chiu, W.; et al. Matter 2021, 4, 302. doi: 10.1016/j.matt.2020.10.021(25) Zhang, Z.; Yang, J.; Huang, W.; Wang, H.; Zhou, W.; Li, Y.; Li, Y.; Xu, J.; Huang, W.; Chiu, W.; et al. Matter 2021, 4, 302. doi: 10.1016/j.matt.2020.10.021

    27. [27]

      (26) Chen, D.; Mahmoud, M. A.; Wang, J.-H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi: 10.1021/acs.nanolett.9b00179(26) Chen, D.; Mahmoud, M. A.; Wang, J.-H.; Waller, G. H.; Zhao, B.; Qu, C.; El-Sayed, M. A.; Liu, M. Nano Lett. 2019, 19, 2037. doi: 10.1021/acs.nanolett.9b00179

    28. [28]

      (27) Wang, S.; Dai, A.; Cao, Y.; Yang, H.; Khalil, A.; Lu, J.; Li, H.; Ai, X. J. Mater. Chem. A 2021, 9, 11623. doi: 10.1039/D1TA02563E(27) Wang, S.; Dai, A.; Cao, Y.; Yang, H.; Khalil, A.; Lu, J.; Li, H.; Ai, X. J. Mater. Chem. A 2021, 9, 11623. doi: 10.1039/D1TA02563E

    29. [29]

      (28) Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. J. Electrochem. Soc. 1985, 132, 1521. doi: 10.1149/1.2114158(28) Thomas, M. G. S. R.; Bruce, P. G.; Goodenough, J. B. J. Electrochem. Soc. 1985, 132, 1521. doi: 10.1149/1.2114158

    30. [30]

      (29) Kanamura, K.; Toriyama, S.; Shiraishi, S.; Ohashi, M.; Takehara, Z.-I. J. Electroanal. Chem. 1996, 419, 77. doi: 10.1016/S0022-0728(96)04862-0(29) Kanamura, K.; Toriyama, S.; Shiraishi, S.; Ohashi, M.; Takehara, Z.-I. J. Electroanal. Chem. 1996, 419, 77. doi: 10.1016/S0022-0728(96)04862-0

    31. [31]

      (30) Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Adv. Mater. 2019, 31, 1902029. doi: 10.1002/adma.201902029(30) Zhou, Q.; Ma, J.; Dong, S.; Li, X.; Cui, G. Adv. Mater. 2019, 31, 1902029. doi: 10.1002/adma.201902029

    32. [32]

      (31) Aikens, D. A. J. Chem. Edu. 1983, 60, A25. doi: 10.1021/ed060pA25.1(31) Aikens, D. A. J. Chem. Edu. 1983, 60, A25. doi: 10.1021/ed060pA25.1

    33. [33]

      (32) Fang, S.; Jackson, D.; Dreibelbis, M. L.; Kuech, T. F.; Hamers, R. J. J. Power Sources 2018, 373, 184. doi: 10.1016/j.jpowsour.2017.09.050(32) Fang, S.; Jackson, D.; Dreibelbis, M. L.; Kuech, T. F.; Hamers, R. J. J. Power Sources 2018, 373, 184. doi: 10.1016/j.jpowsour.2017.09.050

    34. [34]

      (33) Zhang, J.-N.; Li, Q.; Wang, Y.; Zheng, J.; Yu, X.; Li, H. Energy Storage Mater. 2018, 14, 1. doi: 10.1016/j.ensm.2018.02.016(33) Zhang, J.-N.; Li, Q.; Wang, Y.; Zheng, J.; Yu, X.; Li, H. Energy Storage Mater. 2018, 14, 1. doi: 10.1016/j.ensm.2018.02.016

    35. [35]

      (34) Zhang, Z.; Qin, C.; Wang, K.; Han, X.; Li, J.; Sui, M.; Yan, P. J. Energy Chem. 2023, 81, 192. doi: 10.1016/j.jechem.2023.01.046(34) Zhang, Z.; Qin, C.; Wang, K.; Han, X.; Li, J.; Sui, M.; Yan, P. J. Energy Chem. 2023, 81, 192. doi: 10.1016/j.jechem.2023.01.046

    36. [36]

