CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction
- Corresponding author: Kun Xiang, xiangkun@wit.edu.cn Jizhou Jiang, 027wit@163.com
 
	            Citation:
	            
		            Wei Sun, Yongjing Wang, Kun Xiang, Saishuai Bai, Haitao Wang, Jing Zou, Arramel, Jizhou Jiang. CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinica,
							;2024, 40(8): 230801.
						
							doi:
								10.3866/PKU.WHXB202308015
						
					
				
					
				
	        
	                
				Kittner, N.; Lill, F.; Kammen, D. M. Nat. Energy 2017,   2, 17125. doi: 10.1038/nenergy.2017.125
												 doi: 10.1038/nenergy.2017.125
											
										
				Yang, Y.; Wu, X.; Ahmad, M.; Si, F.; Chen, S.; Liu, C.; Zhang, Y.; Wang, L.; Zhang, J.; Luo, J. -L.; Fu, X. -Z. Angew. Chem. Int. Ed.   2023,   62, e202302950, doi: 10.1002/anie.202302950
												 doi: 10.1002/anie.202302950
											
										
				Fan, Z.; Zhang, W.; Li, L.; Wang, Y.; Zou, Y.; Wang, S.; Chen, Z. Green Chem.   2022,   24, 7818. doi: 10.1039/D2GC02956A
												 doi: 10.1039/D2GC02956A
											
										
				Tang, S.; Liu, Z.; Qiu, F.; Liu, Q.; Mao, Y.; Zhang, L. Green Chem.   2022,   24, 9668. doi: 10.1039/D2GC03351H
												 doi: 10.1039/D2GC03351H
											
										
				Jiang, J.; Bai, S.; Yang, M.; Zou, J.; Li, N.; Peng, J.; Wang, H.; Xiang, K.; Liu, S.; Zhai, T. Nano Res.   2022,   15, 5977. doi: 10.1007/s12274-022-4276-8
												 doi: 10.1007/s12274-022-4276-8
											
										
				Xiang, K.; Wu, D.; Deng, X.; Li, M.; Chen, S.; Hao, P.; Guo, X.; Luo, J. -L.; Fu, X. -Z. Adv. Funct. Mater.   2020,   30, 1909610. doi: 10.1002/adfm.201909610
												 doi: 10.1002/adfm.201909610
											
										
				Ling, C. -Y.; Wang, J. -L. Acta Phys. -Chim. Sin.   2017,   33, 869.
												 doi: 10.3866/PKU.WHXB201702088
											
										
				Shuai, T. -Y.; Zhan, Q. -N.; Xu, H. -M.; Zhang, Z. -J.; Li, G. -R. Green Chem.   2023,   25, 1749. doi: 10.1039/D2GC04205C
												 doi: 10.1039/D2GC04205C
											
										
				Xiang, K.; Guo, J.; Xu, J.; Qu, T.; Zhang, Y.; Chen, S.; Hao, P.; Li, M.; Xie, M.; Guo, X.; Ding, W. ACS Appl. Energy Mater.   2018,   1, 4040. doi: 10.1021/acsaem.8b00723
												 doi: 10.1021/acsaem.8b00723
											
										
				Xiang, K.; Song, Z.; Wu, D.; Deng, X.; Wang, X.; You, W.; Peng, Z.; Wang, L.; Luo, J. -L.; Fu, X. -Z. J. Mater. Chem. A 2021,   9, 6316. doi: 10.1039/D0TA10501E
												 doi: 10.1039/D0TA10501E
											
										
				Yan, D.; Zhang, L.; Chen, Z.; Xiao, W.; Yang, X. Acta Phys. -Chim. Sin.   2021,   37, 2009054.
												 doi: 10.3866/PKU.WHXB202009054
											
										
				Liao, L.; Cheng C.; Zhou, H.; Qi, Y.; Li, D.; Cai, F.; Yu, B.; Long, R.; Yu, F. Mater. Today Phys.   2022,   22, 100589. doi: 10.1016/j.mtphys.2021.100589
												 doi: 10.1016/j.mtphys.2021.100589
											
