Citation: Feifei Yang,  Wei Zhou,  Chaoran Yang,  Tianyu Zhang,  Yanqiang Huang. Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230801. doi: 10.3866/PKU.WHXB202308017 shu

Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst

  • Corresponding author: Feifei Yang,  Tianyu Zhang, 
  • Received Date: 12 August 2023
    Revised Date: 7 September 2023
    Accepted Date: 8 September 2023

    Fund Project: This work was supported by the National Key Research and Development Program of China (2022YFA1506200), National Natural Science Foundation of China (22208021), Natural Science Foundation of Jiangsu Province, China (BK20231075), the Safety Discipline Group Project of China University of Mining and Technology, China (2022ZZX03), and the Carbon Peak Carbon Neutrality Technology Innovation Special Fund Project of Jiangsu Province, China (BE2022613), and China National Postdoctoral Program for Innovative Talents (BX2021294).

  • Selective hydrogenation of CO2 to methanol with renewable H2 is a promising approach to effectively utilize the anthropogenic greenhouse gas CO2 in response to the growing environmental and energy challenges. Recently, MoS2 has gained attention as an attractive catalyst for CO2 hydrogenation due to its tunable S vacancy sites. However, its catalytic reactivity towards methanol production is still unsatisfactory because the general edge S vacancy site tends to favor CH4 formation. Herein, we report that the alkali K decorated MoS2 catalyst enables a dramatically enhancement in selective hydrogenation of CO2 to methanol, in contrast to the pristine MoS2 nanosheets that produce mainly CH4. We incorporated the K promoter into MoS2 using a simple physical mixture method, and we found that the loading of K has a crucial impact on the catalytic performance. The K-MoS2 catalyst with an appropriate K loading of 0.5 wt.% (mass fraction) delivers an optimized methanol selectivity of 81% and a methanol space time yield of 3.6 mmol·g-1·h-1 at mild reaction conditions of 220 °C and 5 MPa, which greatly outperforms the bare MoS2. Higher K loading would lead CO as the dominating product, while lower K loading is insufficient to tune the selectivity. Detailed characterization techniques, including X-ray diffraction (XRD), Raman, H2-temperature programmed reduction (TPR), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), CO-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and H2-D2-temperature programmed surface reaction (TPSR), reveal that K atoms tend to occupy the edge sites on MoS2 and serve as electron donators, which enhance the density of states at the Fermi surface and the basicity of the edge active sites, while preventing H2 dissociation on the edge S vacancy. The reaction mechanism, as studied by CO2-temperature programmed desorption (TPD) and CO2 + H2 DRIFTS, suggests a reverse water-gas shift route for CO2hydrogenation to methanol. The increased basicity at the edge active site has therefore facilitates CO2 adsorption and lowers the activation barrier for CO2 dissociation to CO. It also restrains the methanation activity of intermediate CO and directs the reaction path toward CO hydrogenation to methanol. However, the excessive inhibition of H2 dissociation at higher K loading levels causes the facile desorption of CO, resulting in high CO selectivity. These results highlight the appearing effect of K promoter on modulating the edge active sites of MoS2 to favor methanol formation over CH4, and provide a simple yet effective strategy for tuning the structure and catalytic performance of MoS2. This extends the application of MoS2-based catalysts in methanol synthesis via CO2 hydrogenation.
  • 加载中
    1. [1]

      (1) Holdren, J. P. Science 2012, 319, 424. doi:10.1126/science.1153386

    2. [2]

      (2) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi:10.1039/C1CS15008A

    3. [3]

      (3) Olah, G. A. Angew. Chem. Int. Ed. 2005, 44, 2636. doi:10.1002/anie.200462121

    4. [4]

    5. [5]

      (5) Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. Chem. Soc. Rev. 2020, 49, 1385. doi:10.1039/C9CS00614A

    6. [6]

    7. [7]

      (7) Martin, O.; Martin, A. J.; Mondelli, C.; Mitchell, S.; Segawa, T. F.; Hauert, R.; Drouilly, C.; Curulla-Ferre, D.; Perez-Ramirez, J. Angew. Chem. Int. Ed. 2016, 55, 6261. doi:10.1002/anie.201600943

    8. [8]

      (8) Rui, N.; Wang, Z.; Sun, K.; Ye, J.; Ge, Q.; Liu, C. J. Appl. Catal. B:Environ. 2017, 218, 488. doi:10.1016/j.apcatb.2017.06.069

    9. [9]

      (9) Frei, M. S.; Mondelli, C.; Garcia-Muelas, R.; Kley, K. S.; Puertolas, B.; Lopez, N.; Safonova, O. V.; Stewart, J. A.; Curulla Ferre, D.; Perez-Ramirez, J. Nat. Commun. 2019, 10, 3377. doi:10.1038/s41467-019-11349-9

    10. [10]

      (10) Wang, J.; Zhang, G.; Zhu, J.; Zhang, X.; Ding, F.; Zhang, A.; Guo, X.; Song, C. ACS Catal. 2021, 11, 1406. doi:10.1021/acscatal.0c03665

