Citation: Kexin Yan,  Zhaoqi Ye,  Lingtao Kong,  He Li,  Xue Yang,  Yahong Zhang,  Hongbin Zhang,  Yi Tang. Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230801. doi: 10.3866/PKU.WHXB202308019 shu

Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption

  • Corresponding author: Hongbin Zhang,  Yi Tang, 
  • Received Date: 12 August 2023
    Revised Date: 2 October 2023
    Accepted Date: 9 October 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2018YFA0209402) and the National Natural Science Foundation of China (22088101, 22175040).

  • Zeolites with short microporous channels offer advantages in the diffusion of guest molecules, leading to significant improvements in their adsorption and catalytic performance, as well as a reduction in coke formation during catalytic reactions. However, preparing zeolite L (LTL) with an ultrashort length (20–50 nm) along the c-axis has proven challenging due to its preferential growth behavior along the one-dimensional microporous channel direction. Additionally, the conventional synthesis method of zeolite L struggles to achieve both low aspect ratio and short length along the c-axis due to the coupling of nucleation and growth stages during crystallization. In this study, we present an innovative approach by utilizing seeds of nanorod-cluster zeolite L, pre-prepared under high alkalinity conditions, to synthesize a novel morphology of zeolite L mesocrystals. The resulting zeolite L product exhibits a unique cluster structure composed of a series of disc nanocrystals with an ultrashort c-axis length (approximately 29 nm), and the entire crystallization process is completed within just 4 h in a low alkaline system without the need for additional additives. This intentionally designed seed-induced synthesis method effectively decouples the nucleation and growth stages of zeolite L, enabling precise control of each stage to achieve the desired morphology. By analyzing the time-resolved evolution of mesoscopic nuclei and microscopic building units in the synthetic system, we find that the ring-cage structures dissolved from seeds exist as four-membered rings and eight-membered rings. These structures accelerate gel ordering and shorten the induction period. Meanwhile, the reserved part of the seeds provides densely-distributed nuclei for growth, resulting in the formation of the novel disc-cluster structures. Furthermore, by controlling growth conditions, we confirm the assembly of worm-like precursor particles during the growth period, allowing for precise regulation of the length along the c-axis of each disc within the range of 18 to 55 nm. Moreover, we extensively demonstrate the significantly enhanced adsorption and diffusion properties of zeolite L with an ultrashort c-axis for a range of model molecules, spanning sizes from 0.43 to 4.5 nm, in both gaseous and liquid phase systems. Our typical sample exhibits advantages in the diffusion rate of small molecules and the adsorption capacity of large molecules in the gaseous phase. It holds great potential for practical applications in the adsorption and separation of aromatic hydrocarbons, as well as the adsorption of dyes and proteins.
  • 加载中
    1. [1]

      (1) Yao, J.; Wu, Q.; Fan, J.; Komiyama, S.; Yong, X.; Zhang, W.; Zhao, T.; Guo, Z.; Yang, G.; Tsubaki, N. ACS Nano 2021, 15 (8), 13568. doi: 10.1021/acsnano.1c04419

    2. [2]

      (2) Qureshi, B. A.; Lan, X.; Arslan, M. T.; Wang, T. Ind. Eng. Chem. Res. 2019, 58 (28), 12611. doi: 10.1021/acs.iecr.9b01882

    3. [3]

      (3) Verboekend, D.; Milina, M.; Mitchell, S.; Pérez-Ramírez, J. Cryst. Growth Des. 2013, 13 (11), 5025. doi: 10.1021/cg4010483

    4. [4]

      (4) Verboekend, D.; Pérez-Ramírez, J. Catal. Sci. Technol. 2011, 1 (6), 879. doi: 10.1039/c1cy00150g

    5. [5]

      (5) Petkovich, N. D.; Stein, A. Chem. Soc. Rev. 2013, 42 (9), 3721. doi: 10.1039/c2cs35308c

    6. [6]

