Citation: Dong Xiang,  Kunzhen Li,  Kanghua Miao,  Ran Long,  Yujie Xiong,  Xiongwu Kang. 胺功能化的铜催化剂:氢键介导的电化学CO2还原为C2产物以及优越的可充电Zn-CO2电池性能[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230802. doi: 10.3866/PKU.WHXB202308027 shu

胺功能化的铜催化剂:氢键介导的电化学CO2还原为C2产物以及优越的可充电Zn-CO2电池性能

  • Corresponding author: Yujie Xiong,  Xiongwu Kang, 
  • Received Date: 15 August 2023
    Revised Date: 20 September 2023
    Accepted Date: 28 September 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (U2032151, 21725102, 91961106).

  • 有机分子功能化是一种有前景的策略,用于调控电化学CO2还原反应(eCO2RR)的C2+产物选择性和活性。然而,我们对于电化学CO2还原调控机制的分子水平理解仍然不够清晰。在本文中,我们成功制备了铜纳米颗粒,并使用一系列胺类衍生物(如十六胺(HAD)、N-甲基十六胺(N-MHDA)、十六烷基二甲胺(HDDMA)和十六酰胺(PMM))对其进行功能化,以系统地研究胺表面活性剂分子结构对eCO2RR选择性和活性的影响。结果表明,HDA的功能化可以将C2产物和C2H4的法拉第效率(FE)提高至73.5%和46.4%,并且在−0.9 V vs. RHE (可逆氢电极)电位下,C2产物的分电流密度为131.4 mA·cm−2。理论研究发现,HDA通过与CO2和eCO2RR中间体之间的氢键相互作用,富集了*CO2、*CO和其他反应中间体,降低了CO―CHO耦合反应的动力学能垒,从而促进了eCO2RR向C2产物的转化。当胺基的H原子被甲基取代后,氢键相互作用减弱,竞争的析氢反应加剧。PMM通过Cu―O键与Cu表面发生键合,而不是通过Cu―N键,导致Cu-PMM更倾向于产乙醇。原位拉曼光谱显示,在Cu-HDA表面,CO主要吸附在Cu的顶位吸附位点上,与在Cu表面上的桥式吸附不同,这可能是因为前者表面对CO的富集引发了CO的吸附构型变化。HDA功能化还提高了Cu催化剂的表面pH。基于Cu-HDA组装的可充电Zn-CO2电池在放电电流密度为16 mA∙cm–2时,最大功率密度为6.48 mW∙cm–2,并具有长达60 h的良好充放电稳定性。本研究的重点在于通过在分子水平上调节Cu基材料的CO2RR活性和选择性,促进CO2-C2的转化,这可能为提高C2产物的产率提供新的见解。
  • 加载中
    1. [1]

      (1) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575, 87. doi: 10.1038/s41586-019-1681-6

    2. [2]

      (2) McGinnis, R. Joule 2020, 4, 509. doi: 10.1016/j.joule.2020.01.002

    3. [3]

      (3) Wang, J.; Zou, J.; Hu, X.; Ning, S.; Wang, X.; Kang, X.; Chen, S. J. Mater. Chem. A 2019, 7, 27514. doi: 10.1039/c9ta11140a

    4. [4]

      (4) Chen, K.; Cao, M.; Ni, G.; Chen, S.; Liao, H.; Zhu, L.; Li, H.; Fu, J.; Hu, J.; Cortés, E.; et al. Appl. Catal. B 2022, 306, 121093. doi: 10.1016/j.apcatb.2022.121093

    5. [5]

      (5) Chen, K.; Cao, M.; Lin, Y.; Fu, J.; Liao, H.; Zhou, Y.; Li, H.; Qiu, X.; Hu, J.; Zheng, X.; et al. Adv. Funct. Mater. 2021, 32, 2111322. doi: 10.1002/adfm.202111322

    6. [6]

      (6) Peng, C.; Yang, S.; Luo, G.; Yan, S.; Shakouri, M.; Zhang, J.; Chen, Y.; Li, W.; Wang, Z.; Sham, T K.; et al. Adv. Mater. 2022, 34, e2204476. Doi: 10.1002/adma.202204476

    7. [7]