      (35) Zhou, Y.-N.; Ma, J.; Hu, E.; Yu, X.; Gu, L.; Nam, K.-W.; Chen, L.; Wang, Z.; Yang, X.-Q. Nat. Commun. 2014, 5, 5381. doi: 10.1038/ncomms6381(35) Zhou, Y.-N.; Ma, J.; Hu, E.; Yu, X.; Gu, L.; Nam, K.-W.; Chen, L.; Wang, Z.; Yang, X.-Q. Nat. Commun. 2014, 5, 5381. doi: 10.1038/ncomms6381

    37. [37]

      (36) Chen, M.; Wang, W.; Shi, Z.; Liu, Z.; Shen, C. Appl. Surf. Sci. 2022, 600, 154119. doi: 10.1016/j.apsusc.2022.154119(36) Chen, M.; Wang, W.; Shi, Z.; Liu, Z.; Shen, C. Appl. Surf. Sci. 2022, 600, 154119. doi: 10.1016/j.apsusc.2022.154119

    38. [38]

      (37) Tallman, K. R.; Wheeler, G. P.; Kern, C. J.; Stavitski, E.; Tong, X.; Takeuchi, K. J.; Marschilok, A. C.; Bock, D. C.; Takeuchi, E. S. J. Phys. Chem. C 2021, 125, 58. doi: 10.1021/acs.jpcc.0c08095(37) Tallman, K. R.; Wheeler, G. P.; Kern, C. J.; Stavitski, E.; Tong, X.; Takeuchi, K. J.; Marschilok, A. C.; Bock, D. C.; Takeuchi, E. S. J. Phys. Chem. C 2021, 125, 58. doi: 10.1021/acs.jpcc.0c08095

    39. [39]

      (38) Yang, Y.; Wang, H.; Zhu, C.; Ma, J. Angew. Chem. Int. Ed. 2023, 62, e202300057. doi: 10.1002/anie.202300057(38) Yang, Y.; Wang, H.; Zhu, C.; Ma, J. Angew. Chem. Int. Ed. 2023, 62, e202300057. doi: 10.1002/anie.202300057

    40. [40]

      (39) Liu, J.; Wu, M.; Li, X.; Wu, D.; Wang, H.; Huang, J.; Ma, J. Adv. Energy Mater. 2023, 13, 2300084. doi: 10.1002/aenm.202300084(39) Liu, J.; Wu, M.; Li, X.; Wu, D.; Wang, H.; Huang, J.; Ma, J. Adv. Energy Mater. 2023, 13, 2300084. doi: 10.1002/aenm.202300084

    41. [41]

      (40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.(40) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.

    42. [42]

      (41) Neese, F. WIREs Comput. Mol. Sci. 2018, 8, e1327. doi: 10.1002/wcms.1327(41) Neese, F. WIREs Comput. Mol. Sci. 2018, 8, e1327. doi: 10.1002/wcms.1327

    43. [43]

      (42) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865(42) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    44. [44]

      (43) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. WIREs Comput. Mol. Sci. 2014, 4, 15. doi: 10.1002/wcms.1159(43) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. WIREs Comput. Mol. Sci. 2014, 4, 15. doi: 10.1002/wcms.1159

    45. [45]

      (44) Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2(44) Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C.; et al. Nat. Nanotechnol. 2018, 13, 715. doi: 10.1038/s41565-018-0183-2

    46. [46]

      (45) Li, X.; Liu, J.; He, J.; Wang, H.; Qi, S.; Wu, D.; Huang, J.; Li, F.; Hu, W.; Ma, J. Adv. Funct. Mater. 2021, 31, 2104395. doi: 10.1002/adfm.202104395(45) Li, X.; Liu, J.; He, J.; Wang, H.; Qi, S.; Wu, D.; Huang, J.; Li, F.; Hu, W.; Ma, J. Adv. Funct. Mater. 2021, 31, 2104395. doi: 10.1002/adfm.202104395

    47. [47]

      (46) Kim, S. C.; Oyakhire, S. T.; Athanitis, C.; Wang, J.; Zhang, Z.; Zhang, W.; Boyle, D. T.; Kim, M. S.; Yu, Z.; Gao, X.; et al. Proc. Natl. Acad. Sci. 2023, 120, e2214357120. doi: 10.1073/pnas.2214357120(46) Kim, S. C.; Oyakhire, S. T.; Athanitis, C.; Wang, J.; Zhang, Z.; Zhang, W.; Boyle, D. T.; Kim, M. S.; Yu, Z.; Gao, X.; et al. Proc. Natl. Acad. Sci. 2023, 120, e2214357120. doi: 10.1073/pnas.2214357120