      (6) Sun, Y.; Cao, S.; Wang, J.; Tang, H.; Yang, Z.; Ma, T.; Gong, Y.; Mo, G.; Li, Z. ACS Sustain. Chem. Eng. 2022, 10 (29), 9431. doi: 10.1021/acssuschemeng.2c01813

    7. [7]

      (7) Wang, C.; Fang, W.; Liu, Z.; Wang, L.; Liao, Z.; Yang, Y.; Li, H.; Liu, L.; Zhou, H.; Qin, X.; et al. Nat. Nanotechnol. 2022, 17 (7), 714. doi: 10.1038/s41565-022-01154-9

    8. [8]

      (8) Su, X.; Liu, B.; Feng, C.; Wu, W. Microporous Mesoporous Mat. 2022, 344, 112215. doi: 10.1016/j.micromeso.2022.112215

    9. [9]

      (9) Hao, J.; Xu, S.; Cheng, D.; Chen, F.; Zhan, X. Catal. Sci. Technol. 2022, 12 (12), 3912. doi: 10.1039/d2cy00154c

    10. [10]

      (10) Yue, Q.; Liu, C.; Zhao, H.; Liu, H.; Ruterana, P.; Zhao, J.; Qin, Z.; Mintova, S. Nano Res. 2023. doi: 10.1007/s12274-023-5749-0

    11. [11]

      (11) Xu, J.; Zhang, Z.; Yu, D.; Du, W.; Song, N.; Duan, X.; Zhou, X. Nano Res. 2023, 16 (5), 6278. doi: 10.1007/s12274-023-5440-5

    12. [12]

      (12) Jardim, E. D. O.; Serrano, E.; Martínez, J. C.; Linares, N.; García-Martínez, J. Cryst. Growth Des. 2020, 20 (2), 515. doi: 10.1021/acs.cgd.9b01180

    13. [13]

      (13) Linares, N.; Jardim, E. O.; Sachse, A.; Serrano, E.; Garcia-Martinez, J. Angew. Chem. Int. Ed. 2018, 57 (28), 8724. doi: 10.1002/anie.201803759

    14. [14]

      (14) Schwieger, W.; Machoke, A. G.; Weissenberger, T.; Inayat, A.; Selvam, T.; Klumpp, M.; Inayat, A. Chem. Soc. Rev. 2016, 45 (12), 3353. doi: 10.1039/c5cs00599j

    15. [15]

      (15) Hu, Y.; Liu, C.; Zhang, Y.; Ren, N.; Tang, Y. Microporous Mesoporous Mat. 2009, 119 (1–3), 306. doi: 10.1016/j.micromeso.2008.11.005

    16. [16]

      (16) Larlus, O.; Valtchev, V. P. Chem. Mat. 2004, 16 (17), 3381. doi: 10.1021/cm0498741

    17. [17]

      (17) Brent, R.; Stevens, S. M.; Terasaki, O.; Anderson, M. W. Cryst. Growth Des. 2010, 10 (12), 5182. doi: 10.1021/cg100964j

    18. [18]

      (18) Brent, R.; Anderson, M. W. Angew. Chem. Int. Ed. 2008, 47 (29), 5327. doi: 10.1002/anie.200800977

    19. [19]

      (19) Lee, Y.-J.; Lee, J. S.; Yoon, K. B. Microporous Mesoporous Mat. 2005, 80 (1–3), 237. doi: 10.1016/j.micromeso.2004.12.003

    20. [20]

      (20) Ban, T.; Saito, H.; Naito, M.; Ohya, Y.; Takahashi, Y. J. Porous Mat. 2006, 14 (2), 119. doi: 10.1007/s10934-006-9016-z

    21. [21]

      (21) Li, R.; Smolyakova, A.; Maayan, G.; Rimer, J. D. Chem. Mat. 2017, 29 (21), 9536. doi: 10.1021/acs.chemmater.7b03798

    22. [22]

      (22) Das, R.; Ghosh, S.; Naskar, M. K. Mater. Lett. 2015, 143, 94. doi: 10.1016/j.matlet.2014.12.076