    11. [11]

      (11) Shen, C.; Bao, Q.; Xue, W.; Sun, K.; Zhang, Z.; Jia, X.; Mei, D.; Liu, C. J. Energy Chem. 2022, 65, 623. doi:10.1016/j.jechem.2021.06.039

    12. [12]

      (12) Su, H. Y.; Sun, K.; Liu, J.; Ma, X.; Jian, M.; Sun, C.; Xu, Y.; Yin, H.; Li, W. Appl. Surf. Sci. 2021, 561, 149925. doi:10.1016/j.apsusc.2021.149925

    13. [13]

      (13) Hu, J.; Yu, L.; Deng, J.; Wang, Y.; Cheng, K.; Ma, C.; Zhang, Q.; Wen, W.; Yu, S.; Pan, Y.; et al. Nat. Catal. 2021, 4, 242. doi:10.1038/s41929-021-00584-3

    14. [14]

      (14) Zhou, S.; Zeng, H. C. ACS Catal. 2022, 12, 9872. doi:10.1021/acscatal.2c02838

    15. [15]

      (15) Primo, A.; He, J.; Jurca, B.; Cojocaru, B.; Bucur, C.; Parvulescu, V. I.; Garcia, H. Appl. Catal. B:Environ. 2019, 245, 351. doi:10.1016/j.apcatb.2018.12.034

    16. [16]

      (16) Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.; et al. Nat. Nanotechnol. 2018, 13, 411. doi:10.1038/s41565-018-0089-z

    17. [17]

      (17) Lu, Z.; Cheng, Y.; Li, S.; Yang, Z.; Wu, R. Appl. Surf. Sci. 2020, 528, 147047. doi:10.1016/j.apsusc.2020.147047

    18. [18]

      (18) Aguilar, N.; Atilhan, M.; Aparicio, S. Appl. Surf. Sci. 2020, 534, 147611. doi:10.1016/j.apsusc.2020.147611

    19. [19]

      (19) Zheng, J.; Lebedev, K.; Wu, S.; Huang, C.; Ayvali, T.; Wu, T. S.; Li, Y.; Ho, P. L; Soo, Y. L.; Kirkland, A.; et al. J. Am. Chem. Soc. 2021, 143, 7979. doi:10.1021/jacs.1c01097

    20. [20]

      (20) Woo, H. C.; Nam, I. S.; Lee, J. S.; Chung, J. S.; Kim, Y. G. J. Catal. 1993, 142, 672. doi:10.1006/jcat.1993.1240

    21. [21]

      (21) Santos, V. P.; Linden, B.; Chojecki, A.; Budroni, G.; Corthals, S.; Shibata, H.; Meima, G. R.; Kapteijn, F.; Makkee, M.; Gascon, J. ACS Catal. 2013, 3, 1634. doi:10.1021/cs4003518

    22. [22]

      (22) Claure, M. T.; Chai, S. H.; Dai, S.; Unocic, K. A.; Alamgir, F. M.; Agrawal, P. K.; Jones, C. W. J. Catal. 2015, 324, 88. doi:10.1016/j.jcat.2015.01.015

    23. [23]

      (23) Zeng, F.; Xi, X.; Cao, H.; Pei, Y.; Heeres, H. J.; Palkovits, R. Appl. Catal. B:Environ. 2019, 246, 232. doi:10.1016/j.apcatb.2019.01.063

    24. [24]

      (24) Juneau, M.; Vonglis, M.; Hartvigsen, J.; Frost, L.; Bayerl, D.; Dixit, M.; Mpourmpakis, G.; Morse, J. R.; Baldwin, J. W.; Willauer, H. D.; et al. Energy Environ. Sci. 2020, 13, 2524. doi:10.1039/D0EE01457E

    25. [25]

      (25) Zhang, S.;Wu, Z.; Liu, X.; Shao, Z.; Xia, L.; Zhong, L.; Wang, H.; Sun, Y. Appl. Catal. B:Environ. 2021, 293, 120207. doi:10.1016/j.apcatb.2021.120207

    26. [26]

      (26) Porosoff, M. D.; Baldwin, J. W.; Peng, X.; Mpourmpakis, G.; Willauer, H. D. ChemSusChem 2017, 10, 2408. doi:10.1002/cssc.201700412

    27. [27]

      (27) Rabelo-Neto, R. C.; Almeida, M. P.; Silveira, E. B.; Ayala, M.; Watson, C. D.; Villarreal, J.; Cronauer, D. C.; Kropf, A. J.; Martinelli, M.; Noronha, F. B.; et al. Appl. Catal. B:Environ. 2022, 315, 121533. doi:10.1016/j.apcatb.2022.121533

    28. [28]

      (28) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2011, 115, 9025. doi:10.1021/jp110069r

    29. [29]

      (29) Bertrand, P. A. Phys. Rev. B:Condens. Matter. 1991, 44, 5745. doi:10.1103/PhysRevB.44.5745

