Citation: Feifei Yang, Wei Zhou, Chaoran Yang, Tianyu Zhang, Yanqiang Huang. Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230801. doi: 10.3866/PKU.WHXB202308017
-
Selective hydrogenation of CO2 to methanol with renewable H2 is a promising approach to effectively utilize the anthropogenic greenhouse gas CO2 in response to the growing environmental and energy challenges. Recently, MoS2 has gained attention as an attractive catalyst for CO2 hydrogenation due to its tunable S vacancy sites. However, its catalytic reactivity towards methanol production is still unsatisfactory because the general edge S vacancy site tends to favor CH4 formation. Herein, we report that the alkali K decorated MoS2 catalyst enables a dramatically enhancement in selective hydrogenation of CO2 to methanol, in contrast to the pristine MoS2 nanosheets that produce mainly CH4. We incorporated the K promoter into MoS2 using a simple physical mixture method, and we found that the loading of K has a crucial impact on the catalytic performance. The K-MoS2 catalyst with an appropriate K loading of 0.5 wt.% (mass fraction) delivers an optimized methanol selectivity of 81% and a methanol space time yield of 3.6 mmol·g-1·h-1 at mild reaction conditions of 220 °C and 5 MPa, which greatly outperforms the bare MoS2. Higher K loading would lead CO as the dominating product, while lower K loading is insufficient to tune the selectivity. Detailed characterization techniques, including X-ray diffraction (XRD), Raman, H2-temperature programmed reduction (TPR), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), CO-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and H2-D2-temperature programmed surface reaction (TPSR), reveal that K atoms tend to occupy the edge sites on MoS2 and serve as electron donators, which enhance the density of states at the Fermi surface and the basicity of the edge active sites, while preventing H2 dissociation on the edge S vacancy. The reaction mechanism, as studied by CO2-temperature programmed desorption (TPD) and CO2 + H2 DRIFTS, suggests a reverse water-gas shift route for CO2hydrogenation to methanol. The increased basicity at the edge active site has therefore facilitates CO2 adsorption and lowers the activation barrier for CO2 dissociation to CO. It also restrains the methanation activity of intermediate CO and directs the reaction path toward CO hydrogenation to methanol. However, the excessive inhibition of H2 dissociation at higher K loading levels causes the facile desorption of CO, resulting in high CO selectivity. These results highlight the appearing effect of K promoter on modulating the edge active sites of MoS2 to favor methanol formation over CH4, and provide a simple yet effective strategy for tuning the structure and catalytic performance of MoS2. This extends the application of MoS2-based catalysts in methanol synthesis via CO2 hydrogenation.
-
Keywords:
- CO2 hydrogenation,
- Methanol,
- CH4,
- Selectivity tuning,
- K-MoS2
-
-
[1]
(1) Holdren, J. P. Science 2012, 319, 424. doi:10.1126/science.1153386
-
[2]
(2) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi:10.1039/C1CS15008A
-
[3]
(3) Olah, G. A. Angew. Chem. Int. Ed. 2005, 44, 2636. doi:10.1002/anie.200462121
-
[4]
-
[5]
(5) Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. Chem. Soc. Rev. 2020, 49, 1385. doi:10.1039/C9CS00614A
-
[6]
-
[7]
(7) Martin, O.; Martin, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla-Ferre, D.; Perez-Ramirez, J. Angew. Chem. Int. Ed. 2016, 55, 6261. doi:10.1002/anie.201600943
-
[8]
