Citation: Wei Sun, Yongjing Wang, Kun Xiang, Saishuai Bai, Haitao Wang, Jing Zou, Arramel, Jizhou Jiang. CoP修饰Ti3C2Tx MXene纳米复合材料作为高效析氢反应电催化剂[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230801. doi: 10.3866/PKU.WHXB202308015
-
高效、经济和环保是电化学水分解制氢电催化剂的关键要素。二维(2D) MXene材料因其独特的物理化学性质而受到广泛关注。虽然有许多不同种类的MXene材料,但只有少数具有本征析氢反应(HER)催化活性。然而,MXene材料具有很多优点,如较大的比表面积、高电导率和丰富的表面官能团,因此可以作为与其他物质复合的理想平台。本研究首先通过密度泛函理论(DFT)预测了CoP与Ti3C2Tx MXene (其中Tx =―F和―OH官能团)具有低的氢吸附自由能(ΔGH*)。接着,我们合成了CoP-Ti3C2Tx MXene纳米复合材料,并在0.5 mol∙L−1 H2SO4中测试了其电催化HER性能。该材料在电流密度为10 mA∙cm−2时表现出了低的过电位(135 mV)和Tafel斜率为48 mV∙dec−1。理论计算表明,CoP-Ti3C2Tx MXene纳米复合材料的优异电催化性能源于Ti3C2Tx的高金属导电性、良好的界面电荷转移、快速的氢吸附/解吸过程以及优化的电子结构。
-
-
[1]
(1) Kittner, N.; Lill, F.; Kammen, D. M. Nat. Energy 2017, 2, 17125. doi: 10.1038/nenergy.2017.125
-
[2]
(2) Yang, Y.; Wu, X.; Ahmad, M.; Si, F.; Chen, S.; Liu, C.; Zhang, Y.; Wang, L.; Zhang, J.; Luo, J.-L.; Fu, X.-Z. Angew. Chem. Int. Ed. 2023, 62, e202302950, doi: 10.1002/anie.202302950
-
[3]
(3) Fan, Z.; Zhang, W.; Li, L.; Wang, Y.; Zou, Y.; Wang, S.; Chen, Z. Green Chem. 2022, 24, 7818. doi: 10.1039/D2GC02956A
-
[4]
(4) Tang, S.; Liu, Z.; Qiu, F.; Liu, Q.; Mao, Y.; Zhang, L. Green Chem. 2022, 24, 9668. doi: 10.1039/D2GC03351H
-
[5]
(5) Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang, K.; Liu, S.; Zhai, T. Nano Res. 2022, 15, 5977. doi: 10.1007/s12274-022-4276-8
-
[6]
(6) Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J.-L.; Fu, X.-Z. Adv. Funct. Mater. 2020, 30, 1909610. doi: 10.1002/adfm.201909610
-
[7]
-
[8]
(8) Shuai, T.-Y.; Zhan, Q.-N.; Xu, H.-M.; Zhang, Z.-J.; Li, G.-R. Green Chem. 2023, 25, 1749. doi: 10.1039/D2GC04205C
-
[9]
(9) Xiang, K.; Guo, J.; Xu, J.; Qu, T.; Zhang, Y.; Chen, S.; Hao, P.; Li, M.; Xie, M.; Guo, X.; Ding, W. ACS Appl. Energy Mater. 2018, 1, 4040. doi: 10.1021/acsaem.8b00723
-
[10]
(10) Xiang, K.; Song, Z.; Wu, D.; Deng, X.; Wang, X.; You, W.; Peng, Z.; Wang, L.; Luo, J.-L.; Fu, X.-Z. J. Mater. Chem. A 2021, 9, 6316. doi: 10.1039/D0TA10501E
-
[11]
-
[12]
(12) Liao, L.; Cheng C.; Zhou, H.; Qi, Y.; Li, D.; Cai, F.; Yu, B.; Long, R.; Yu, F. Mater. Today Phys. 2022, 22, 100589. doi: 10.1016/j.mtphys.2021.100589
-
[13]
(13) Hansen, J. N.; Prats, H.; Toudahl, K. K.; Secher, N. M.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. ACS Energy Lett. 2021, 6, 1175. doi: 10.1021/acsenergylett.1c00246
-
[14]
(14) Chen, Q.; Du, C.; Yang, Y.; Shen, Q.; Qin, J.; Hong, M.; Zhang, X.; Chen, J. Mater. Today Phys. 2023, 30, 100931. doi: 10.1016/j.mtphys.2022.100931
-
[15]
(15) Ling, C.; Shi, L.; Ouyang, Y.; Chen, Q.; Wang, J. Adv. Sci. 2016, 3, 1600180. doi: 10.1002/advs.201600180
-
[16]
(16) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138
-
[17]
(17) Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater. Chem. A 2021, 9, 24195. doi: 10.1039/D1TA07332J
-
[18]
(18) Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu, S. npj 2D Mater. Appl. 2021, 5, 78. doi: 10.1038/s41699-021-00259-4
-
[19]
