Citation:
Yajin Li, Huimin Liu, Lan Ma, Jiaxiong Liu, Dehua He. Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst[J]. Acta Physico-Chimica Sinica,
;2024, 40(9): 230800.
doi:
10.3866/PKU.WHXB202308005
-
Glycerol carbonylation with CO2 to synthesize glycerol carbonate is a promising approach for CO2 utilization. This reaction can be achieved through a thermally-driven catalytic pathway, but it is constrained by thermodynamic equilibrium. In the present study, we introduced solar energy into the reaction system to enable a photo-thermal synergistic catalytic reaction, breaking through the thermodynamic limitations. We developed a series of xAu/20Co3O4-ZnO catalysts, where Co3O4-ZnO, a composite of p-type semi-conductor Co3O4 and n-type semi-conductor ZnO, exhibited a heterojunction structure, and Au nanoparticles loaded onto the surface of Co3O4-ZnO revealed the localized surface plasmon resonance (LSPR). We investigated the ability of xAu/Co3O4-ZnO to absorb visible light absorption, the efficiency of separating photo-generated hole-electron pairs, and the impact of Au on the photothermal synergistic catalytic performances of Au/Co3O4-ZnO catalysts. We also examined the effects of Au doping on the bulk and surface properties, including crystalline structures, morphologies, specific surface areas and pore structures, the binding energies of the elements, surface acid-base sites, and reduction behaviors of xAu/Co3O4-ZnO. Our findings revealed that the heterojunction structure of Au/20Co3O4-ZnO facilitated visible light absorption and hole-electron pair separation. The size of Au nano-particles (NPs) loaded on Co3O4-ZnO surface was approximately 50 nm. The loading of Au altered the electron density of Co and Zn, improved the reducibility of Co species, and enhanced the presence of oxygen vacancies on Co3O4-ZnO surface. The LSPR of Au NPs further enhanced the visible light absorption capacity of Au/20Co3O4-ZnO, and improved the separating of photogenerated hole-electron pairs, thus enhancing the photothermal catalytic performances. With the optimizing conditions (150 °C, 5 MPa, 6 h, and 225 W visible light irradiation), the 2%Au/20Co3O4-ZnO catalyst demonstrated excellent performances, yielding a glycerol carbonate yield of 6.5%. This study is expected to serve as a reference for the rational design of improved photothermal catalysts for glycerol carbonylation with CO2 to produce glycerol carbonate in the future.
-
-
-
[1]
(1) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575 (7781), 87. doi: 10.1038/s41586-019-1681-6
-
[2]
(2) Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. G. Chem. Rev. 2020, 120 (15), 7984. doi: 10.1021/acs.chemrev.9b00723
-
[3]
(3) Huo, Y.; Zhang, J. F.; Dai, K.; Li, Q.; Lv, J. L.; Zhu, G. P.; Liang, C. H. Appl. Catal. B-Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073
-
[4]
(4) Chen, Y. L.; Wang, Z.; Zhong, Z. Q. Renew. Energy 2019, 131, 208. doi: 10.1016/j.renene.2018.07.047
-
[5]
(5) Bekun, F. V.; Alola, A. A.; Sarkodie, S. A. Sci. Total Environ. 2019, 657, 1023. doi: 10.1016/j.scitotenv.2018.12.104
-
[6]
(6) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166
-
[7]
(7) Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Chem. Soc. Rev. 2019, 48 (7), 1972. doi: 10.1039/c8cs00607e
-
[8]
(8) Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. J. Am. Chem. Soc. 2018, 140 (42), 13736. doi: 10.1021/jacs.8b07615
-
[9]
(9) Frei, M. S.; Capdevila-Cortada, M.; Garcia-Muelas, R.; Mondelli, C.; Lopez, N.; Stewart, J. A.; Ferre, D. C.; Perez-Ramirez, J. J. Catal. 2018, 361, 313. doi: 10.1016/j.jcat.2018.03.014
