Citation: Shi-Yu Lu,  Wenzhao Dou,  Jun Zhang,  Ling Wang,  Chunjie Wu,  Huan Yi,  Rong Wang,  Meng Jin. 优化结晶度的CrS/CoS2少层异质结非晶/晶态界面耦合增强水裂解和甲醇辅助节能制氢[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230802. doi: 10.3866/PKU.WHXB202308024 shu

优化结晶度的CrS/CoS2少层异质结非晶/晶态界面耦合增强水裂解和甲醇辅助节能制氢

  • Corresponding author: Shi-Yu Lu,  Rong Wang,  Meng Jin, 
  • Received Date: 15 August 2023
    Revised Date: 26 September 2023
    Accepted Date: 27 September 2023

    Fund Project: The project was supported by the Young Elite Scientists Sponsorship Program by CAST (2021QNRC001), Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0557, cstc2020jcyj-msxmX0670, 2023NSCQ-MSX3724), Talent Introduction of Chongqing University of Science and Technology (ckrc2021050, ckrc20230401, ckrc2021053), Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202001525, KJQN202201532, KJQN202301542), National Natural Science Foundation of China (22109016) and Open Research Fund of CNMGE Platform & NSCC-TJ (CNMGE2023016).

  • 由于电催化剂中的非晶区和结晶区具有不同的物理化学性质,因此非晶化/结晶化工程成为提高电解水催化动力学的重要策略。然而,在微观环境中有效地调控催化剂的结晶度仍然是一个严峻的挑战。本文介绍了一种可调节结晶度的新型CrS/CoS2异质结构,该异质结对氢气析出反应(HER)和氧气析出反应(OER)都具有高效的催化活性。Cr―S―Co键的重新分配引起的d带中心移动有助于调节中间体H*和OOH*在催化剂表面的吸附能力,从而优化HER和OER的决速步骤。在最佳条件下,非晶态CrS和高度结晶的CoS2异质结(A-CrS/HC-CoS2)在HER和OER均表现出优异的催化活性,分别为90.6 mV (10 mA∙cm−2,HER)和370.5 mV (50 mA∙cm−2,OER)。非晶/高晶结构有利于A-CrS/HC-CoS2在水电解过程中的结构和成分演变,因此具有出色的稳定性。作为甲醇辅助节能制氢装置中的双功能催化剂,A-CrS/HC-CoS2仅需1.51 V的低槽电压即可达到10 mA∙cm−2的电流密度,证明其是理想的金属基催化剂的候选材料。本研究为双功能过渡金属化合物电催化剂在非晶态/晶态异质结构中通过结晶度调控来提高催化活性和稳定性提供了重要启示。
  • 加载中
    1. [1]

      (1) Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136 (28), 10053. doi: 10.1021/ja504099w

    2. [2]

      (2) Huang, G.; Xiao, Z.; Chen, R.; Wang, S. ACS Sustain. Chem. Eng. 2018, 6 (12), 15954. doi: 10.1021/acssuschemeng.8b04397

    3. [3]

      (3) Liu, Z.; Zhao, L.; Liu, Y.; Gao, Z.; Yuan, S.; Li, X.; Li, N.; Miao, S. Appl. Catal. B-Environ. 2019, 246, 296. doi: 10.1016/j.apcatb.2019.01.062

    4. [4]

      (4) Lu, S.-Y.; Jin, M.; Zhang, Y.; Niu, Y.-B.; Gao, J.-C.; Li, C. M. Adv. Energ. Mater. 2018, 8 (11), 1702545. doi: 10.1002/aenm.201702545

    5. [5]

    6. [6]

    7. [7]

    8. [8]

    9. [9]

      (9) Feng, L. L.; Yu, G.; Wu, Y.; Li, G. D.; Li, H.; Sun, Y.; Asefa, T.; Chen, W.; Zou, X. J. Am. Chem. Soc. 2015, 137 (44), 14023. doi: 10.1021/jacs.5b08186

    10. [10]

      (10) Gao, Z.; Li, M.; Wang, J.; Zhu, J.; Zhao, X.; Huang, H.; Zhang, J.; Wu, Y.; Fu, Y.; Wang, X. Carbon 2018, 139, 369. doi: 10.1016/j.carbon.2018.07.006

    11. [11]

      (11) Li, Y.; Sun, Y.; Qin, Y.; Zhang, W.; Wang, L.; Luo, M.; Yang, H.; Guo, S. Adv. Energy Mater. 2020, 10 (11), 1903120. doi: 10.1002/aenm.201903120