(19) Jiang, J.; Bai, S.; Zou, J.; Liu, S.; Hsu, J.-P.; Li, N.; Zhu, G.; Zhuang, Z.; Kang, Q.; Zhang Y. Nano Res. 2022, 15, 6551. doi: 10.1007/s12274-022-4312-8
-
[20]
(20) Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu, P.; Hsu, J.-P. Nano Res. 2023, 16, 127. doi: 10.1007/s12274-022-4799-z
-
[21]
(21) Jiang, J.; Li, F.; Zou, J.; Liu, S.; Wang, J.; Zou, Y.; Xiang, K.; Zhang, H.; Zhu, G.; Zhang, Y.; et al. Sci. China Mater. 2022, 65, 2895. doi: 10.1007/s40843-022-2186-0
-
[22]
(22) Li, N.; Peng, J.; Ong, W.-J.; Ma, T.; Arramel, Zhang, P.; Jiang, J.; Yuan, X.; Zhang, C. Matter 2021, 4, 377. doi: 10.1016/j.matt.2020.10.024
-
[23]
(23) Zeng, Z.; Chen, X.; Weng, K.; Wu, Y.; Zhang, P.; Jiang, J.; Li, N. npj Comput. Mater. 2021, 7, 80. doi: 10.1038/s41524-021-00550-4
-
[24]
(24) Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P. O. Å.; Eklund, P.; et al. Science 2023, 379, 1130. doi: 10.1126/science.add5901
-
[25]
(25) Wang, D.; Zhou, C.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M.; Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Science 2023, 379, 1242. doi: 10.1126/science.add9204
-
[26]
(26) Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. ACS Energy Lett. 2016, 1, 589. doi: 10.1021/acsenergylett.6b00247
-
[27]
(27) Shinde, P. V.; Mane, P.; Chakraborty, B.; Rout, C. S. J. Colloid Interface Sci. 2021, 602, 232. doi: 10.1016/j.jcis.2021.06.007
-
[28]
(28) Li, S.; Que, X.; Chen, X.; Lin, T.; Sheng, L.; Peng, J.; Li, J.; Zhai, M. ACS Appl. Energy Mater. 2020, 3, 10882. doi: 10.1021/acsaem.0c01900
-
[29]
(29) Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li, N.; Zhang, H.; Yu, J.; et al. Chem. Soc. Rev. 2022, 51, 2972. doi: 10.1039/D0CS01487G
-
[30]
(30) Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; She, Z. W. ACS Nano 2020, 14, 16140. doi: 10.1021/acsnano.0c08671
-
[31]
(31) Huang, H.; Xue, Y.; Xie, Y.; Yang, Y.; Yang, L.; He, H.; Jiang, Q.; Ying, G. Inorg. Chem. Front. 2022, 9, 1171. doi: 10.1039/D1QI01528A
-
[32]
(32) Li, G.; Sun, T.; Niu, H.-J.; Yan, Y.; Liu, T.; Jiang, S.; Yang, Q.; Zhou, W.; Guo, L. Adv. Funct. Mater. 2023, 33, 2212514. doi: 10.1002/adfm.202212514
-
[33]
(33) Gong, S.; Liu, H.; Zhao, F.; Zhang, Y.; Xu, H.; Li, M.; Qi, J.; Wang, H.; Li, C.; Peng, W.; et al ACS Nano 2023, 17, 4843. doi: 10.1021/acsnano.2c11430
-
[34]
(34) Huang, K.; Lv, C.; Li, C.; Bai, H.; Meng, X. J. Colloid Interface Sci. 2023, 636, 21. doi: 10.1016/j.jcis.2022.12.169
-
[35]
(35) Guo, Y.; Du, Z.; Cao, Z.; Li, B.; Yang, S. Small Methods 2023, 7, 2201559. doi: 10.1002/smtd.202201559
-
[36]
(36) Zheng, X.; Yuan, M.; Huang, X.; Li, H.; Sun, G. Chin. Chem. Lett. 2023, 34, 107152. doi: 10.1016/j.cclet.2022.01.045
-
[37]
(37) Zhao, J.; Luo, S.; Chen, Y.; Zhu, R.; Liang, J.; Wang, F.; Fu, X.; Wu, C. ChemistrySelect 2022, 7, e202200254. doi: 10.1002/slct.202200254
-
[38]
(38) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
-
[39]
(39) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
-
[40]
(40) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
-
[41]
(41) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