    23. [23]

      (23) Lupulescu, A. I.; Kumar, M.; Rimer, J. D. J. Am. Chem. Soc. 2013, 135 (17), 6608. doi: 10.1021/ja4015277

    24. [24]

      (24) Ye, Z.; Kong, L.; Zhao, Y.; Zhang, C.; Yang, X.; Yan, K.; Zhang, Y.; Zhang, H.; Tang, Y. Chem. Synth. 2022, 2 (4), 20. doi: 10.20517/cs.2022.25

    25. [25]

      (25) Cho, H. S.; Hill, A. R.; Cho, M.; Miyasaka, K.; Jeong, K.; Anderson, M. W.; Kang, J. K.; Terasaki, O. Cryst. Growth Des. 2017, 17 (9), 4516. doi: 10.1021/acs.cgd.7b00832

    26. [26]

      (26) Ruiz, A. Z.; Brühwiler, D.; Ban, T.; Calzaferri, G. Mon. Chem. 2004, 136 (1), 77. doi: 10.1007/s00706-004-0253-z

    27. [27]

      (27) Li, R.; Linares, N.; Sutjianto, J. G.; Chawla, A.; Garcia-Martinez, J.; Rimer, J. D. Angew. Chem. Int. Ed. 2018, 57 (35), 11283. doi: 10.1002/anie.201805877

    28. [28]

      (28) Zhang, F.; Chen, W.; Wu, Q.; Yang, Z.; Wang, L.; Meng, X.; Zhang, B.; Zheng, A.; Deng, F.; Liu, C.; et al. J. Phys. Chem. C 2020, 124 (25), 13819. doi: 10.1021/acs.jpcc.0c04315

    29. [29]

      (29) Jain, R.; Chawla, A.; Linares, N.; Garcia Martinez, J.; Rimer, J. D. Adv. Mater. 2021, 33 (22), e2100897. doi: 10.1002/adma.202100897

    30. [30]

      (30) Ye, Z.; Zhao, Y.; Zhang, H.; Zhang, Y.; Tang, Y. Chem. -Eur. J. 2020, 26 (28), 6147. doi: 10.1002/chem.201904807

    31. [31]

      (31) Ye, Z.; Zhang, H.; Zhang, Y.; Tang, Y. Front. Chem. Sci. Eng. 2019, 14 (2), 143. doi: 10.1007/s11705-019-1852-x

    32. [32]

      (32) Kim, D.; Ghosh, S.; Akter, N.; Kraetz, A.; Duan, X. Sci. Adv. 2022, 8, eabm8162. doi: 10.1126/sciadv.abm8162

    33. [33]

      (33) Ye, Z.; Zhao, Y.; Zhang, H.; Shi, Z.; Li, H.; Yang, X.; Wang, L.; Kong, L.; Zhang, C.; Sheng, Z.; et al. J. Colloid Interface Sci. 2022, 608, 1366. doi: 10.1016/j.jcis.2021.10.125

    34. [34]

      (34) Lin, F.; Ye, Z.; Kong, L.; Liu, P.; Zhang, Y.; Zhang, H.; Tang, Y. Nanomaterials 2022, 12 (9), 1601. doi: 10.3390/nano12091601

    35. [35]

      (35) Yang, J.; Liu, J.; Liu, P.; Li, L.; Tang, X.; Shang, H.; Li, J.; Chen, B. Angew. Chem. Int. Ed. 2022, 61 (8), e202116850. doi: 10.1002/anie.202116850

    36. [36]

      (36) Zhang, H.; Zhang, H.; Zhao, Y.; Shi, Z.; Zhang, Y.; Tang, Y. Chem. Mat. 2017, 29 (21), 9247. doi: 10.1021/acs.chemmater.7b03121

    37. [37]

      (37) Zhang, H.; Zhao, Y.; Zhang, H.; Wang, P.; Shi, Z.; Mao, J.; Zhang, Y.; Tang, Y. Chem.-Eur. J. 2016, 22 (21), 7141. doi: 10.1002/chem.201600028