      (7) Xiang, D.; Li, K.; Li, M.; Long, R.; Xiong, Y.; Yakhvarov, D.; Kang, X. Mater. Today Phys. 2023, 33, 101045. doi: 10.1016/j.mtphys.2023.101045

    8. [8]

      (8) Wang, H. Nano Res. 2021, 15, 2834. doi: 10.1007/s12274-021-3984-9

    9. [9]

      (9) Zang, D.; Gao, X. J.; Li, L.; Wei, Y.; Wang, H. Nano Res. 2022, 15, 8872. doi: 10.1007/s12274-022-4698-3

    10. [10]

      (10) Wang, Q.; Liu, K.; Hu, K.; Cai, C.; Li, H.; Li, H.; Herran, M.; Lu, Y.-R.; Chan, T.-S.; Ma, C.; et al. Nat. Commun. 2022, 13, 6082. doi: 10.1038/s41467-022-33692-0

    11. [11]

      (11) Chen, S.; Li, X.; Kao, C. W.; Luo, T.; Chen, K.; Fu, J.; Ma, C.; Li, H.; Li, M.; Chan, T. S.; et al. Angew. Chem. Int. Ed. 2022, 61, e202206233. doi: 10.1002/anie.202206233

    12. [12]

      (12) Wang, J.; Ning, S.; Luo, M.; Xiang, D.; Chen, W.; Kang, X.; Jiang, Z.; Chen, S. Appl. Catal. B 2021, 288, 119979. doi: 10.1016/j.apcatb.2021.119979

    13. [13]

      (13) Han, L.; Tian, B.; Gao, X.; Zhong, Y.; Wang, S.; Song, S.; Wang, Z.; Zhang, Y.; Kuang, Y.; Sun, X. SmartMat 2022, 3, 142. doi: 10.1002/smm2.1082

    14. [14]

      (14) Wang, Q.; Liu, K.; Fu, J.; Cai, C.; Li, H.; Long, Y.; Chen, S.; Liu, B.; Li, H.; Li, W.; et al. Angew. Chem. Int. Ed. 2021, 60, 25241. doi: 10.1002/anie.202109329

    15. [15]

      (15) Wang, Y.; Liu, J.; Zheng, G. Adv. Mater. 2021, 33, e2005798. doi: 10.1002/adma.202005798

    16. [16]

      (16) Yang, D.; Wang, X. SmartMat 2022, 3, 54. doi: 10.1002/smm2.1102

    17. [17]

      (17) Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; et al. Nat. Chem. 2018, 10, 974. doi: 10.1038/s41557-018-0092-x

    18. [18]

      (18) Li, Y. C.; Wang, Z.; Yuan, T.; Nam, D. H.; Luo, M.; Wicks, J.; Chen, B.; Li, J.; Li, F.; de Arquer, F. P. G.; et al. J. Am. Chem. Soc. 2019, 141, 8584. doi: 10.1021/jacs.9b02945

    19. [19]

      (19) He, C.; Duan, D.; Low, J.; Bai, Y.; Jiang, Y.; Wang, X.; Chen, S.; Long, R.; Song, L.; Xiong, Y. Nano Res. 2023, 16, 4494. doi: 10.1007/s12274-021-3532-7

    20. [20]

      (20) Wang, Y.; Han, P.; Lv, X.; Zhang, L.; Zheng, G. Joule 2018, 2, 2551. doi: 10.1016/j.joule.2018.09.021

    21. [21]

      (21) Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Proc. Natl. Acad. Sci. 2017, 114, 5918. doi: 10.1073/pnas.1618935114

    22. [22]

      (22) Zhu, C.; Zhang, Z.; Zhong, L.; Zhao, S.; Shi, G.; Wu, B.; Gu, H.; Wu, J.; Gao, X.; Liu, K.; et al. J. Energy Chem. 2022, 70, 382. doi: 10.1016/j.jechem.2022.02.027

    23. [23]

      (23) Zhou, Y.; Liang, Y.; Fu, J.; Liu, K.; Chen, Q.; Wang, X.; Li, H.; Zhu, L.; Hu, J.; Pan, H.; et al. Nano Lett. 2022, 22, 1963. doi: 10.1021/acs.nanolett.1c04653

    24. [24]

