Citation: Qing Li,  Guangxun Zhang,  Yuxia Xu,  Yangyang Sun,  Huan Pang. P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230804. doi: 10.3866/PKU.WHXB202308045 shu

P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation

  • Corresponding author: Huan Pang, huanpangchem@hotmail.com,panghuan@yzu.edu.cn
  • Received Date: 28 August 2023
    Revised Date: 4 October 2023
    Accepted Date: 11 October 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (U1904215), the Natural Science Foundation of Jiangsu Province (BK20200044), the Changjiang Scholars Program of the Ministry of Education (Q2018270), and the Project of Jiangsu Qinglan.

  • Urea electrolysis is critically important for the advancement of sustainable and clean energy conversion technologies, addressing global energy shortages and environmental concerns. The urea oxidation reaction (UOR) poses a significant challenge due to its unfavorable thermodynamics, making it a pivotal step in urea splitting. The 6-electron transfer process of UOR presents a bottleneck due to its sluggish kinetics. Consequently, the development of efficient urea oxidation electrocatalysts and gaining insights into the electronic configuration of the central metal ion are of paramount significance in achieving high-performance urea-based energy conversion technologies. In this study, we report the successful synthesis of hierarchical Ni2P nanosheets@nanorods (P-Ni2P HNNs) as promising catalysts to enhance UOR efficiency. This catalyst is designed and constructed using a hexamethylenetetramine-hydrolytic coprecipitation-oxidation process and a straightforward phosphorus-substituted method. X-ray absorption fine structure spectroscopy indicates that the presence of P-modified metal centers is responsible for the elevated UOR activity of P-Ni2P HNNs, with the electronic structure of Nin+ significantly enhancing Ni―O―O bond coupling for rapid UOR kinetics. Thanks to the highly exposed Nin+ centers and the well-designed architecture, P-Ni2P HNNs exhibit superior UOR activity and stability, with a low overpotential of 132 mV at 10 mA∙cm−2, a small Tafel slope of 33.7 mV∙dec−1, and sustained durability for 6 h at 10 mA∙cm−2. Furthermore, a two-electrode cell for overall urea electrolysis is assembled with a P-Ni2P HNNs-2/NF anode, yielding a low potential of 1.411 V at 10 mA∙cm−2 and a high current density of 100 mA∙cm−2 at 1.595 V. This study presents an effective and viable approach for designing and synthesizing high-efficiency nickel-based phosphide electrocatalysts, which could pave the way for cost-effective and energy-efficient electrochemical hydrogen production, and advance phosphide research for various energy-related applications.
  • 加载中
    1. [1]

      (1) Wang, L.; Zhu, Y.; Wen, Y.; Li, S.; Cui, C.; Ni, F.; Liu, Y.; Lin, H.; Li, Y.; Peng, H.; Zhang, B. Angew. Chem. Int. Ed. 2021, 60, 10577. doi: 10.1002/anie.202100610

    2. [2]

      (2) Wang, P.; Bai, X.; Jin, H.; Gao, X.; Davey, K.; Zheng, Y.; Jiao, Y.; Qiao, S. Adv. Funct. Mater. 2023, 33, 2300687. doi: 10.1002/adfm.202300687

    3. [3]

      (3) Zhu, B.; Liang, Z.; Zou, R. Small 2020, 16, 1906133. doi: 10.1002/smll.201906133

    4. [4]

    5. [5]

      (5) Forslund, R. P.; Mefford, J. T.; Hardin, W. G.; Alexander, C. T.; Johnston, K. P.; Stevenson, K. J. ACS Catal. 2016, 6, 5044. doi: 10.1021/acscatal.6b00487

    6. [6]

      (6) Wang, C.; Lu, H.; Mao, Z.; Yan, C.; Shen, G.; Wang, X. Adv. Funct. Mater. 2020, 30, 2000556. doi: 10.1002/adfm.202000556.