										
				Hansen, J. N.; Prats, H.; Toudahl, K. K.; Secher, N. M.; Chan, K.; Kibsgaard, J.; Chorkendorff, I. ACS Energy Lett.   2021,   6, 1175. doi: 10.1021/acsenergylett.1c00246
												 doi: 10.1021/acsenergylett.1c00246
											
										
				Chen, Q.; Du, C.; Yang, Y.; Shen, Q.; Qin, J.; Hong, M.; Zhang, X.; Chen, J. Mater. Today Phys.   2023,   30, 100931. doi: 10.1016/j.mtphys.2022.100931
												 doi: 10.1016/j.mtphys.2022.100931
											
										
				Ling, C.; Shi, L.; Ouyang, Y.; Chen, Q.; Wang, J. Adv. Sci.   2016,   3, 1600180. doi: 10.1002/advs.201600180
												 doi: 10.1002/advs.201600180
											
										
				Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater.   2014,   26, 992. doi: 10.1002/adma.201304138
												 doi: 10.1002/adma.201304138
											
										
				Jiang, J.; Zou, Y.; Arramel; Li, F.; Wang, J.; Zou, J.; Li, N. J. Mater. Chem. A 2021,   9, 24195. doi: 10.1039/D1TA07332J
												 doi: 10.1039/D1TA07332J
											
										
				Bai, S.; Yang, M.; Jiang, J.; He, X.; Zou, J.; Xiong, Z.; Liao, G.; Liu, S. npj 2D Mater. Appl.   2021,   5, 78. doi: 10.1038/s41699-021-00259-4
												 doi: 10.1038/s41699-021-00259-4
											
										
				Jiang, J.; Bai, S.; Zou, J.; Liu, S.; Hsu, J. -P.; Li, N.; Zhu, G.; Zhuang, Z.; Kang, Q.; Zhang Y. Nano Res.   2022,   15, 6551. doi: 10.1007/s12274-022-4312-8
												 doi: 10.1007/s12274-022-4312-8
											
										
				Li, F.; Jiang, J.; Wang, J.; Zou, J.; Sun, W.; Wang, H.; Xiang, K.; Wu, P.; Hsu, J. -P. Nano Res.   2023,   16, 127. doi: 10.1007/s12274-022-4799-z
												 doi: 10.1007/s12274-022-4799-z
											
										
				Jiang, J.; Li, F.; Zou, J.; Liu, S.; Wang, J.; Zou, Y.; Xiang, K.; Zhang, H.; Zhu, G.; Zhang, Y.; et al. Sci. China Mater.   2022,   65, 2895. doi: 10.1007/s40843-022-2186-0
												 doi: 10.1007/s40843-022-2186-0
											
										
				Li, N.; Peng, J.; Ong, W. -J.; Ma, T.; Arramel, Zhang, P.; Jiang, J.; Yuan, X.; Zhang, C. Matter 2021,   4, 377. doi: 10.1016/j.matt.2020.10.024
												 doi: 10.1016/j.matt.2020.10.024
											
										
				Zeng, Z.; Chen, X.; Weng, K.; Wu, Y.; Zhang, P.; Jiang, J.; Li, N. npj Comput. Mater.   2021,   7, 80. doi: 10.1038/s41524-021-00550-4
												 doi: 10.1038/s41524-021-00550-4
											
										
				Ding, H.; Li, Y.; Li, M.; Chen, K.; Liang, K.; Chen, G.; Lu, J.; Palisaitis, J.; Persson, P. O. Å.; Eklund, P.; et al. Science 2023,   379, 1130. doi: 10.1126/science.add5901
												 doi: 10.1126/science.add5901
											
										
				Wang, D.; Zhou, C.; Filatov, A. S.; Cho, W.; Lagunas, F.; Wang, M.; Vaikuntanathan, S.; Liu, C.; Klie, R. F.; Talapin, D. V. Science 2023,   379, 1242. doi: 10.1126/science.add9204
												 doi: 10.1126/science.add9204
											
										
				Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. ACS Energy Lett.   2016,   1, 589. doi: 10.1021/acsenergylett.6b00247
												 doi: 10.1021/acsenergylett.6b00247
											