    12. [12]

      (12) Zhang, L.; Zhang, J.; Fang, J.; Wang, X. Y.; Yin, L.; Zhu, W.; Zhuang, Z. Small 2021, 17 (28), 2100832. doi: 10.1002/smll.202100832

    13. [13]

    14. [14]

      (14) Guo, Y.; Gan, L.; Shang, C.; Wang, E.; Wang, J. Advan. Funct. Mater. 2017, 27 (5), 1602699. doi: 10.1002/adfm.201602699

    15. [15]

      (15) Zhu, Y.; Song, L.; Song, N.; Li, M.; Wang, C.; Lu, X. ACS Sustain. Chem. Eng. 2019, 7 (3), 2899. doi: 10.1021/acssuschemeng.8b05462

    16. [16]

      (16) Chen, B.; Wang, J.; He, S.; Shen, Y.; Huang, S.; Zhou, H. J. Alloy. Compd. 2023, 948, 169655. doi: 10.1016/j.jallcom.2023.169655

    17. [17]

      (17) Lu, S.-Y.; Li, S.; Jin, M.; Gao, J.; Zhang, Y. Appl. Catal. B-Environ. 2020, 267, 118675. doi: 10.1016/j.apcatb.2020.118675

    18. [18]

      (18) Peng, W.; Wang, Z.; Lu, R.; Li, Q.; Wang, Z.; Zhao, Y.; Xu, L.; Mai, L. Chem. Eng. J. 2023, 457, 141173. doi: 10.1016/j.cej.2022.141173

    19. [19]

      (19) Han, L.; Wu, Y.; Zhao, B.; Meng, W.; Zhang, D.; Li, M.; Pang, R.; Zhang, Y.; Cao, A.; Shang, Y. ACS Appl. Mater. Interfaces 2022, 14 (27), 30847. doi: 10.1021/acsami.2c06122

    20. [20]

      (20) Xu, H.; Zhang, W. D.; Yao, Y.; Yang, J.; Liu, J.; Gu, Z. G.; Yan, X. J. Colloid Interface Sci. 2022, 629, 501. doi: 10.1016/j.jcis.2022.09.072

    21. [21]

      (21) Jin, M.; Lu, S.-Y.; Ma, L.; Gan, M.-Y.; Lei, Y.; Zhang, X.-L.; Fu, G.; Yang, P.-S.; Yan, M.-F. J. Power Sources 2017, 341, 294. doi: 10.1016/j.jpowsour.2016.12.013

    22. [22]

      (22) Zhang, J.; Xiao, B.; Liu, X.; Liu, P.; Xi, P.; Xiao, W.; Ding, J.; Gao, D.; Xue, D. J. Mater. Chem. A 2017, 5 (33), 17601. doi: 10.1039/c7ta05433e

    23. [23]

      (23) Zhang, J.; Liu, Y.; Sun, C.; Xi, P.; Peng, S.; Gao, D.; Xue, D. ACS Energy Lett. 2018, 3 (4), 779. doi: 10.1021/acsenergylett.8b00066

    24. [24]

      (24) Xie, M.; Li, C.; Zhang, S.; Zhang, Z.; Li, Y.; Chen, X. B.; Shi, Z.; Feng, S. Small 2023, 2301436. doi: 10.1002/smll.202301436

    25. [25]

      (25) Yang, L.; Huang, L.; Yao, Y.; Jiao, L. Appl. Catal. B-Environ. 2021, 282, 119584. doi: 10.1016/j.apcatb.2020.119584

    26. [26]

      (26) Han, K. H.; Seok, J. Y.; Kim, I. H.; Woo, K.; Kim, J. H.; Yang, G. G.; Choi, H. J.; Kwon, S.; Jung, E. I.; Kim, S. O. Adv. Mater. 2022, 34 (34), 2203992. doi: 10.1002/adma.202203992

    27. [27]

      (27) Shifa, T. A.; Gradone, A.; Yusupov, K.; Ibrahim, K. B.; Jugovac, M.; Sheverdyaeva, P. M.; Rosen, J.; Morandi, V.; Moras, P.; Vomiero, A. Chem. Eng. J. 2023, 453, 139781. doi: 10.1016/j.cej.2022.139781

    28. [28]

      (28) Sun, F.; Hong, A.; Zhou, W.; Yuan, C.; Zhang, W. Mater. Today 2020, 25, 101707. doi: 10.1016/j.mtcomm.2020.101707

