Citation: Shi-Yu Lu, Wenzhao Dou, Jun Zhang, Ling Wang, Chunjie Wu, Huan Yi, Rong Wang, Meng Jin. 优化结晶度的CrS/CoS2少层异质结非晶/晶态界面耦合增强水裂解和甲醇辅助节能制氢[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230802. doi: 10.3866/PKU.WHXB202308024
-
由于电催化剂中的非晶区和结晶区具有不同的物理化学性质,因此非晶化/结晶化工程成为提高电解水催化动力学的重要策略。然而,在微观环境中有效地调控催化剂的结晶度仍然是一个严峻的挑战。本文介绍了一种可调节结晶度的新型CrS/CoS2异质结构,该异质结对氢气析出反应(HER)和氧气析出反应(OER)都具有高效的催化活性。Cr―S―Co键的重新分配引起的d带中心移动有助于调节中间体H*和OOH*在催化剂表面的吸附能力,从而优化HER和OER的决速步骤。在最佳条件下,非晶态CrS和高度结晶的CoS2异质结(A-CrS/HC-CoS2)在HER和OER均表现出优异的催化活性,分别为90.6 mV (10 mA∙cm−2,HER)和370.5 mV (50 mA∙cm−2,OER)。非晶/高晶结构有利于A-CrS/HC-CoS2在水电解过程中的结构和成分演变,因此具有出色的稳定性。作为甲醇辅助节能制氢装置中的双功能催化剂,A-CrS/HC-CoS2仅需1.51 V的低槽电压即可达到10 mA∙cm−2的电流密度,证明其是理想的金属基催化剂的候选材料。本研究为双功能过渡金属化合物电催化剂在非晶态/晶态异质结构中通过结晶度调控来提高催化活性和稳定性提供了重要启示。
-
-
[1]
(1) Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136 (28), 10053. doi: 10.1021/ja504099w
-
[2]
(2) Huang, G.; Xiao, Z.; Chen, R.; Wang, S. ACS Sustain. Chem. Eng. 2018, 6 (12), 15954. doi: 10.1021/acssuschemeng.8b04397
-
[3]
(3) Liu, Z.; Zhao, L.; Liu, Y.; Gao, Z.; Yuan, S.; Li, X.; Li, N.; Miao, S. Appl. Catal. B-Environ. 2019, 246, 296. doi: 10.1016/j.apcatb.2019.01.062
-
[4]
(4) Lu, S.-Y.; Jin, M.; Zhang, Y.; Niu, Y.-B.; Gao, J.-C.; Li, C. M. Adv. Energ. Mater. 2018, 8 (11), 1702545. doi: 10.1002/aenm.201702545
-
[5]
-
[6]
-
[7]
-
[8]
-
[9]
(9) Feng, L. L.; Yu, G.; Wu, Y.; Li, G. D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. J. Am. Chem. Soc. 2015, 137 (44), 14023. doi: 10.1021/jacs.5b08186
-
[10]
(10) Gao, Z.; Li, M.; Wang, J.; Zhu, J.; Zhao, X.; Huang, H.; Zhang, J.; Wu, Y.; Fu, Y.; Wang, X. Carbon 2018, 139, 369. doi: 10.1016/j.carbon.2018.07.006
-
[11]
(11) Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Adv. Energy Mater. 2020, 10 (11), 1903120. doi: 10.1002/aenm.201903120
-
[12]
(12) Zhang, L.; Zhang, J.; Fang, J.; Wang, X. Y.; Yin, L.; Zhu, W.; Zhuang, Z. Small 2021, 17 (28), 2100832. doi: 10.1002/smll.202100832
-
[13]
-
[14]
(14) Guo, Y.; Gan, L.; Shang, C.; Wang, E.; Wang, J. Advan. Funct. Mater. 2017, 27 (5), 1602699. doi: 10.1002/adfm.201602699
-
[15]
(15) Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. ACS Sustain. Chem. Eng. 2019, 7 (3), 2899. doi: 10.1021/acssuschemeng.8b05462
-
[16]
(16) Chen, B.; Wang, J.; He, S.; Shen, Y.; Huang, S.; Zhou, H. J. Alloy. Compd. 2023, 948, 169655. doi: 10.1016/j.jallcom.2023.169655
-
[17]
(17) Lu, S.-Y.; Li, S.; Jin, M.; Gao, J.; Zhang, Y. Appl. Catal. B-Environ. 2020, 267, 118675. doi: 10.1016/j.apcatb.2020.118675
-
[18]
(18) Peng, W.; Wang, Z.; Lu, R.; Li, Q.; Wang, Z.; Zhao, Y.; Xu, L.; Mai, L. Chem. Eng. J. 2023, 457, 141173. doi: 10.1016/j.cej.2022.141173
