Citation: Yajin Li, Huimin Liu, Lan Ma, Jiaxiong Liu, Dehua He. Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230800. doi: 10.3866/PKU.WHXB202308005
-
Glycerol carbonylation with CO2 to synthesize glycerol carbonate is a promising approach for CO2 utilization. This reaction can be achieved through a thermally-driven catalytic pathway, but it is constrained by thermodynamic equilibrium. In the present study, we introduced solar energy into the reaction system to enable a photo-thermal synergistic catalytic reaction, breaking through the thermodynamic limitations. We developed a series of xAu/20Co3O4-ZnO catalysts, where Co3O4-ZnO, a composite of p-type semi-conductor Co3O4 and n-type semi-conductor ZnO, exhibited a heterojunction structure, and Au nanoparticles loaded onto the surface of Co3O4-ZnO revealed the localized surface plasmon resonance (LSPR). We investigated the ability of xAu/Co3O4-ZnO to absorb visible light absorption, the efficiency of separating photo-generated hole-electron pairs, and the impact of Au on the photothermal synergistic catalytic performances of Au/Co3O4-ZnO catalysts. We also examined the effects of Au doping on the bulk and surface properties, including crystalline structures, morphologies, specific surface areas and pore structures, the binding energies of the elements, surface acid-base sites, and reduction behaviors of xAu/Co3O4-ZnO. Our findings revealed that the heterojunction structure of Au/20Co3O4-ZnO facilitated visible light absorption and hole-electron pair separation. The size of Au nano-particles (NPs) loaded on Co3O4-ZnO surface was approximately 50 nm. The loading of Au altered the electron density of Co and Zn, improved the reducibility of Co species, and enhanced the presence of oxygen vacancies on Co3O4-ZnO surface. The LSPR of Au NPs further enhanced the visible light absorption capacity of Au/20Co3O4-ZnO, and improved the separating of photogenerated hole-electron pairs, thus enhancing the photothermal catalytic performances. With the optimizing conditions (150 °C, 5 MPa, 6 h, and 225 W visible light irradiation), the 2%Au/20Co3O4-ZnO catalyst demonstrated excellent performances, yielding a glycerol carbonate yield of 6.5%. This study is expected to serve as a reference for the rational design of improved photothermal catalysts for glycerol carbonylation with CO2 to produce glycerol carbonate in the future.
-
-
[1]
(1) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575 (7781), 87. doi: 10.1038/s41586-019-1681-6
-
[2]
(2) Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. G. Chem. Rev. 2020, 120 (15), 7984. doi: 10.1021/acs.chemrev.9b00723
-
[3]
(3) Huo, Y.; Zhang, J. F.; Dai, K.; Li, Q.; Lv, J. L.; Zhu, G. P.; Liang, C. H. Appl. Catal. B-Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073
-
[4]
(4) Chen, Y. L.; Wang, Z.; Zhong, Z. Q. Renew. Energy 2019, 131, 208. doi: 10.1016/j.renene.2018.07.047
-
[5]
(5) Bekun, F. V.; Alola, A. A.; Sarkodie, S. A. Sci. Total Environ. 2019, 657, 1023. doi: 10.1016/j.scitotenv.2018.12.104
-
[6]
(6) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166
-
[7]
(7) Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Chem. Soc. Rev. 2019, 48 (7), 1972. doi: 10.1039/c8cs00607e
-
[8]
(8) Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. J. Am. Chem. Soc. 2018, 140 (42), 13736. doi: 10.1021/jacs.8b07615
-
[9]
(9) Frei, M. S.; Capdevila-Cortada, M.; Garcia-Muelas, R.; Mondelli, C.; Lopez, N.; Stewart, J. A.; Ferre, D. C.; Perez-Ramirez, J. J. Catal. 2018, 361, 313. doi: 10.1016/j.jcat.2018.03.014