      (24) Yang, B.; Liu, K.; Li, H.; Liu, C.; Fu, J.; Li, H.; Huang, J. E.; Ou, P.; Alkayyali, T.; Cai, C.; et al. J. Am. Chem. Soc. 2022, 144, 3039. doi: 10.1021/jacs.1c11253

    25. [25]

      (25) Li, F.; Thevenon, A.; Rosas-Hernandez, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi: 10.1038/s41586-019-1782-2

    26. [26]

      (26) Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2020, 4, 20. doi: 10.1038/s41929-020-00547-0

    27. [27]

      (27) Lin, J.; Zhou, Y.; Wen, J.; Si, W.; Gao, H.; Wang, G.; Kang, X. J. Energy Chem. 2022, 75, 164. doi: 10.1016/j.jechem.2022.08.014

    28. [28]

      (28) Li, F.; Li, Y. C.; Wang, Z.; Li, J.; Nam, D.-H.; Lum, Y.; Luo, M.; Wang, X.; Ozden, A.; Hung, S.-F.; et al. Nat. Catal. 2019, 3, 75. doi: 10.1038/s41929-019-0383-7

    29. [29]

      (29) Checco, A.; Hofmann, T.; DiMasi, E.; Black, C. T.; Ocko, B. M. Nano Lett. 2010, 10, 1354. doi: 10.1021/nl9042246

    30. [30]

      (30) Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Nat. Mater. 2019, 18, 1222. doi: 10.1038/s41563-019-0445-x

    31. [31]

      (31) Xie, M. S.; Xia, B. Y.; Li, Y.; Yan, Y.; Yang, Y.; Sun, Q.; Chan, S. H.; Fisher, A.; Wang, X. Energy Environ. Sci. 2016, 9, 1687. doi: 10.1039/c5ee03694a

    32. [32]

    33. [33]

      (33) Zhao, Y.; Wang, C.; Liu, Y.; MacFarlane, D. R.; Wallace, G. G. Adv. Energy Mater. 2018, 8, 1801400. doi: 10.1002/aenm.201801400

    34. [34]

      (34) Wei, X.; Yin, Z.; Lyu, K.; Li, Z.; Gong, J.; Wang, G.; Xiao, L.; Lu, J.; Zhuang, L. ACS Catal. 2020, 10, 4103. doi: 10.1021/acscatal.0c00049

    35. [35]

      (35) Lyu, Z.; Zhu, S.; Xie, M.; Zhang, Y.; Chen, Z.; Chen, R.; Tian, M.; Chi, M.; Shao, M.; Xia, Y. Angew. Chem. Int. Ed. 2021, 60, 1909. doi: 10.1002/anie.202011956

    36. [36]

      (36) Xie, Y.; Chen, Y. J. Mater. Sci. 2021, 56, 10135. doi: 10.1007/s10853-021-05920-3

    37. [37]

      (37) Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C.; et al. Chem. Rev. 2019, 119, 7610. doi: 10.1021/acs.chemrev.8b00705

    38. [38]

      (38) Kim, J.-Y.; Hong, D.; Lee, J.-C.; Kim, H. G.; Lee, S.; Shin, S.; Kim, B.; Lee, H.; Kim, M.; Oh, J.; et al. Nat. Commun. 2021, 12, 3765. doi: 10.1038/s41467-021-24105-9

    39. [39]

      (39) Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019, 10, 1754. doi: 10.1021/acscatal.9b04746

    40. [40]

      (40) Li, H.; Li, Y.; Koper, M. T. M.; Calle-Vallejo, F. J. Am. Chem. Soc. 2014, 136, 15694. doi: 10.1021/ja508649p

    41. [41]

      (41) Kong, X.; Zhao, J.; Ke, J.; Wang, C.; Li, S.; Si, R.; Liu, B.; Zeng, J.; Geng, Z. Nano Lett. 2022, 22, 3801. doi: 10.1021/acs.nanolett.2c00945

    42. [42]

      (42) Gao, J.; Zhang, H.; Guo, X.; Luo, J.; Zakeeruddin, S. M.; Ren, D.; Gratzel, M. J. Am. Chem. Soc. 2019, 141, 18704. doi: 10.1021/jacs.9b07415

    43. [43]