    29. [29]

      (29) Fang, B.; He, N.; Li, Y.; Lu, T.; He, P.; Chen, X.; Zhao, Z.; Pan, L. Electrochim. Acta 2023, 448, 142187. doi: 10.1016/j.electacta.2023.142187

    30. [30]

      (30) Wu, Q.; Liu, L.; Guo, H.; Li, L.; Tai, X. J. Alloy. Compd. 2020, 821, 153219. doi: 10.1016/j.jallcom.2019.153219

    31. [31]

      (31) Ma, X.; Wang, J.; Liu, D.; Kong, R.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. New J. Chem. 2017, 41 (12), 4754. doi: 10.1039/c7nj00326a

    32. [32]

      (32) Hao, J.; Yang, W.; Peng, Z.; Zhang, C.; Huang, Z.; Shi, W. ACS Catal. 2017, 7, 4214. doi: 10.1021/acscatal.7b00792

    33. [33]

      (33) Jin, M.; Wang, R.; Jia, B.; Zhang, J.; Liu, H.; Lu, S.-Y. Appl. Surf. Sci. 2022, 591, 153201. doi: 10.1016/j.apsusc.2022.153201

    34. [34]

      (34) Wang, P.; Bai, P.; Mu, J.; Jing, J.; Wang, L.; Su, Y. J. Colloid Interface Sci. 2023, 642, 1. doi: 10.1016/j.jcis.2023.03.133

    35. [35]

      (35) Cao, X.; Wang, T.; Qin, H.; Lin, G.; Zhao, L.; Jiao, L. Nano Res. 2022, 16 (3), 3665. doi: 10.1007/s12274-022-4635-5

    36. [36]

      (36) Cao, F.; Li, M.; Hu, Y.; Wu, X.; Li, X.; Meng, X.; Zhang, P.; Li, S.; Qin, G. Chem. Eng. J. 2023, 472, 144970. doi: 10.1016/j.cej.2023.144970

    37. [37]

      (37) Zhang, S.-H.; Wu, M.-F.; Tang, T.-T.; Xing, Q.-J.; Peng, C.-Q.; Li, F.; Liu, H.; Luo, X.-B.; Zou, J.-P.; Min, X.-B.; et al. Chem. Eng. J. 2018, 335, 945. doi: 10.1016/j.cej.2017.10.182

    38. [38]

      (38) Wu, Y.; Tao, X.; Qing, Y.; Xu, H.; Yang, F.; Luo, S.; Tian, C.; Liu, M.; Lu, X. Adv. Mater. 2019, 31 (15), 1900178. doi: 10.1002/adma.201900178

    39. [39]

      (39) Dong, C.; Yuan, X.; Wang, X.; Liu, X.; Dong, W.; Wang, R.; Duan, Y.; Huang, F. J. Mater. Chem. A 2016, 4 (29), 11292. doi: 10.1039/c6ta04052g

    40. [40]

      (40) Liu, D.; Tong, R.; Qu, Y.; Zhu, Q.; Zhong, X.; Fang, M.; Ho Lo, K.; Zhang, F.; Ye, Y.; Tang, Y.; et al. Appl. Catal. B-Environ. 2020, 267, 118721. doi: 10.1016/j.apcatb.2020.118721

    41. [41]

      (41) Zhu, L.; Susac, D.; Teo, M.; Wong, K.; Wong, P.; Parsons, R.; Bizzotto, D.; Mitchell, K.; Campbell, S. J. Catal. 2008, 258 (1), 235. doi: 10.1016/j.jcat.2008.06.016

    42. [42]

      (42) Jin, M.; Lu, S.-Y.; Zhong, X.; Liu, H.; Liu, H.; Gan, M.; Ma, L. ACS Sustain. Chem. Eng. 2020, 8 (4), 1933. doi: 10.1021/acssuschemeng.9b06329

    43. [43]

      (43) Lu, S. Y.; Wang, J.; Wang, X.; Yang, W.; Jin, M.; Xu, L.; Yang, H.; Ge, X.; Shang, C.; Chao, Y.; et al. Small Methods 2022, 6 (6), 2101551. doi: 10.1002/smtd.202101551

    44. [44]

      (44) Fu, T.; Li, Z. Chem. Eng. Sci. 2015, 135, 3. doi: 10.1016/j.ces.2015.03.007

  • 加载中
    1. [1]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    15. [15]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    19. [19]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(0)
  • Abstract views(116)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return