    48. [48]

      (47) Zhao, L.; Chen, G.; Weng, Y.; Yan, T.; Shi, L.; An, Z.; Zhang, D. Chem. Eng. J. 2020, 401, 126138. doi: 10.1016/j.cej.2020.126138(47) Zhao, L.; Chen, G.; Weng, Y.; Yan, T.; Shi, L.; An, Z.; Zhang, D. Chem. Eng. J. 2020, 401, 126138. doi: 10.1016/j.cej.2020.126138

    49. [49]

      (48) Qiao, Y.; Zhou, Z.; Chen, Z.; Du, S.; Cheng, Q.; Zhai, H.; Fritz, N. J.; Du, Q.; Yang, Y. Nano Energy 2018, 45, 68. doi: 10.1016/j.nanoen.2017.12.036(48) Qiao, Y.; Zhou, Z.; Chen, Z.; Du, S.; Cheng, Q.; Zhai, H.; Fritz, N. J.; Du, Q.; Yang, Y. Nano Energy 2018, 45, 68. doi: 10.1016/j.nanoen.2017.12.036

    50. [50]

      (49) Wu, Z.; Li, R.; Zhang, S.; lv, L.; Deng, T.; Zhang, H.; Zhang, R.; Liu, J.; Ding, S.; Fan, L.; et al. Chem 2023, 9, 650. doi: 10.1016/j.chempr.2022.10.027(49) Wu, Z.; Li, R.; Zhang, S.; lv, L.; Deng, T.; Zhang, H.; Zhang, R.; Liu, J.; Ding, S.; Fan, L.; et al. Chem 2023, 9, 650. doi: 10.1016/j.chempr.2022.10.027

    51. [51]

      (50) Li, X.; Zhang, K.; Mitlin, D.; Paek, E.; Wang, M.; Jiang, F.; Huang, Y.; Yang, Z.; Gong, Y.; Gu, L.; et al. Small 2018, 14, 1802570. doi: 10.1002/smll.201802570(50) Li, X.; Zhang, K.; Mitlin, D.; Paek, E.; Wang, M.; Jiang, F.; Huang, Y.; Yang, Z.; Gong, Y.; Gu, L.; et al. Small 2018, 14, 1802570. doi: 10.1002/smll.201802570

    52. [52]

      (51) Bai, Y.; Jiang, K.; Sun, S.; Wu, Q.; Lu, X.; Wan, N. Electrochim. Acta 2014, 134, 347. doi: 10.1016/j.electacta.2014.04.155(51) Bai, Y.; Jiang, K.; Sun, S.; Wu, Q.; Lu, X.; Wan, N. Electrochim. Acta 2014, 134, 347. doi: 10.1016/j.electacta.2014.04.155

    53. [53]

      (52) Yao, L.; Liang, F.; Jin, J.; Chowdari, B. V. R.; Yang, J.; Wen, Z. Chem. Eng. J. 2020, 389, 124403. doi: 10.1016/j.cej.2020.124403(52) Yao, L.; Liang, F.; Jin, J.; Chowdari, B. V. R.; Yang, J.; Wen, Z. Chem. Eng. J. 2020, 389, 124403. doi: 10.1016/j.cej.2020.124403

    54. [54]

      (53) Gao, X.-W.; Deng, Y.-F.; Wexler, D.; Chen, G.-H.; Chou, S.-L.; Liu, H.-K.; Shi, Z.-C.; Wang, J.-Z. J. Mater. Chem. A 2015, 3, 404. doi: 10.1039/C4TA04018J(53) Gao, X.-W.; Deng, Y.-F.; Wexler, D.; Chen, G.-H.; Chou, S.-L.; Liu, H.-K.; Shi, Z.-C.; Wang, J.-Z. J. Mater. Chem. A 2015, 3, 404. doi: 10.1039/C4TA04018J

    55. [55]