    7. [7]

      (7) Li, Q.; Zheng, S.; Du, M.; Pang, H. Chem. Eng. J. 2021, 417, 129201. doi: 10.1016/j.cej.2021.129201

    8. [8]

      (8) Li, X.; Zhang, H.; Hu, Q.; Zhou, W.; Shao, J.; Jiang, X.; Feng, C.; Yang, H.; He, C. Angew. Chem. Int. Ed. 2023, 62, e202300478. doi: 10.1002/anie.202300478

    9. [9]

      (9) Li, C.; Liu, Y.; Zhuo, Z.; Ju, H.; Li, D.; Guo, Y.; Wu, X.; Li, H.; Zhai, T. Adv. Energy Mater. 2018, 8, 1801775. doi: 10.1002/aenm.201801775

    10. [10]

      (10) Yin, K.; Chao, Y.; Lv, F.; Tao, L.; Zhang, W.; Lu, S.; Li, M.; Zhang, Q.; Gu, L.; Li, H.; Guo, S. J. Am. Chem. Soc. 2021, 143, 10822. doi: 10.1021/jacs.1c04626

    11. [11]

      (11) Nadeema, A.; Kashyap, V.; Gururaj, R.; Kurungot, S. ACS Appl. Mater. Interfaces 2019, 11, 25917. doi: 10.1021/acsami.9b06545

    12. [12]

      (12) Li, M.; Wu, X.; Liu, K.; Zhang, Y.; Jiang, X.; Sun, D.; Tang, Y.; Huang, K.; Fu, G. J. Energy Chem. 2022, 69, 506. doi: 10.1016/j.jechem.2022.01.031

    13. [13]

      (13) Tong, Y.; Chen, P.; Zhang, M.; Zhou, T.; Zhang, L.; Chu, W.; Wu, C.; Xie, Y. ACS Catal. 2018, 8, 1. doi: 10.1021/acscatal.7b03177

    14. [14]

      (14) Chen, W.; Xu, L.; Zhu, X.; Huang, Y.; Zhou, W.; Wang, D.; Zhou, Y.; Du, S.; Li, Q.; Xie, C.; et al. Angew. Chem. Int. Ed. 2021, 60, 7297. doi: 10.1002/anie.202015773

    15. [15]

    16. [16]

      (16) Cao, Q.; Ye, Y.; Sun, X.; Liu, B.; Lin, W.; Ding, R.; Gao, P.; Liu, E. ACS Sustain. Chem. Eng. 2023, 11, 7136. doi: 10.1021/acssuschemeng.3c00398

    17. [17]

      (17) Liu, H.; Zhu, S.; Cui, Z.; Li, Z.; Wu, S.; Liang, Y. Nanoscale 2021, 13, 1759. doi: 10.1039/D0NR08025J

    18. [18]

      (18) Yuan, W.; Jiang, T.; Fang, X.; Fan, Y.; Qian, S.; Gao, Y.; Cheng, N.; Xue, H.; Tian, J. Chem. Eng. J. 2022, 439, 135743. doi: 10.1016/j.cej.2022.135743

    19. [19]

      (19) Jiang, H.; Sun, M.; Wu, S.; Huang, B.; Lee, C.; Zhang, W. Adv. Funct. Mater. 2021, 31, 2104951. doi: 10.1002/adfm.202104951

    20. [20]

      (20) Li, K.; Tong, Y. ChemCatChem 2022, 14, e202201047. doi: 10.1002/cctc.202201047

    21. [21]

      (21) Wang, X.; Zhang, G.; Yin, W.; Zheng, S.; Kong, Q.; Tian, J.; Pang, H. Carbon Energy 2022, 4, 246. doi: 10.1002/cey2.182

    22. [22]

      (22) Liu, T.; Liu, D.; Qu, F.; Wang, D.; Zhang, L.; Ge, R.; Hao, S.; Ma, Y.; Du, G.; Asiri, A. M.; et al. Adv. Energy Mater. 2017, 7, 1700020. doi: 10.1002/aenm.201700020

    23. [23]

      (23) Kang, J.; Sheng, C.; Wang, J.; Xu, H.; Zhao, B.; Chen, S.; Qing, Y.; Wu, Y. Int. J. Hydrog. Energy 2023, 48, 7644. doi: 10.1016/j.ijhydene.2022.11.210

    24. [24]

      (24) Wu, Y.; Wang, H.; Ren, J.; Xu, X.; Wang, X.; Wang, R. J. Colloid Interface Sci. 2022, 608, 2932. doi: 10.1016/j.jcis.2021.11.022

    25. [25]

      (25) Li, Q.; Li, X.; Gu, J.; Li, Y.; Tian, Z.; Pang, H. Nano Res. 2020, 14, 1405. doi: 10.1007/s12274-020-3190-1

    26. [26]

      (26) Li, X.; Deng, C.; Kong, Y.; Huo, Q.; Mi, L.; Sun, J.; Cao, J.; Shao, J.; Chen, X.; Zhou, W.; et al. Angew. Chem. Int. Ed. 2023, 62, e202309732. doi: 10.1002/anie.202309732