    38. [38]

      (38) Jain, R.; Mallette, A. J.; Rimer, J. D. J. Am. Chem. Soc. 2021, 143 (51), 21446. doi: 10.1021/jacs.1c11014

    39. [39]

      (39) Kumar, M.; Li, R.; Rimer, J. D. Chem. Mat. 2016, 28 (6), 1714. doi: 10.1021/acs.chemmater.5b04569

    40. [40]

      (40) Groen, J. C.; Zhu, W.; Brouwer, S.; Huynink, S. J.; Kapteijn, F.; Moulijn, J. A.; Pérez-Ramírez, J. J. Am. Chem. Soc. 2007, 129 (2), 355. doi: 10.1021/ja065737o

    41. [41]

      (41) Devi, R.; Borah, R.; Deka, R. C. Appl. Catal. A-Gen. 2012, 433434, 122. doi: 10.1016/j.apcata.2012.05.010

    42. [42]

      (42) Tangale, N. P.; Sonar, S. K.; Niphadkar, P. S.; Joshi, P. N. J. Ind. Eng. Chem. 2016, 40, 128. doi: 10.1016/j.jiec.2016.06.016

    43. [43]

      (43) Li, C.; Xiong, G.; Liu, J. K.; Ying, P. L.; Xin, Q.; Feng, Z. C. J. Phys. Chem. B 2001, 105 (15), 2993. doi: 10.1021/jp0042359

    44. [44]

      (44) Fan, F.; Sun, K.; Feng, Z.; Xia, H.; Han, B.; Lian, Y.; Ying, P.; Li, C. Chem.-Eur. J. 2009, 15 (13), 3268. doi: 10.1002/chem.200801916

    45. [45]

      (45) Chua, Y. T.; Stair, P. C.; Wachs, I. E. J. Phys. Chem. B. 2001, 105 (36), 8600. doi: 10.1021/jp011366g

    46. [46]

      (46) Yu, Y.; Xiong, G.; Li, C.; Xiao, F. Microporous Mesoporous Mat. 2001, 46 (1), 23. doi: 10.1016/s1387-1811(01)00271-2

    47. [47]

      (47) Chen, C. T.; Iyoki, K.; Hu, P.; Yamada, H.; Ohara, K.; Sukenaga, S.; Ando, M.; Shibata, H.; Okubo, T.; Wakihara, T. J. Am. Chem. Soc. 2021, 143 (29), 10986. doi: 10.1021/jacs.1c03351

    48. [48]

      (48) Dusselier, M.; Davis, M. E. Chem. Rev. 2018, 118 (11), 5265. doi: 10.1021/acs.chemrev.7b00738

    49. [49]

      (49) Myers, A. L.; Prausnitz, J. M. AICHE J. 1965, 11 (1), 121. doi: 10.1002/aic.690110125

    50. [50]

      (50) Choy, K. K. H.; Porter, J. F.; Mckay, G. J. Chem. Eng. Data 2000, 45 (4), 575. doi: 10.1021/je9902894

    51. [51]

      (51) Bulut, E.; Özacar, M.; Şengil, İ. A. Microporous Mesoporous Mat. 2008, 115 (3), 234. doi: 10.1016/j.micromeso.2008.01.039

    52. [52]

      (52) Hu, Y.; Zhang, Y.; Ren, N.; Tang, Y. J. Phys. Chem. C 2009, 113 (42), 18040. doi: 10.1021/jp903989p

    53. [53]

      (53) Zhang, R.; Somasundaran, P. Adv. Colloid Interface Sci. 2006, 123, 213. doi: 10.1016/j.cis.2006.07.004

  • 加载中
    1. [1]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    5. [5]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    8. [8]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    9. [9]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    10. [10]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    14. [14]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    17. [17]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    18. [18]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    19. [19]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(0)
  • Abstract views(508)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return