    30. [30]

      (30) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. Adv. Funct. Mater. 2012, 22, 1385. doi:10.1002/adfm.201102111

    31. [31]

      (31) Wang, X.; Zhang, Y.; Si, H.; Zhang, Q.; Wu, J.; Gao, L.; Wei, X.; Sun, Y.; Liao, Q.; Zhang, Z.; et al. J. Am. Chem. Soc. 2020, 142, 4298. doi:10.1021/jacs.9b12113

    32. [32]

      (32) Wang, Q.; Li, X.; Ma, X.; Li, Z.; Yang, Y. ACS Appl. Mater. Interfaces 2022, 14, 7741. doi:10.1021/acsami.1c18291

    33. [33]

      (33) Yu, M.; Kosinov, N.; van Haandel, L.; Kooyman, P. J.; Hensen, E. J. M. ACS Catal. 2020, 10, 1838. doi:10.1021/acscatal.9b03178

    34. [34]

      (34) Iranmahbood, J.; Hill, D. O.; Toghiani, H. Appl. Catal. A:Gen. 2002, 231, 99. doi:10.1016/S0926-860X(01)01011-0

    35. [35]

      (35) Travert, A.; Nakamura, H.; Santen, R. A. V.; Cristol, S.; Paul, J. F.; Payen, E. J. Am. Chem. Soc. 2002, 124, 7084. doi:10.1021/ja011634o

    36. [36]

      (36) Cai, L.; He, J.; Liu, Q.; Yao, T.; Chen, L.; Yan, W.; Hu, F.; Jiang, Y.; Zhao, Y.; Hu, T.; et al. J. Am. Chem. Soc. 2015, 137, 2622. doi:10.1021/ja5120908

    37. [37]

      (37) Liu, G.; Robertson, A. W.; Li, M. M. J.; Kuo, W. C. H.; Darby, M. T.; Muhieddine, M. H.; Lin, Y. C.; Suenaga, K.; Stamatakis, M.; Warner, J. H.; et al. Nat. Chem. 2017, 9, 810. doi:10.1038/nchem.2740

    38. [38]

      (38) Shuxian, Z.; Hall, W. K.; Ertl, G.; Konzinger, H. J. Catal. 1986, 100, 167. doi:10.1016/0021-9517(86)90082-5

    39. [39]

      (39) Portela, L.; Grange, P.; Delmon, B. Catal. Rev. 1995, 37, 699. doi:10.1080/01614949508006452

    40. [40]

      (40) Nakamura, I.; Hamada, H.; Fujitani, T. Surf. Sci. 2003, 544, 45. doi:10.1016/j.susc.2003.08.010

    41. [41]

      (41) Travert, A.; Dujardin, C.; Mauge, F.; Cristol, S.; Paul, J. F.; Payen, E.; Bougeard, D. Catal. Today 2001, 70, 255. doi:10.1016/S0920-5861(01)00422-9

    42. [42]

      (42) Chen, J.; Maugé, F.; Fallah, J. E.; Oliviero, L. J. Catal. 2014, 320, 170. doi:10.1016/j.jcat.2014.10.005

    43. [43]

      (43) Chen, J.; Garcia, E. D.; Oliviero, E.; Oliviero, L.; Maugé, F. J. Catal. 2016, 339, 153. doi:10.1016/j.jcat.2016.04.010

    44. [44]

      (44) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. J. Phys. Chem. C 2012, 116, 1826. doi:10.1021/jp206555b

    45. [45]

      (45) Andersen, A.; Kathmann, S. M.; Lilga, M. A.; Albrecht, K. O.; Hallen, R. T.; Mei, D. Catal. Commun. 2014, 52, 92. doi:10.1016/j.catcom.2014.02.011

    46. [46]

      (46) Liu, R.; Chen, C.; Chu, W.; Sun, W. Materials 2022, 15, 3775. doi:10.3390/ma15113775

    47. [47]

      (47) Huang, M.; Cho, K. J. Phys. Chem. C 2009, 113, 5238. doi:10.1021/jp807705y

    48. [48]

      (48) Zhang, C.; Liu, B.; Wang, Y.; Zhao, L.; Zhang, J.; Zong, Q.; Gao, J.; Xu, C. RSC Adv. 2017, 7, 11862. doi:10.1039/C6RA27422F

    49. [49]

      (49) Dorokhov, V. S.; Ishutenko, D. I.; Nikul'shin, P. A.; Kotsareva, K. V.; Trusova, E. A.; Bondarenko, T. N.; Eliseev, O. L.; Lapidus, A. L.; Rozhdestvenskaya, N. N.; Kogan, V. M. Kinet. Catal. 2013, 54, 243. doi:10.1134/S0023158413020043

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    6. [6]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    7. [7]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    8. [8]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    11. [11]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    12. [12]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    13. [13]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    14. [14]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    15. [15]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    16. [16]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    17. [17]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    18. [18]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    19. [19]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(1)
  • Abstract views(93)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return