										
				Shinde, P. V.; Mane, P.; Chakraborty, B.; Rout, C. S. J. Colloid Interface Sci.   2021,   602, 232. doi: 10.1016/j.jcis.2021.06.007
												 doi: 10.1016/j.jcis.2021.06.007
											
										
				Li, S.; Que, X.; Chen, X.; Lin, T.; Sheng, L.; Peng, J.; Li, J.; Zhai, M. ACS Appl. Energy Mater.   2020, 3, 10882. doi: 10.1021/acsaem.0c01900
												 doi: 10.1021/acsaem.0c01900
											
										
				Zou, J.; Wu, J.; Wang, Y.; Deng, F.; Jiang, J.; Zhang, Y.; Liu, S.; Li, N.; Zhang, H.; Yu, J.; et al. Chem. Soc. Rev.   2022,   51, 2972. doi: 10.1039/D0CS01487G
												 doi: 10.1039/D0CS01487G
											
										
				Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; She, Z. W. ACS Nano 2020,   14, 16140. doi: 10.1021/acsnano.0c08671
												 doi: 10.1021/acsnano.0c08671
											
										
				Huang, H.; Xue, Y.; Xie, Y.; Yang, Y.; Yang, L.; He, H.; Jiang, Q.; Ying, G. Inorg. Chem. Front.   2022,   9, 1171. doi: 10.1039/D1QI01528A
												 doi: 10.1039/D1QI01528A
											
										
				Li, G.; Sun, T.; Niu, H. -J.; Yan, Y.; Liu, T.; Jiang, S.; Yang, Q.; Zhou, W.; Guo, L. Adv. Funct. Mater.   2023,   33, 2212514. doi: 10.1002/adfm.202212514
												 doi: 10.1002/adfm.202212514
											
										
				Gong, S.; Liu, H.; Zhao, F.; Zhang, Y.; Xu, H.; Li, M.; Qi, J.; Wang, H.; Li, C.; Peng, W.; et al ACS Nano 2023,   17, 4843. doi: 10.1021/acsnano.2c11430
												 doi: 10.1021/acsnano.2c11430
											
										
				Huang, K.; Lv, C.; Li, C.; Bai, H.; Meng, X. J. Colloid Interface Sci.   2023,   636, 21. doi: 10.1016/j.jcis.2022.12.169
												 doi: 10.1016/j.jcis.2022.12.169
											
										
				Guo, Y.; Du, Z.; Cao, Z.; Li, B.; Yang, S. Small Methods 2023,   7, 2201559. doi: 10.1002/smtd.202201559
												 doi: 10.1002/smtd.202201559
											
										
				Zheng, X.; Yuan, M.; Huang, X.; Li, H.; Sun, G. Chin. Chem. Lett.   2023,   34, 107152. doi: 10.1016/j.cclet.2022.01.045
												 doi: 10.1016/j.cclet.2022.01.045
											
										
				Zhao, J.; Luo, S.; Chen, Y.; Zhu, R.; Liang, J.; Wang, F.; Fu, X.; Wu, C. ChemistrySelect 2022,   7, e202200254. doi: 10.1002/slct.202200254
												 doi: 10.1002/slct.202200254
											
										
				Kresse, G.; Furthmüller, J. Comput. Mater. Sci.   1996,   6, 15. doi: 10.1016/0927-0256(96)00008-0
												 doi: 10.1016/0927-0256(96)00008-0
											
										
				Kresse, G.; Furthmüller, J. Phys. Rev. B 1996,   54, 11169. doi: 10.1103/PhysRevB.54.11169
												 doi: 10.1103/PhysRevB.54.11169
											
										
				Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett.   1996,   77, 3865. doi: 10.1103/PhysRevLett.77.3865
												 doi: 10.1103/PhysRevLett.77.3865
											
										
				Kresse, G.; Joubert, D. Phys. Rev. B 1999,   59, 1758. doi: 10.1103/PhysRevB.59.1758
												 doi: 10.1103/PhysRevB.59.1758
											
										
				Blöchl, P. E. Phys. Rev. B 1994,   50, 17953. doi: 10.1103/PhysRevB.50.17953
												 doi: 10.1103/PhysRevB.50.17953
											