-
[10]
(10) Ma, Z. Q.; Porosoff, M. D. ACS Catal. 2019, 9 (3), 2639. doi: 10.1021/acscatal.8b05060
-
[11]
(11) Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. ACS Catal. 2018, 8 (6), 4873. doi: 10.1021/acscatal.7b04150
-
[12]
(12) Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Catal. Today 2016, 259, 438. doi: 10.1016/j.cattod.2015.04.012
-
[13]
(13) Liu, H. M.; Li, Y. J.; He, D. H. Energy Technol. 2020, 8 (8), 1900493. doi: 10.1002/ente.201900493
-
[14]
(14) Chang, T.; Tamura, M.; Nakagawa, Y.; Fukaya, N.; Choi, J. C.; Mishima, T.; Matsumoto, S.; Hamura, S.; Tomishige, K. Green Chem. 2020, 22 (21), 7321. doi: 10.1039/d0gc02717k
-
[15]
(15) Truong, C. C.; Mishra, D. K. J. CO2 Util. 2020, 41, 101252. doi: 10.1016/j.jcou.2020.101252
-
[16]
(16) Liu, J. X.; Li, Y. M.; Zhang, J.; He, D. H. Appl. Catal. A-Gen. 2016, 513, 9. doi: 10.1016/j.apcata.2015.12.030
-
[17]
(17) Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Catal. Sci. Technol. 2015, 5 (2), 989. doi: 10.1039/c4cy01237b
-
[18]
(18) Su, X. L. N.; Lin, W. W.; Cheng, H. Y.; Zhang, C.; Wang, Y.; Yu, X. J.; Wu, Z. J.; Zhao, F. Y. Green Chem. 2017, 19 (7), 1775. doi: 10.1039/c7gc00260b
-
[19]
(19) Zhang, J.; He, D. H. J. Colloid Interface Sci. 2014, 419, 31. doi: 10.1016/j.jcis.2013.12.049
-
[20]
(20) Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6 (1), 28. doi: 10.1038/nnano.2010.235
-
[21]
(21) Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. Adv. Mater. 2017, 29 (3), 1603730. doi: 10.1002/adma.201603730
-
[22]
(22) Reithofer, M. R.; Sum, Y. N.; Zhang, Y. G. Green Chem. 2013, 15 (8), 2086. doi: 10.1039/c3gc40790j
-
[23]
(23) Park, C. Y.; Huy, N. P.; Shin, E. W. Mol. Catal. 2017, 435, 99. doi: 10.1016/j.mcat.2017.03.025
-
[24]
(24) Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Catal. Sci. Technol. 2021, 11 (3), 1007. doi: 10.1039/d0cy01821j
-
[25]
(25) Liu, H. M.; Li, Y. J.; Ma, L.; Liu, J. X.; He, D. H. Fuel 2022, 315, 123294. doi: 10.1016/j.fuel.2022.123294
-
[26]
(26) Gelle, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Chem. Rev. 2020, 120 (2), 986. doi: 10.1021/acs.chemrev.9b00187
-
[27]
(27) Xu, Y.; Bai, P.; Zhou, X. D.; Akimov, Y.; Png, C. E.; Ang, L. K.; Knoll, W.; Wu, L. Adv. Opt. Mater. 2019, 7 (9), 1801433. doi: 10.1002/adom.201801433
-
[28]
(28) Kim, M.; Lee, J. H.; Nam, J. M. Adv. Sci. 2019, 6 (17), 1900471. doi: 10.1002/advs.201900471
-
[29]
(29) Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. J. Phys. Chem. Solids 2019, 127, 43. doi: 10.1016/j.jpcs.2018.12.005
-
[30]
(30) Reddy, K.; Reddy, A. J.; Krishna, R. H.; Nagabhushana, B. M.; Gopal, R. J. Asian Ceram. Soc. 2017, 5 (3), 350. doi: 10.1016/j.jascer.2017.06.008
-
[31]
(31) Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P. S.; Rouhi, J.; Baghayeri, M. J. Colloid Interface Sci. 2021, 592, 174. doi: 10.1016/j.jcis.2021.02.066
-
[32]
(32) Lukashuk, L.; Yigit, N.; Rameshan, R.; Kolar, E.; Teschner, D.; Havecker, M.; Knop-Gericke, A.; Schlogl, R.; Fottinger, K.; Rupprechter, G. ACS Catal. 2018, 8 (9), 8630. doi: 10.1021/acscatal.8b01237
-
[33]
(33) Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. J. Alloy. Compd. 2018, 741, 1130. doi: 10.1016/j.jallcom.2018.01.205
-
[34]
(34) Yang, Y. T.; Jiang, K. D.; Guo, J.; Li, J.; Peng, X. L.; Hong, B.; Wang, X. Q.; Ge, H. L. Chem. Eng. J. 2020, 381, 122596. doi: 10.1016/j.cej.2019.122596
-
[35]