(8) Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. J. Appl. Catal. B:Environ. 2017, 218, 488. doi:10.1016/j.apcatb.2017.06.069
-
[9]
(9) Frei, M. S.; Mondelli, C.; Garcia-Muelas, R.; Kley, K. S.; Puertolas, B.; Lopez, N.; Safonova, O. V.; Stewart, J. A.; Curulla Ferre, D.; Perez-Ramirez, J. Nat. Commun. 2019, 10, 3377. doi:10.1038/s41467-019-11349-9
-
[10]
(10) Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. ACS Catal. 2021, 11, 1406. doi:10.1021/acscatal.0c03665
-
[11]
(11) Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C. J. Energy Chem. 2022, 65, 623. doi:10.1016/j.jechem.2021.06.039
-
[12]
(12) Su, H. Y.; Sun, K.; Liu, J.; Ma, X.; Jian, M.; Sun, C.; Xu, Y.; Yin, H.; Li, W. Appl. Surf. Sci. 2021, 561, 149925. doi:10.1016/j.apsusc.2021.149925
-
[13]
(13) Hu, J.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q.; Wen, W.; Yu, S.; Pan, Y.; et al. Nat. Catal. 2021, 4, 242. doi:10.1038/s41929-021-00584-3
-
[14]
(14) Zhou, S.; Zeng, H. C. ACS Catal. 2022, 12, 9872. doi:10.1021/acscatal.2c02838
-
[15]
(15) Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V. I.; Garcia, H. Appl. Catal. B:Environ. 2019, 245, 351. doi:10.1016/j.apcatb.2018.12.034
-
[16]
(16) Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.; et al. Nat. Nanotechnol. 2018, 13, 411. doi:10.1038/s41565-018-0089-z
-
[17]
(17) Lu, Z.; Cheng, Y.; Li, S.; Yang, Z.; Wu, R. Appl. Surf. Sci. 2020, 528, 147047. doi:10.1016/j.apsusc.2020.147047
-
[18]
(18) Aguilar, N.; Atilhan, M.; Aparicio, S. Appl. Surf. Sci. 2020, 534, 147611. doi:10.1016/j.apsusc.2020.147611
-
[19]
(19) Zheng, J.; Lebedev, K.; Wu, S.; Huang, C.; Ayvali, T.; Wu, T. S.; Li, Y.; Ho, P. L; Soo, Y. L.; Kirkland, A.; et al. J. Am. Chem. Soc. 2021, 143, 7979. doi:10.1021/jacs.1c01097
-
[20]
(20) Woo, H. C.; Nam, I. S.; Lee, J. S.; Chung, J. S.; Kim, Y. G. J. Catal. 1993, 142, 672. doi:10.1006/jcat.1993.1240
-
[21]
(21) Santos, V. P.; Linden, B.; Chojecki, A.; Budroni, G.; Corthals, S.; Shibata, H.; Meima, G. R.; Kapteijn, F.; Makkee, M.; Gascon, J. ACS Catal. 2013, 3, 1634. doi:10.1021/cs4003518
-
[22]
(22) Claure, M. T.; Chai, S. H.; Dai, S.; Unocic, K. A.; Alamgir, F. M.; Agrawal, P. K.; Jones, C. W. J. Catal. 2015, 324, 88. doi:10.1016/j.jcat.2015.01.015
-
[23]
(23) Zeng, F.; Xi, X.; Cao, H.; Pei, Y.; Heeres, H. J.; Palkovits, R. Appl. Catal. B:Environ. 2019, 246, 232. doi:10.1016/j.apcatb.2019.01.063
-
[24]
(24) Juneau, M.; Vonglis, M.; Hartvigsen, J.; Frost, L.; Bayerl, D.; Dixit, M.; Mpourmpakis, G.; Morse, J. R.; Baldwin, J. W.; Willauer, H. D.; et al. Energy Environ. Sci. 2020, 13, 2524. doi:10.1039/D0EE01457E
-
[25]
(25) Zhang, S.;Wu, Z.; Liu, X.; Shao, Z.; Xia, L.; Zhong, L.; Wang, H.; Sun, Y. Appl. Catal. B:Environ. 2021, 293, 120207. doi:10.1016/j.apcatb.2021.120207
-
[26]
(26) Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. ChemSusChem 2017, 10, 2408. doi:10.1002/cssc.201700412
-
[27]
(27) Rabelo-Neto, R. C.; Almeida, M. P.; Silveira, E. B.; Ayala, M.; Watson, C. D.; Villarreal, J.; Cronauer, D. C.; Kropf, A. J.; Martinelli, M.; Noronha, F. B.; et al. Appl. Catal. B:Environ. 2022, 315, 121533. doi:10.1016/j.apcatb.2022.121533
-
[28]
(28) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2011, 115, 9025. doi:10.1021/jp110069r
-
[29]
(29) Bertrand, P. A. Phys. Rev. B:Condens. Matter. 1991, 44, 5745. doi:10.1103/PhysRevB.44.5745
-
[30]
(30) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. Adv. Funct. Mater. 2012, 22, 1385. doi:10.1002/adfm.201102111
-
[31]