    27. [27]

      (27) Hu, Q.; Gao, K.; Wang, X.; Zheng, H.; Cao, J.; Mi, L.; Huo, Q.; Yang, H.; Liu, J.; He, C. Nat. Commun. 2022, 13, 3958. doi: 10.1038/s41467-022-31660-2

    28. [28]

      (28) Feng, C.; Lv, M.; Shao, J.; Wu, H.; Zhou, W.; Qi, S.; Deng, C.; Chai, X.; Yang, H.; Hu, Q.; He, C. Adv. Mater. 2023, 2305598. doi: 10.1002/adma.202305598

    29. [29]

      (29) Jang, J.-G.; Lee, Y.-K. Appl. Catal. B 2019, 250, 181. doi: 10.1016/j.apcatb.2019.01.087

    30. [30]

      (30) Wang, Y.; Wang, S.; Zhang, S. L.; Lou, X. W. Angew. Chem. 2020, 132, 12016. doi: 10.1002/ange.202004609

    31. [31]

      (31) Ni, S.; Qu, H.; Xu, Z.; Zhu, X.; Xing, H.; Wang, L.; Yu, J.; Liu, H.; Chen, C.; Yang, L. Appl. Catal. B 2021, 299, 120638. doi: 10.1016/j.apcatb.2021.120638

    32. [32]

      (32) Sun, W.; Li, J.; Gao, W.; Kang, L.; Lei, F.; Xie, J. Chem. Commun. 2022, 58, 2430. doi: 10.1039/D1CC06290E

    33. [33]

      (33) Zhu, D.; Guo, C.; Liu, J.; Wang, L.; Du, Y.; Qiao, S.-Z. Chem. Commun. 2017, 10906. doi: 10.1039/C7CC06378D

    34. [34]

      (34) Chen, T.; Wang, F.; Cao, S.; Bai, Y.; Zheng, S.; Li, W.; Zhang, S.; Hu, S.; Pang, H. Adv. Mater. 2022, 34, 2201779. doi: 10.1002/adma.202201779

    35. [35]

      (35) Guo, X.; Xu, H.; Li, W.; Liu, Y.; Shi, Y.; Li, Q.; Pang, H. Adv. Sci. 2023, 10, 2206084. doi: 10.1002/advs.202206084

    36. [36]

      (36) Ding, X.; Pei, L.; Huang, Y.; Chen, D.; Xie, Z. Small 2022, 18, 2205547. doi: 10.1002/smll.202205547

    37. [37]

      (37) Wu, J.; Yang, X.; Zhang, J.; Guan, S.; Han, J.; Wang, J.; Li, K.; Zhang, G.; Guan, T. J. Power Sources 2022, 548, 232065. doi: 10.1016/j.jpowsour.2022.232065

    38. [38]

      (38) Fang, M.; Dong, G.; Wei, R.; Ho, J. C. Adv. Energy Mater. 2017, 7, 1770135. doi: 10.1002/aenm.201770135

    39. [39]

      (39) Xu, Y.; Ren, T.; Ren, K.; Yu, S.; Liu, M.; Wang, Z.; Li, X.; Wang, L.; Wang, H. Chem. Eng. J. 2021, 408, 127308. doi: 10.1016/j.cej.2020.127308

    40. [40]

      (40) Li, P.; Huang, Y.; Ouyang, X.; Li, W.; Li, F.; Tian, S. Chem. Eng. J. 2023, 464, 142570. doi: 10.1016/j.cej.2023.142570

    41. [41]

      (41) Kakati, N.; Li, G.; Chuang, P.-Y. A. ACS Appl. Energy Mater. 2021, 4, 4224. doi: 10.1021/acsaem.1c00607

    42. [42]

      (42) Ji, X.; Zhang, Y.; Ma, Z.; Qiu, Y. ChemSusChem 2020, 13, 5004.