(35) Wang, C.; Lin, G.; Zhao, J. L.; Wang, S. X.; Zhang, L. B.; Xi, Y. H.; Li, X. T.; Ying, Y. Chem. Eng. J. 2020, 380, 122511. doi: 10.1016/j.cej.2019.122511
-
[36]
(36) Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. ACS Appl. Mater. Interfaces 2012, 4 (8), 4024. doi: 10.1021/am300835p
-
[37]
(37) Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. J. Phys. Chem. C 2008, 112 (29), 10773. doi: 10.1021/jp8027275
-
[38]
(38) Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Appl. Catal. B-Environ. 2018, 223, 91. doi: 10.1016/j.apcatb.2017.06.071
-
[39]
(39) Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Chem. Eng. J. 2018, 334, 273. doi: 10.1016/j.cej.2017.10.040
-
[40]
(40) Gomes, J. R. B.; Ramalho, J. P. P.; Illas, F. Surf. Sci. 2010, 604 (3–4), 428. doi: 10.1016/j.susc.2009.12.009
-
[41]
(41) Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Angew. Chem. Int. Ed. 2015, 54 (39), 11545. doi: 10.1002/anie.201504933
-
[42]
(42) Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045
-
[43]
(43) Ashokkumar, M.; Muthukumaran, S. J. Magn. Magn. Mater. 2015, 374, 61. doi: 10.1016/j.jmmm.2014.08.023
-
[44]
(44) Kulal, N.; Vetrivel, R.; Krishna, N. S. G.; Shanbhag, G. V. ACS Appl. Nano Mater. 2021, 4 (5), 4388. doi: 10.1021/acsanm.0c03166
-
[45]
(45) Hu, C. C.; Chang, C. W.; Yoshida, M.; Wang, K. H. J. Mater. Chem. A 2021, 9 (11), 7048. doi: 10.1039/d0ta12413c
-
[46]
(46) Zhang, J.; He, D. H. J. Chem. Technol. Biotechnol. 2015, 90 (6), 1077. doi: 10.1002/jctb.4414
-
[47]
(47) Li, H. G.; Xin, C. L.; Jiao, X.; Zhao, N.; Xiao, F. K.; Li, L.; Wei, W.; Sun, Y. H. J. Mol. Catal. A-Chem. 2015, 402, 71. doi: 10.1016/j.molcata.2015.03.012
-
[48]
(48) Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Appl. Catal. B-Environ. 2019, 244, 836. doi: 10.1016/j.apcatb.2018.12.018
-
[49]
(49) Ingram, D. B.; Christopher, P.; Bauer, J. L.; Linic, S. ACS Catal. 2011, 1 (10), 1441. doi: 10.1021/cs200320h
-
[50]
(50) Aguado, E. R.; Cecilia, J. A.; Infantes-Molina, A.; Talon, A.; Storaro, L.; Moretti, E.; Rodriguez-Castellon, E. Dalton Trans. 2020, 49 (13), 3946. doi: 10.1039/c9dt04243a
-
[51]
(51) Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. Chem. Mater. 2010, 22 (11), 3519. doi: 10.1021/cm100703e
-
[52]
(52) Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22 (5), 3070. doi: 10.1021/ef800209a
-
[53]
(53) Reinoso, D. M.; Damiani, D. E.; Tonetto, G. M. Appl. Catal. B- Environ. 2014, 144, 308. doi: 10.1016/j.apcatb.2013.07.026
-
[54]
(54) Rakibuddin, M.; Ananthakrishnan, R. RSC Adv. 2015, 5 (83), 68117. doi: 10.1039/c5ra07799k
-
[1]
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[3]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[4]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[5]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[6]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[9]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[10]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[11]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[12]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[13]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[16]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[17]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[18]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[19]
Jinghua Wang , Yanxin Yu , Yanbiao Ren , Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057
-
[20]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(537)
- HTML views(30)