(31) Wang, X.; Zhang, Y.; Si, H.; Zhang, Q.; Wu, J.; Gao, L.; Wei, X.; Sun, Y.; Liao, Q.; Zhang, Z.; et al. J. Am. Chem. Soc. 2020, 142, 4298. doi:10.1021/jacs.9b12113
-
[32]
(32) Wang, Q.; Li, X.; Ma, X.; Li, Z.; Yang, Y. ACS Appl. Mater. Interfaces 2022, 14, 7741. doi:10.1021/acsami.1c18291
-
[33]
(33) Yu, M.; Kosinov, N.; van Haandel, L.; Kooyman, P. J.; Hensen, E. J. M. ACS Catal. 2020, 10, 1838. doi:10.1021/acscatal.9b03178
-
[34]
(34) Iranmahbood, J.; Hill, D. O.; Toghiani, H. Appl. Catal. A:Gen. 2002, 231, 99. doi:10.1016/S0926-860X(01)01011-0
-
[35]
(35) Travert, A.; Nakamura, H.; Santen, R. A. V.; Cristol, S.; Paul, J. F.; Payen, E. J. Am. Chem. Soc. 2002, 124, 7084. doi:10.1021/ja011634o
-
[36]
(36) Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; et al. J. Am. Chem. Soc. 2015, 137, 2622. doi:10.1021/ja5120908
-
[37]
(37) Liu, G.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H.; et al. Nat. Chem. 2017, 9, 810. doi:10.1038/nchem.2740
-
[38]
(38) Shuxian, Z.; Hall, W. K.; Ertl, G.; Konzinger, H. J. Catal. 1986, 100, 167. doi:10.1016/0021-9517(86)90082-5
-
[39]
(39) Portela, L.; Grange, P.; Delmon, B. Catal. Rev. 1995, 37, 699. doi:10.1080/01614949508006452
-
[40]
(40) Nakamura, I.; Hamada, H.; Fujitani, T. Surf. Sci. 2003, 544, 45. doi:10.1016/j.susc.2003.08.010
-
[41]
(41) Travert, A.; Dujardin, C.; Mauge, F.; Cristol, S.; Paul, J. F.; Payen, E.; Bougeard, D. Catal. Today 2001, 70, 255. doi:10.1016/S0920-5861(01)00422-9
-
[42]
(42) Chen, J.; Maugé, F.; Fallah, J. E.; Oliviero, L. J. Catal. 2014, 320, 170. doi:10.1016/j.jcat.2014.10.005
-
[43]
(43) Chen, J.; Garcia, E. D.; Oliviero, E.; Oliviero, L.; Maugé, F. J. Catal. 2016, 339, 153. doi:10.1016/j.jcat.2016.04.010
-
[44]
(44) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2012, 116, 1826. doi:10.1021/jp206555b
-
[45]
(45) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. Catal. Commun. 2014, 52, 92. doi:10.1016/j.catcom.2014.02.011
-
[46]
(46) Liu, R.; Chen, C.; Chu, W.; Sun, W. Materials 2022, 15, 3775. doi:10.3390/ma15113775
-
[47]
(47) Huang, M.; Cho, K. J. Phys. Chem. C 2009, 113, 5238. doi:10.1021/jp807705y
-
[48]
(48) Zhang, C.; Liu, B.; Wang, Y.; Zhao, L.; Zhang, J.; Zong, Q.; Gao, J.; Xu, C. RSC Adv. 2017, 7, 11862. doi:10.1039/C6RA27422F
-
[49]
(49) Dorokhov, V. S.; Ishutenko, D. I.; Nikul'shin, P. A.; Kotsareva, K. V.; Trusova, E. A.; Bondarenko, T. N.; Eliseev, O. L.; Lapidus, A. L.; Rozhdestvenskaya, N. N.; Kogan, V. M. Kinet. Catal. 2013, 54, 243. doi:10.1134/S0023158413020043
-
[1]
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[3]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[4]
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
-
[5]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[6]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[7]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[8]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[9]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[10]
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
-
[11]
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
-
[12]
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
-
[13]
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
-
[14]
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
-
[15]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[16]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[17]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[18]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[19]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[20]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(94)
- HTML views(7)