-
[42]
(42) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
-
[43]
(43) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344
-
[44]
(44) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j
-
[45]
(45) Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C.; et al. Nat. Commun. 2018, 9, 2120. doi: 10.1038/s41467-018-04501-4
-
[46]
(46) Ma, X.; Tu, X.; Gao, F.; Xie, Y.; Huang, X.; Fernandez, C.; Qu, F.; Liu, G.; Lu, L.; Yu, Y. Sens. Actuators B: Chem. 2020, 309, 127815. doi: 10.1016/j.snb.2020.127815
-
[47]
(47) Yang, D.; Zhu, J.; Rui, X.; Tan, H.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. ACS Appl. Mater. Interfaces 2013, 5, 1093. doi: 10.1021/am302877q
-
[48]
(48) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306
-
[49]
(49) Du, C.-F.; Dinh, K. N.; Liang, Q.; Zheng, Y.; Luo, Y.; Zhang, J.; Yan, Q. Adv. Energy Mater. 2018, 8, 1801127. doi: 10.1002/aenm.201801127
-
[50]
(50) Li, X.; Lv, X.; Sun, X.; Yang, C.; Zheng, Y.-Z.; Yang, L.; Li, S.; Tao, X. Appl. Catal. B: Environ. 2021, 284, 119708. doi: 10.1016/j.apcatb.2020.119708
-
[51]
(51) Han, M.; Yang, J.; Jiang, J.; Jing, R.; Ren, S.; Yan, C. J. Colloid. Interface Sci. 2021, 582, 1099. doi: 10.1016/j.jcis.2020.09.001
-
[52]
(52) Li, H.; Han, Y.; Zhao, H.; Qi, W.; Zhang, D.; Yu, Y.; Cai, W.; Li, S.; Lai, J.; Huang, B.; Wang, L. Nat. Commun. 2020, 11, 5437. doi: 10.1038/s41467-020-19277-9
-
[53]
(53) Peng, S.; Gong, F.; Li, L.; Yu, D.; Ji, D.; Zhang, T.; Hu, Z.; Zhang, Z.; Chou, S.; Du, Y.; Ramakrishna, S. J. Am. Chem. Soc. 2018, 140, 13644. doi: 10.1021/jacs.8b05134
-
[1]
-
-
[1]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[2]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[3]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[4]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[5]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[6]
Pingping HAO , Fangfang LI , Yawen WANG , Houfen LI , Xiao ZHANG , Rui LI , Lei WANG , Jianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054
-
[7]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[8]
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
-
[9]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[10]
Miaomiao Li , Mengwei Yuan , Xingzi Zheng , Kunyu Han , Genban Sun , Fujun Li , Huifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265
-
[11]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[12]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[13]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[14]
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
-
[15]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[16]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[17]
Kaihui Huang , Boning Feng , Xinghua Wen , Lei Hao , Difa Xu , Guijie Liang , Rongchen Shen , Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204
-
[18]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[19]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[20]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(102)
- HTML views(6)