-
[19]
(19) Han, L.; Wu, Y.; Zhao, B.; Meng, W.; Zhang, D.; Li, M.; Pang, R.; Zhang, Y.; Cao, A.; Shang, Y. ACS Appl. Mater. Interfaces 2022, 14 (27), 30847. doi: 10.1021/acsami.2c06122
-
[20]
(20) Xu, H.; Zhang, W. D.; Yao, Y.; Yang, J.; Liu, J.; Gu, Z. G.; Yan, X. J. Colloid Interface Sci. 2022, 629, 501. doi: 10.1016/j.jcis.2022.09.072
-
[21]
(21) Jin, M.; Lu, S.-Y.; Ma, L.; Gan, M.-Y.; Lei, Y.; Zhang, X.-L.; Fu, G.; Yang, P.-S.; Yan, M.-F. J. Power Sources 2017, 341, 294. doi: 10.1016/j.jpowsour.2016.12.013
-
[22]
(22) Zhang, J.; Xiao, B.; Liu, X.; Liu, P.; Xi, P.; Xiao, W.; Ding, J.; Gao, D.; Xue, D. J. Mater. Chem. A 2017, 5 (33), 17601. doi: 10.1039/c7ta05433e
-
[23]
(23) Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. ACS Energy Lett. 2018, 3 (4), 779. doi: 10.1021/acsenergylett.8b00066
-
[24]
(24) Xie, M.; Li, C.; Zhang, S.; Zhang, Z.; Li, Y.; Chen, X. B.; Shi, Z.; Feng, S. Small 2023, 2301436. doi: 10.1002/smll.202301436
-
[25]
(25) Yang, L.; Huang, L.; Yao, Y.; Jiao, L. Appl. Catal. B-Environ. 2021, 282, 119584. doi: 10.1016/j.apcatb.2020.119584
-
[26]
(26) Han, K. H.; Seok, J. Y.; Kim, I. H.; Woo, K.; Kim, J. H.; Yang, G. G.; Choi, H. J.; Kwon, S.; Jung, E. I.; Kim, S. O. Adv. Mater. 2022, 34 (34), 2203992. doi: 10.1002/adma.202203992
-
[27]
(27) Shifa, T. A.; Gradone, A.; Yusupov, K.; Ibrahim, K. B.; Jugovac, M.; Sheverdyaeva, P. M.; Rosen, J.; Morandi, V.; Moras, P.; Vomiero, A. Chem. Eng. J. 2023, 453, 139781. doi: 10.1016/j.cej.2022.139781
-
[28]
(28) Sun, F.; Hong, A.; Zhou, W.; Yuan, C.; Zhang, W. Mater. Today 2020, 25, 101707. doi: 10.1016/j.mtcomm.2020.101707
-
[29]
(29) Fang, B.; He, N.; Li, Y.; Lu, T.; He, P.; Chen, X.; Zhao, Z.; Pan, L. Electrochim. Acta 2023, 448, 142187. doi: 10.1016/j.electacta.2023.142187
-
[30]
(30) Wu, Q.; Liu, L.; Guo, H.; Li, L.; Tai, X. J. Alloy. Compd. 2020, 821, 153219. doi: 10.1016/j.jallcom.2019.153219
-
[31]
(31) Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. New J. Chem. 2017, 41 (12), 4754. doi: 10.1039/c7nj00326a
-
[32]
(32) Hao, J.; Yang, W.; Peng, Z.; Zhang, C.; Huang, Z.; Shi, W. ACS Catal. 2017, 7, 4214. doi: 10.1021/acscatal.7b00792
-
[33]
(33) Jin, M.; Wang, R.; Jia, B.; Zhang, J.; Liu, H.; Lu, S.-Y. Appl. Surf. Sci. 2022, 591, 153201. doi: 10.1016/j.apsusc.2022.153201
-
[34]
(34) Wang, P.; Bai, P.; Mu, J.; Jing, J.; Wang, L.; Su, Y. J. Colloid Interface Sci. 2023, 642, 1. doi: 10.1016/j.jcis.2023.03.133
-
[35]
(35) Cao, X.; Wang, T.; Qin, H.; Lin, G.; Zhao, L.; Jiao, L. Nano Res. 2022, 16 (3), 3665. doi: 10.1007/s12274-022-4635-5
-
[36]