      (54) Ding, J.-F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y.-X.; Yan, C.; Xie, J.; Huang, J.-Q. Angew. Chem. Int. Ed. 2021, 60, 11442. doi: 10.1002/anie.202101627(54) Ding, J.-F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y.-X.; Yan, C.; Xie, J.; Huang, J.-Q. Angew. Chem. Int. Ed. 2021, 60, 11442. doi: 10.1002/anie.202101627

    56. [56]

      (55) Wang, Z.; Zhu, C.; Liu, J.; Hu, X.; Yang, Y.; Qi, S.; Wang, H.; Wu, D.; Huang, J.; He, P.; et al. Adv. Funct. Mater. 2023, 33, 2212150. doi: 10.1002/adfm.202212150(55) Wang, Z.; Zhu, C.; Liu, J.; Hu, X.; Yang, Y.; Qi, S.; Wang, H.; Wu, D.; Huang, J.; He, P.; et al. Adv. Funct. Mater. 2023, 33, 2212150. doi: 10.1002/adfm.202212150

    57. [57]

      (56) Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 20717. doi: 10.1002/anie.202107957(56) Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 20717. doi: 10.1002/anie.202107957

    58. [58]

      (57) Jiang, G.; Liu, J.; Wang, Z.; Ma, J. Adv. Funct. Mater. 2023, 2300629. doi: 10.1002/adfm.202300629(57) Jiang, G.; Liu, J.; Wang, Z.; Ma, J. Adv. Funct. Mater. 2023, 2300629. doi: 10.1002/adfm.202300629

    59. [59]

      (58) Rath, P. C.; Wang, Y.-W.; Patra, J.; Umesh, B.; Yeh, T.-J.; Okada, S.; Li, J.; Chang, J.-K. Chem. Eng. J. 2021, 415, 128904. doi: 10.1016/j.cej.2021.128904(58) Rath, P. C.; Wang, Y.-W.; Patra, J.; Umesh, B.; Yeh, T.-J.; Okada, S.; Li, J.; Chang, J.-K. Chem. Eng. J. 2021, 415, 128904. doi: 10.1016/j.cej.2021.128904

    60. [60]

      (59) Zheng, X.; Liao, Y.; Zhang, Z.; Zhu, J.; Ren, F.; He, H.; Xiang, Y.; Zheng, Y.; Yang, Y. J. Energy Chem. 2020, 42, 62. doi: 10.1016/j.jechem.2019.05.023(59) Zheng, X.; Liao, Y.; Zhang, Z.; Zhu, J.; Ren, F.; He, H.; Xiang, Y.; Zheng, Y.; Yang, Y. J. Energy Chem. 2020, 42, 62. doi: 10.1016/j.jechem.2019.05.023

    61. [61]

      (60) Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Langmuir 2012, 28, 965. doi: 10.1021/la203712s(60) Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D. Langmuir 2012, 28, 965. doi: 10.1021/la203712s

    62. [62]

      (61) Xia, J.; Petibon, R.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A1637. doi: 10.1149/2.0831608jes(61) Xia, J.; Petibon, R.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A1637. doi: 10.1149/2.0831608jes

    63. [63]

      (62) Fan, X.; Wang, C. Chem. Soc. Rev. 2021, 50, 10486. doi: 10.1039/D1CS00450F(62) Fan, X.; Wang, C. Chem. Soc. Rev. 2021, 50, 10486. doi: 10.1039/D1CS00450F

    64. [64]

      (63) Xu, N.; Shi, J.; Liu, G.; Yang, X.; Zheng, J.; Zhang, Z.; Yang, Y.J. Power Sources Adv. 2021, 7, 100043. doi: 10.1016/j.powera.2020.100043(63) Xu, N.; Shi, J.; Liu, G.; Yang, X.; Zheng, J.; Zhang, Z.; Yang, Y.J. Power Sources Adv. 2021, 7, 100043. doi: 10.1016/j.powera.2020.100043

    65. [65]

      (64) Wang, T.; Rao, L.; Jiao, X.; Choi, J.; Yap, J.; Kim, J.-H. ACS Appl. Energy Mater. 2022, 5, 7346. doi: 10.1021/acsaem.2c00861(64) Wang, T.; Rao, L.; Jiao, X.; Choi, J.; Yap, J.; Kim, J.-H. ACS Appl. Energy Mater. 2022, 5, 7346. doi: 10.1021/acsaem.2c00861

    66. [66]