      (43) Pan, Z.; Wang, K.; Ye, K.; Wang, Y.; Su, H.-Y.; Hu, B.; Xiao, J.; Yu, T.; Wang, Y.; Song, S. ACS Catal. 2020, 10, 3871. doi: 10.1021/acscatal.9b05115

    44. [44]

      (44) Moradzaman, M.; Mul, G. ChemElectroChem 2021, 8, 1478. doi: 10.1002/celc.202001598

    45. [45]

      (45) Zhang, G.; Zhao, Z. J.; Cheng, D.; Li, H.; Yu, J.; Wang, Q.; Gao, H.; Guo, J.; Wang, H.; Ozin, G. A.; et al. Nat. Commun. 2021, 12, 5745. doi: 10.1038/s41467-021-26053-w

    46. [46]

      (46) Zhang, Z.; Melo, L.; Jansonius, R. P.; Habibzadeh, F.; Grant, E. R.; Berlinguette, C. P. ACS Energy Lett. 2020, 5, 3101. doi: 10.1021/acsenergylett.0c01606

    47. [47]

      (47) Zhu, S.; Jiang, B.; Cai, W. B.; Shao, M. J. Am. Chem. Soc. 2017, 139, 15664. doi: 10.1021/jacs.7b10462

    48. [48]

      (48) Jiang, S.; Klingan, K.; Pasquini, C.; Dau, H. J. Chem. Phys. 2019, 150, 041718. doi: 10.1063/1.5054109

    49. [49]

      (49) Kaur, S.; Kumar, M.; Gupta, D.; Mohanty, P. P.; Das, T.; Chakraborty, S.; Ahuja, R.; Nagaiah, T. C. Nano Energy 2023, 109, 108242. doi: 10.1016/j.nanoen.2023.108242

    50. [50]

      (50) Gong, S.; Wang, W.; Zhang, C.; Zhu, M.; Lu, R.; Ye, J.; Yang, H.; Wu, C.; Liu, J.; Rao, D.; et al. Adv. Funct. Mater. 2022, 32, 2110649. doi: 10.1002/adfm.202110649

    51. [51]

      (51) Ni, W.; Liu, Z.; Zhang, Y.; Ma, C.; Deng, H.; Zhang, S.; Wang, S. Adv. Mater. 2021, 33, e2003238. doi: 10.1002/adma.202003238

    52. [52]

      (52) Wang, F.; Wang, G.; Deng, P.; Chen, Y.; Li, J.; Wu, D.; Wang, Z.; Wang, C.; Hua, Y.; Tian, X. Small 2023, 19, e2301128. doi: 10.1002/smll.202301128

    53. [53]

      (53) Zeng, Z.; Gan, L. Y.; Bin Yang, H.; Su, X.; Gao, J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J.; Cai, W.; et al. Nat. Commun. 2021, 12, 4088. doi: 10.1038/s41467-021-24052-5

    54. [54]

      (54) Zheng, W.; Wang, Y.; Shuai, L.; Wang, X.; He, F.; Lei, C.; Li, Z.; Yang, B.; Lei, L.; Yuan, C.; et al. Adv. Funct. Mater. 2021, 31, 2008146. doi: 10.1002/adfm.202008146

    55. [55]

      (55) Li, J.; Chen, L.-W.; Hao, Y.-C.; Yuan, M.; Lv, J.; Dong, A.; Li, S.; Gu, H.; Yin, A.-X.; Chen, W.; et al. Chem. Eng. J. 2023, 461, 141865. doi: 10.1016/j.cej.2023.141865

    56. [56]

      (56) Xu, A.; Chen, X.; Wei, D.; Chu, B.; Yu, M.; Yin, X.; Xu, J. Small 2023, 19, 2302253. doi: 10.1002/smll.202302253

    57. [57]

      (57) Gao, S.; Jin, M.; Sun, J.; Liu, X.; Zhang, S.; Li, H.; Luo, J.; Sun, X. J. Mater. Chem. A 2021, 9, 21024. doi: 10.1039/D1TA04360A

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    11. [11]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    12. [12]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    13. [13]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    14. [14]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    17. [17]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    18. [18]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

Metrics
  • PDF Downloads(0)
  • Abstract views(97)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return