(36) Cao, F.; Li, M.; Hu, Y.; Wu, X.; Li, X.; Meng, X.; Zhang, P.; Li, S.; Qin, G. Chem. Eng. J. 2023, 472, 144970. doi: 10.1016/j.cej.2023.144970
-
[37]
(37) Zhang, S.-H.; Wu, M.-F.; Tang, T.-T.; Xing, Q.-J.; Peng, C.-Q.; Li, F.; Liu, H.; Luo, X.-B.; Zou, J.-P.; Min, X.-B.; et al. Chem. Eng. J. 2018, 335, 945. doi: 10.1016/j.cej.2017.10.182
-
[38]
(38) Wu, Y.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C.; Liu, M.; Lu, X. Adv. Mater. 2019, 31 (15), 1900178. doi: 10.1002/adma.201900178
-
[39]
(39) Dong, C.; Yuan, X.; Wang, X.; Liu, X.; Dong, W.; Wang, R.; Duan, Y.; Huang, F. J. Mater. Chem. A 2016, 4 (29), 11292. doi: 10.1039/c6ta04052g
-
[40]
(40) Liu, D.; Tong, R.; Qu, Y.; Zhu, Q.; Zhong, X.; Fang, M.; Ho Lo, K.; Zhang, F.; Ye, Y.; Tang, Y.; et al. Appl. Catal. B-Environ. 2020, 267, 118721. doi: 10.1016/j.apcatb.2020.118721
-
[41]
(41) Zhu, L.; Susac, D.; Teo, M.; Wong, K.; Wong, P.; Parsons, R.; Bizzotto, D.; Mitchell, K.; Campbell, S. J. Catal. 2008, 258 (1), 235. doi: 10.1016/j.jcat.2008.06.016
-
[42]
(42) Jin, M.; Lu, S.-Y.; Zhong, X.; Liu, H.; Liu, H.; Gan, M.; Ma, L. ACS Sustain. Chem. Eng. 2020, 8 (4), 1933. doi: 10.1021/acssuschemeng.9b06329
-
[43]
(43) Lu, S. Y.; Wang, J.; Wang, X.; Yang, W.; Jin, M.; Xu, L.; Yang, H.; Ge, X.; Shang, C.; Chao, Y.; et al. Small Methods 2022, 6 (6), 2101551. doi: 10.1002/smtd.202101551
-
[44]
(44) Fu, T.; Li, Z. Chem. Eng. Sci. 2015, 135, 3. doi: 10.1016/j.ces.2015.03.007
-
[1]
-
-
[1]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[2]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[3]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[4]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[5]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[6]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[7]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[8]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[9]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[10]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[11]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[12]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[13]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[14]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[15]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Qiuyu Xiang , Chunhua Qu , Guang Xu , Yafei Yang , Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094
-
[18]
Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060
-
[19]
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
-
[20]
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(116)
- HTML views(14)