      (65) Song, Y.; Mao, Q.; Li, Q.; Huang, Z.; Wan, Y.; Hong, B.; Zhong, Q. ACS Appl. Energy Mater. 2023, 6, 4271. doi: 10.1021/acsaem.3c00196(65) Song, Y.; Mao, Q.; Li, Q.; Huang, Z.; Wan, Y.; Hong, B.; Zhong, Q. ACS Appl. Energy Mater. 2023, 6, 4271. doi: 10.1021/acsaem.3c00196

    67. [67]

      (66) Wu, F.; Schür, A. R.; Kim, G.-T.; Dong, X.; Kuenzel, M.; Diemant, T.; D'Orsi, G.; Simonetti, E.; De Francesco, M.; Bellusci, M.; et al. Energy Storage Mater. 2021, 42, 826. doi: 10.1016/j.ensm.2021.08.030(66) Wu, F.; Schür, A. R.; Kim, G.-T.; Dong, X.; Kuenzel, M.; Diemant, T.; D'Orsi, G.; Simonetti, E.; De Francesco, M.; Bellusci, M.; et al. Energy Storage Mater. 2021, 42, 826. doi: 10.1016/j.ensm.2021.08.030

    68. [68]

      (67) Xu, M.; Liu, Y.; Li, B.; Li, W.; Li, X.; Hu, S. Electrochem. Commun. 2012, 18, 123. doi: 10.1016/j.elecom.2012.02.037(67) Xu, M.; Liu, Y.; Li, B.; Li, W.; Li, X.; Hu, S. Electrochem. Commun. 2012, 18, 123. doi: 10.1016/j.elecom.2012.02.037

    69. [69]

      (68) Pham, T. D.; Faheem, A. B.; Kim, J.; Kwak, K.; Lee, K.-K. Electrochim. Acta 2023, 142496. doi: 10.1016/j.electacta.2023.142496(68) Pham, T. D.; Faheem, A. B.; Kim, J.; Kwak, K.; Lee, K.-K. Electrochim. Acta 2023, 142496. doi: 10.1016/j.electacta.2023.142496

    70. [70]

      (69) Winter, E.; Briccola, M.; Schmidt, T. J.; Trabesinger, S. Appl. Res. 2022, e202200096. doi: 10.1002/appl.202200096(69) Winter, E.; Briccola, M.; Schmidt, T. J.; Trabesinger, S. Appl. Res. 2022, e202200096. doi: 10.1002/appl.202200096

    71. [71]

      (70) Ma, Q.; Zhang, X.; Wang, A.; Xia, Y.; Liu, X.; Luo, J. Adv. Funct. Mater. 2020, 30, 2002824. doi: 10.1002/adfm.202002824(70) Ma, Q.; Zhang, X.; Wang, A.; Xia, Y.; Liu, X.; Luo, J. Adv. Funct. Mater. 2020, 30, 2002824. doi: 10.1002/adfm.202002824

    72. [72]

      (71) Yang, Y.-P.; Jiang, J.-C.; Huang, A.-C.; Tang, Y.; Liu, Y.-C.; Xie, L.-J.; Zhang, C.-Z.; Wu, Z.-H.; Xing, Z.-X.; Yu, F. Process Saf. Environ. Prot. 2022, 160, 80. doi: 10.1016/j.psep.2022.02.018(71) Yang, Y.-P.; Jiang, J.-C.; Huang, A.-C.; Tang, Y.; Liu, Y.-C.; Xie, L.-J.; Zhang, C.-Z.; Wu, Z.-H.; Xing, Z.-X.; Yu, F. Process Saf. Environ. Prot. 2022, 160, 80. doi: 10.1016/j.psep.2022.02.018

    73. [73]

      (72) Zhang, C.-M.; Li, F.; Zhu, X.-Q.; Yu, J.-G. Molecules 2022, 27, 3107; doi: 10.3390/molecules27103107(72) Zhang, C.-M.; Li, F.; Zhu, X.-Q.; Yu, J.-G. Molecules 2022, 27, 3107; doi: 10.3390/molecules27103107

    74. [74]