										
				Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys.   2010,   132, 154104. doi: 10.1063/1.3382344
												 doi: 10.1063/1.3382344
											
										
				Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004,   108, 17886. doi: 10.1021/jp047349j
												 doi: 10.1021/jp047349j
											
										
				Luo, Z.; Ouyang, Y.; Zhang, H.; Xiao, M.; Ge, J.; Jiang, Z.; Wang, J.; Tang, D.; Cao, X.; Liu, C.; et al. Nat. Commun.   2018,   9, 2120. doi: 10.1038/s41467-018-04501-4
												 doi: 10.1038/s41467-018-04501-4
											
										
				Ma, X.; Tu, X.; Gao, F.; Xie, Y.; Huang, X.; Fernandez, C.; Qu, F.; Liu, G.; Lu, L.; Yu, Y. Sens. Actuators B: Chem.   2020,   309, 127815. doi: 10.1016/j.snb.2020.127815
												 doi: 10.1016/j.snb.2020.127815
											
										
				Yang, D.; Zhu, J.; Rui, X.; Tan, H.; Cai, R.; Hoster, H. E.; Yu, D. Y. W.; Hng, H. H.; Yan, Q. ACS Appl. Mater. Interfaces 2013,   5, 1093. doi: 10.1021/am302877q
												 doi: 10.1021/am302877q
											
										
				Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater.   2011,   23, 4248. doi: 10.1002/adma.201102306
												 doi: 10.1002/adma.201102306
											
										
				Du, C. -F.; Dinh, K. N.; Liang, Q.; Zheng, Y.; Luo, Y.; Zhang, J.; Yan, Q. Adv. Energy Mater.   2018,   8, 1801127. doi: 10.1002/aenm.201801127
												 doi: 10.1002/aenm.201801127
											
										
				Li, X.; Lv, X.; Sun, X.; Yang, C.; Zheng, Y. -Z.; Yang, L.; Li, S.; Tao, X. Appl. Catal. B: Environ.   2021,   284, 119708. doi: 10.1016/j.apcatb.2020.119708
												 doi: 10.1016/j.apcatb.2020.119708
											
										
				Han, M.; Yang, J.; Jiang, J.; Jing, R.; Ren, S.; Yan, C. J. Colloid. Interface Sci.   2021,   582, 1099. doi: 10.1016/j.jcis.2020.09.001
												 doi: 10.1016/j.jcis.2020.09.001
											
										
				Li, H.; Han, Y.; Zhao, H.; Qi, W.; Zhang, D.; Yu, Y.; Cai, W.; Li, S.; Lai, J.; Huang, B.; Wang, L. Nat. Commun.   2020,   11, 5437. doi: 10.1038/s41467-020-19277-9
												 doi: 10.1038/s41467-020-19277-9
											
										
				Peng, S.; Gong, F.; Li, L.; Yu, D.; Ji, D.; Zhang, T.; Hu, Z.; Zhang, Z.; Chou, S.; Du, Y.; Ramakrishna, S. J. Am. Chem. Soc.   2018,   140, 13644. doi: 10.1021/jacs.8b05134
												 doi: 10.1021/jacs.8b05134
											
										
						
						
						
	                Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Xinwan Zhao , Yue Cao , Minjun Lei , Zhiliang Jin , Tsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010
Ruyan Liu , Zhenrui Ni , Olim Ruzimuradov , Khayit Turayev , Tao Liu , Luo Yu , Panyong Kuang . Ni-induced modulation of Pt 5d-H 1s antibonding orbitals for enhanced hydrogen evolution and urea oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100159-0. doi: 10.1016/j.actphy.2025.100159
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Chengxiao Zhao , Zhaolin Li , Dongfang Wu , Xiaofei Yang . SBA-15 templated covalent triazine frameworks for boosted photocatalytic hydrogen production. Acta Physico-Chimica Sinica, 2026, 42(1): 100149-. doi: 10.1016/j.actphy.2025.100149
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Xinlin Zhang , Cheng Tang , Haitao Li , Jie Sun , Aijun Du , Minghong Wu , Haijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026