-
[10]
(10) Ma, Z. Q.; Porosoff, M. D. ACS Catal. 2019, 9 (3), 2639. doi: 10.1021/acscatal.8b05060
-
[11]
(11) Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. ACS Catal. 2018, 8 (6), 4873. doi: 10.1021/acscatal.7b04150
-
[12]
(12) Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Catal. Today 2016, 259, 438. doi: 10.1016/j.cattod.2015.04.012
-
[13]
(13) Liu, H. M.; Li, Y. J.; He, D. H. Energy Technol. 2020, 8 (8), 1900493. doi: 10.1002/ente.201900493
-
[14]
(14) Chang, T.; Tamura, M.; Nakagawa, Y.; Fukaya, N.; Choi, J. C.; Mishima, T.; Matsumoto, S.; Hamura, S.; Tomishige, K. Green Chem. 2020, 22 (21), 7321. doi: 10.1039/d0gc02717k
-
[15]
(15) Truong, C. C.; Mishra, D. K. J. CO2 Util. 2020, 41, 101252. doi: 10.1016/j.jcou.2020.101252
-
[16]
(16) Liu, J. X.; Li, Y. M.; Zhang, J.; He, D. H. Appl. Catal. A-Gen. 2016, 513, 9. doi: 10.1016/j.apcata.2015.12.030
-
[17]
(17) Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Catal. Sci. Technol. 2015, 5 (2), 989. doi: 10.1039/c4cy01237b
-
[18]
(18) Su, X. L. N.; Lin, W. W.; Cheng, H. Y.; Zhang, C.; Wang, Y.; Yu, X. J.; Wu, Z. J.; Zhao, F. Y. Green Chem. 2017, 19 (7), 1775. doi: 10.1039/c7gc00260b
-
[19]
(19) Zhang, J.; He, D. H. J. Colloid Interface Sci. 2014, 419, 31. doi: 10.1016/j.jcis.2013.12.049
-
[20]
(20) Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6 (1), 28. doi: 10.1038/nnano.2010.235
-
[21]
(21) Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. Adv. Mater. 2017, 29 (3), 1603730. doi: 10.1002/adma.201603730
-
[22]
(22) Reithofer, M. R.; Sum, Y. N.; Zhang, Y. G. Green Chem. 2013, 15 (8), 2086. doi: 10.1039/c3gc40790j
-
[23]
(23) Park, C. Y.; Huy, N. P.; Shin, E. W. Mol. Catal. 2017, 435, 99. doi: 10.1016/j.mcat.2017.03.025
-
[24]
(24) Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Catal. Sci. Technol. 2021, 11 (3), 1007. doi: 10.1039/d0cy01821j
-
[25]
(25) Liu, H. M.; Li, Y. J.; Ma, L.; Liu, J. X.; He, D. H. Fuel 2022, 315, 123294. doi: 10.1016/j.fuel.2022.123294
-
[26]
(26) Gelle, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Chem. Rev. 2020, 120 (2), 986. doi: 10.1021/acs.chemrev.9b00187
-
[27]
(27) Xu, Y.; Bai, P.; Zhou, X. D.; Akimov, Y.; Png, C. E.; Ang, L. K.; Knoll, W.; Wu, L. Adv. Opt. Mater. 2019, 7 (9), 1801433. doi: 10.1002/adom.201801433
-
[28]
(28) Kim, M.; Lee, J. H.; Nam, J. M. Adv. Sci. 2019, 6 (17), 1900471. doi: 10.1002/advs.201900471
-
[29]
(29) Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. J. Phys. Chem. Solids 2019, 127, 43. doi: 10.1016/j.jpcs.2018.12.005
-
[30]
(30) Reddy, K.; Reddy, A. J.; Krishna, R. H.; Nagabhushana, B. M.; Gopal, R. J. Asian Ceram. Soc. 2017, 5 (3), 350. doi: 10.1016/j.jascer.2017.06.008
-
[31]
(31) Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P. S.; Rouhi, J.; Baghayeri, M. J. Colloid Interface Sci. 2021, 592, 174. doi: 10.1016/j.jcis.2021.02.066
-
[32]
(32) Lukashuk, L.; Yigit, N.; Rameshan, R.; Kolar, E.; Teschner, D.; Havecker, M.; Knop-Gericke, A.; Schlogl, R.; Fottinger, K.; Rupprechter, G. ACS Catal. 2018, 8 (9), 8630. doi: 10.1021/acscatal.8b01237
-
[33]
(33) Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. J. Alloy. Compd. 2018, 741, 1130. doi: 10.1016/j.jallcom.2018.01.205
-
[34]
(34) Yang, Y. T.; Jiang, K. D.; Guo, J.; Li, J.; Peng, X. L.; Hong, B.; Wang, X. Q.; Ge, H. L. Chem. Eng. J. 2020, 381, 122596. doi: 10.1016/j.cej.2019.122596
-
[35]
(35) Wang, C.; Lin, G.; Zhao, J. L.; Wang, S. X.; Zhang, L. B.; Xi, Y. H.; Li, X. T.; Ying, Y. Chem. Eng. J. 2020, 380, 122511. doi: 10.1016/j.cej.2019.122511