      (73) Li, Y.; Li, W.; Shimizu, R.; Cheng, D.; Nguyen, H.; Paulsen, J.; Kumakura, S.; Zhang, M.; Meng, Y. S. Adv. Energy Mater. 2022, 12, 2103033. doi: 10.1002/aenm.202103033(73) Li, Y.; Li, W.; Shimizu, R.; Cheng, D.; Nguyen, H.; Paulsen, J.; Kumakura, S.; Zhang, M.; Meng, Y. S. Adv. Energy Mater. 2022, 12, 2103033. doi: 10.1002/aenm.202103033

    75. [75]

      (74) Martinez, A. C.; Rigaud, S.; Grugeon, S.; Tran-Van, P.; Armand, M.; Cailleu, D.; Pilard, S.; Laruelle, S. Electrochim. Acta 2022, 426, 140765. doi: 10.1016/j.electacta.2022.140765(74) Martinez, A. C.; Rigaud, S.; Grugeon, S.; Tran-Van, P.; Armand, M.; Cailleu, D.; Pilard, S.; Laruelle, S. Electrochim. Acta 2022, 426, 140765. doi: 10.1016/j.electacta.2022.140765

    76. [76]

      (75) Fu, A.; Lin, J.; Zhang, Z.; Xu, C.; Zou, Y.; Liu, C.; Yan, P.; Wu, D.-Y.; Yang, Y.; Zheng, J. ACS Energy Lett. 2022, 7, 1364. doi: 10.1021/acsenergylett.2c00316(75) Fu, A.; Lin, J.; Zhang, Z.; Xu, C.; Zou, Y.; Liu, C.; Yan, P.; Wu, D.-Y.; Yang, Y.; Zheng, J. ACS Energy Lett. 2022, 7, 1364. doi: 10.1021/acsenergylett.2c00316

    77. [77]

      (76) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Garsuch, A.; Lucht, B. L. J. Electrochem. Soc. 2013, 160, A2005. doi: 10.1149/2.053311jes(76) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Garsuch, A.; Lucht, B. L. J. Electrochem. Soc. 2013, 160, A2005. doi: 10.1149/2.053311jes

    78. [78]

      (77) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9, 1308. doi: 10.1039/C5EE03360H(77) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9, 1308. doi: 10.1039/C5EE03360H

    79. [79]

      (78) Yang, X.; Lin, M.; Zheng, G.; Wu, J.; Wang, X.; Ren, F.; Zhang, W.; Liao, Y.; Zhao, W.; Zhang, Z.; et al. Adv. Funct. Mater. 2020, 30, 2004664. doi: 10.1002/adfm.202004664(78) Yang, X.; Lin, M.; Zheng, G.; Wu, J.; Wang, X.; Ren, F.; Zhang, W.; Liao, Y.; Zhao, W.; Zhang, Z.; et al. Adv. Funct. Mater. 2020, 30, 2004664. doi: 10.1002/adfm.202004664

    80. [80]

      (79) Liu, F.; Zhang, Z.; Yu, Z.; Fan, X.; Yi, M.; Bai, M.; Song, Y.; Mao, Q.; Hong, B.; Zhang, Z.; et al. Chem. Eng. J. 2022, 434, 134745. doi: 10.1016/j.cej.2022.134745(79) Liu, F.; Zhang, Z.; Yu, Z.; Fan, X.; Yi, M.; Bai, M.; Song, Y.; Mao, Q.; Hong, B.; Zhang, Z.; et al. Chem. Eng. J. 2022, 434, 134745. doi: 10.1016/j.cej.2022.134745

    81. [81]

      (80) Zhang, Q.-K.; Zhang, X.-Q.; Wan, J.; Yao, N.; Song, T.-L.; Xie, J.; Hou, L.-P.; Zhou, M.-Y.; Chen, X.; Li, B.-Q.; et al. Nat. Energy 2023, 8, 725. doi: 10.1038/s41560-023-01275-y(80) Zhang, Q.-K.; Zhang, X.-Q.; Wan, J.; Yao, N.; Song, T.-L.; Xie, J.; Hou, L.-P.; Zhou, M.-Y.; Chen, X.; Li, B.-Q.; et al. Nat. Energy 2023, 8, 725. doi: 10.1038/s41560-023-01275-y

  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  151
  • HTML全文浏览量:  11
文章相关
  • 收稿日期:  2023-08-30
  • 接受日期:  2023-10-30
  • 修回日期:  2023-10-06
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章