    43. [43]

      doi: 10.1002/cssc.202001185

    44. [44]

      (43) Lu, X. F.; Zhang, S. L.; Shangguan, E.; Zhang, P.; Gao, S.; Lou, X. W. Adv. Sci. 2020, 7, 2001178. doi: 10.1002/advs.202001178

    45. [45]

      (44) Hao, J.; Yang, W.; Peng, Z.; Zhang, C.; Huang, Z.; Shi, W. ACS Catal. 2017, 7, 4214. doi: 10.1021/acscatal.7b00792

    46. [46]

      (45) Li, Q.; Guo, X.; Wang, J.; Pang, H. Chin. Chem. Lett. 2022, 34, 107831. doi: 10.1016/j.cclet.2022.107831

    47. [47]

      (46) Pan, M.; Qian, G.; Yu, T.; Chen, J.; Luo, L.; Zou, Y.; Yin, S. Chem. Eng. J. 2022, 435, 134986. doi: 10.1016/j.cej.2022.134986

    48. [48]

      (47) Banerjee, R.; Ghosh, D.; Kirti; Chanda, D. K.; Mondal, A.; Srivastava, D. N.; Biswas, P. Electrochim. Acta 2022, 408, 139920. doi: 10.1016/j.electacta.2022.139920

    49. [49]

      (48) Huang, C.; Huang, Y.; Liu, C.; Yu, Y.; Zhang, B. Angew. Chem. Int. Ed. 2019, 58, 12014. doi: 10.1002/anie.201903327

    50. [50]

      (49) Liu, C.; Gong, T.; Zhang, J.; Zheng, X.; Mao, J.; Liu, H.; Li, Y.; Hao, Q. Appl. Catal. B 2020, 262, 118245. doi: 10.1016/j.apcatb.2019.118245

    51. [51]

      (50) Jia, Z.; Ji, N.; Diao, X.; Li, X.; Zhao, Y.; Lu, X.; Liu, Q.; Liu, C.; Chen, G.; Ma, L.; et al. ACS Catal. 2022, 12, 1338. doi: 10.1021/acscatal.1c05495

    52. [52]

      (51) Wu, Y.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X.; Wang, R. Nano Res. 2020, 13, 2098. doi: 10.1007/s12274-020-2816-7

    53. [53]

      (52) Wu, L.; Yu, L.; Zhang, F.; McElhenny, B.; Luo, D.; Karim, A.; Chen, S.; Ren, Z. Adv. Funct. Mater. 2021, 31, 2006484. doi: 10.1002/adfm.202006484

    54. [54]

      (53) Zhao, Y.; Guo, Y.; Lu, X. F.; Luan, D.; Gu, X.; Lou, X. W. Adv. Mater. 2022, 34, 2203442. doi: 10.1002/adma.202203442

    55. [55]

      (54) Wang, M.; Xu, S.; Zhou, Z.; Dong, C.; Guo, X.; Chen, J.; Huang, Y.; Shen, S.; Chen, Y.; Guo, L.; et al. Angew. Chem. 2022, 134, e202204711. doi: 10.1002/ange.202204711

    56. [56]

      (55) Huang, C.; Lin, H.; Chiang, C.; Chen, H.; Liu, T.; Vishnu S. K, D.; Chiou, J.; Sankar, R.; Tsai, H.; Pong, W.; et al. Adv. Funct. Mater. 2023, 2305792. doi: 10.1002/adfm.202305792

    57. [57]

      (56) Yu, Y.; Ma, J.; Chen, C.; Fu, Y.; Wang, Y.; Li, K.; Liao, Y.; Zheng, L.; Zuo, X. ChemCatChem 2019, 11, 1722. doi: 10.1002/cctc.201801935

    58. [58]

      (57) Qiao, L.; Zhu, A.; Liu, D.; Feng, J.; Chen, Y.; Chen, M.; Zhou, P.; Yin, L.; Wu, R.; Ng, K. W.; et al. Chem. Eng. J. 2023, 454, 140380. doi: 10.1016/j.cej.2022.140380

    59. [59]

      (58) Zheng, X.; Yang, J.; Li, P.; Jiang, Z.; Zhu, P.; Wang, Q.; Wu, J.; Zhang, E.; Sun, W.; Dou, S.; et al. Angew. Chem. Int. Ed. 2023, 62, e202217449. doi: 10.1002/anie.202217449

    60. [60]

      (59) Xu, Z.; Chen, Q.; Chen, Q.; Wang, P.; Wang, J.; Guo, C.; Qiu, X.; Han, X.; Hao, J. J. Mater. Chem. A 2022, 10, 24137. doi: 10.1039/D2TA05494A

    61. [61]

      (60) Wan, S.; Wang, X.; Zhang, G.; Wang, Y.; Chen, J.; Li, Q.; Zhang, Y.; Chen, L.; Wang, X.; Meng, G.; et al. ACS Sustain. Chem. Eng. 2022, 10, 11232. doi: 10.1021/acssuschemeng.2c02923

  • 加载中
    1. [1]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    2. [2]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    8. [8]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    16. [16]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    17. [17]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    18. [18]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(0)
  • Abstract views(781)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return