-
[36]
(36) Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. ACS Appl. Mater. Interfaces 2012, 4 (8), 4024. doi: 10.1021/am300835p
-
[37]
(37) Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. J. Phys. Chem. C 2008, 112 (29), 10773. doi: 10.1021/jp8027275
-
[38]
(38) Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Appl. Catal. B-Environ. 2018, 223, 91. doi: 10.1016/j.apcatb.2017.06.071
-
[39]
(39) Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Chem. Eng. J. 2018, 334, 273. doi: 10.1016/j.cej.2017.10.040
-
[40]
(40) Gomes, J. R. B.; Ramalho, J. P. P.; Illas, F. Surf. Sci. 2010, 604 (3–4), 428. doi: 10.1016/j.susc.2009.12.009
-
[41]
(41) Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Angew. Chem. Int. Ed. 2015, 54 (39), 11545. doi: 10.1002/anie.201504933
-
[42]
(42) Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045
-
[43]
(43) Ashokkumar, M.; Muthukumaran, S. J. Magn. Magn. Mater. 2015, 374, 61. doi: 10.1016/j.jmmm.2014.08.023
-
[44]
(44) Kulal, N.; Vetrivel, R.; Krishna, N. S. G.; Shanbhag, G. V. ACS Appl. Nano Mater. 2021, 4 (5), 4388. doi: 10.1021/acsanm.0c03166
-
[45]
(45) Hu, C. C.; Chang, C. W.; Yoshida, M.; Wang, K. H. J. Mater. Chem. A 2021, 9 (11), 7048. doi: 10.1039/d0ta12413c
-
[46]
(46) Zhang, J.; He, D. H. J. Chem. Technol. Biotechnol. 2015, 90 (6), 1077. doi: 10.1002/jctb.4414
-
[47]
(47) Li, H. G.; Xin, C. L.; Jiao, X.; Zhao, N.; Xiao, F. K.; Li, L.; Wei, W.; Sun, Y. H. J. Mol. Catal. A-Chem. 2015, 402, 71. doi: 10.1016/j.molcata.2015.03.012
-
[48]
(48) Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Appl. Catal. B-Environ. 2019, 244, 836. doi: 10.1016/j.apcatb.2018.12.018
-
[49]
(49) Ingram, D. B.; Christopher, P.; Bauer, J. L.; Linic, S. ACS Catal. 2011, 1 (10), 1441. doi: 10.1021/cs200320h
-
[50]
(50) Aguado, E. R.; Cecilia, J. A.; Infantes-Molina, A.; Talon, A.; Storaro, L.; Moretti, E.; Rodriguez-Castellon, E. Dalton Trans. 2020, 49 (13), 3946. doi: 10.1039/c9dt04243a
-
[51]
(51) Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. Chem. Mater. 2010, 22 (11), 3519. doi: 10.1021/cm100703e
-
[52]
(52) Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22 (5), 3070. doi: 10.1021/ef800209a
-
[53]
(53) Reinoso, D. M.; Damiani, D. E.; Tonetto, G. M. Appl. Catal. B- Environ. 2014, 144, 308. doi: 10.1016/j.apcatb.2013.07.026
-
[54]
(54) Rakibuddin, M.; Ananthakrishnan, R. RSC Adv. 2015, 5 (83), 68117. doi: 10.1039/c5ra07799k
-
[1]
-
-
-
[1]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[2]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[3]
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
-
[4]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[5]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[6]
Yifeng TAN , Ping CAO , Kai MA , Jingtong LI , Yuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147
-
[7]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[8]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[11]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[12]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[13]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[14]
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
-
[15]
Aili Feng , Xin Lu , Peng Liu , Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072
-
[16]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[17]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[18]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[19]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[20]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(737)
- HTML views(71)