Citation: Yajin Li,  Huimin Liu,  Lan Ma,  Jiaxiong Liu,  Dehua He. Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230800. doi: 10.3866/PKU.WHXB202308005 shu

Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst

  • Corresponding author: Huimin Liu,  Dehua He, 
  • Received Date: 3 August 2023
    Revised Date: 6 October 2023
    Accepted Date: 10 October 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (21573120) and Education Department of Liaoning Province (JQL202015401).

  • Glycerol carbonylation with CO2 to synthesize glycerol carbonate is a promising approach for CO2 utilization. This reaction can be achieved through a thermally-driven catalytic pathway, but it is constrained by thermodynamic equilibrium. In the present study, we introduced solar energy into the reaction system to enable a photo-thermal synergistic catalytic reaction, breaking through the thermodynamic limitations. We developed a series of xAu/20Co3O4-ZnO catalysts, where Co3O4-ZnO, a composite of p-type semi-conductor Co3O4 and n-type semi-conductor ZnO, exhibited a heterojunction structure, and Au nanoparticles loaded onto the surface of Co3O4-ZnO revealed the localized surface plasmon resonance (LSPR). We investigated the ability of xAu/Co3O4-ZnO to absorb visible light absorption, the efficiency of separating photo-generated hole-electron pairs, and the impact of Au on the photothermal synergistic catalytic performances of Au/Co3O4-ZnO catalysts. We also examined the effects of Au doping on the bulk and surface properties, including crystalline structures, morphologies, specific surface areas and pore structures, the binding energies of the elements, surface acid-base sites, and reduction behaviors of xAu/Co3O4-ZnO. Our findings revealed that the heterojunction structure of Au/20Co3O4-ZnO facilitated visible light absorption and hole-electron pair separation. The size of Au nano-particles (NPs) loaded on Co3O4-ZnO surface was approximately 50 nm. The loading of Au altered the electron density of Co and Zn, improved the reducibility of Co species, and enhanced the presence of oxygen vacancies on Co3O4-ZnO surface. The LSPR of Au NPs further enhanced the visible light absorption capacity of Au/20Co3O4-ZnO, and improved the separating of photogenerated hole-electron pairs, thus enhancing the photothermal catalytic performances. With the optimizing conditions (150 °C, 5 MPa, 6 h, and 225 W visible light irradiation), the 2%Au/20Co3O4-ZnO catalyst demonstrated excellent performances, yielding a glycerol carbonate yield of 6.5%. This study is expected to serve as a reference for the rational design of improved photothermal catalysts for glycerol carbonylation with CO2 to produce glycerol carbonate in the future.
  • 加载中
    1. [1]

      (1) Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E. A.; Fuss, S.; Mac Dowell, N.; Minx, J. C.; Smith, P.; Williams, C. K. Nature 2019, 575 (7781), 87. doi: 10.1038/s41586-019-1681-6

    2. [2]

      (2) Jiang, X.; Nie, X. W.; Guo, X. W.; Song, C. S.; Chen, J. G. G. Chem. Rev. 2020, 120 (15), 7984. doi: 10.1021/acs.chemrev.9b00723

    3. [3]

      (3) Huo, Y.; Zhang, J. F.; Dai, K.; Li, Q.; Lv, J. L.; Zhu, G. P.; Liang, C. H. Appl. Catal. B-Environ. 2019, 241, 528. doi: 10.1016/j.apcatb.2018.09.073

    4. [4]

      (4) Chen, Y. L.; Wang, Z.; Zhong, Z. Q. Renew. Energy 2019, 131, 208. doi: 10.1016/j.renene.2018.07.047

    5. [5]

      (5) Bekun, F. V.; Alola, A. A.; Sarkodie, S. A. Sci. Total Environ. 2019, 657, 1023. doi: 10.1016/j.scitotenv.2018.12.104

    6. [6]

      (6) Kibria, M. G.; Edwards, J. P.; Gabardo, C. M.; Dinh, C. T.; Seifitokaldani, A.; Sinton, D.; Sargent, E. H. Adv. Mater. 2019, 31, 1807166. doi: 10.1002/adma.201807166

    7. [7]

      (7) Zhao, Y. F.; Waterhouse, G. I. N.; Chen, G. B.; Xiong, X. Y.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Chem. Soc. Rev. 2019, 48 (7), 1972. doi: 10.1039/c8cs00607e

    8. [8]

      (8) Aitbekova, A.; Wu, L. H.; Wrasman, C. J.; Boubnov, A.; Hoffman, A. S.; Goodman, E. D.; Bare, S. R.; Cargnello, M. J. Am. Chem. Soc. 2018, 140 (42), 13736. doi: 10.1021/jacs.8b07615

    9. [9]

      (9) Frei, M. S.; Capdevila-Cortada, M.; Garcia-Muelas, R.; Mondelli, C.; Lopez, N.; Stewart, J. A.; Ferre, D. C.; Perez-Ramirez, J. J. Catal. 2018, 361, 313. doi: 10.1016/j.jcat.2018.03.014

    10. [10]

      (10) Ma, Z. Q.; Porosoff, M. D. ACS Catal. 2019, 9 (3), 2639. doi: 10.1021/acscatal.8b05060

    11. [11]

      (11) Nie, X. W.; Jiang, X.; Wang, H. Z.; Luo, W. J.; Janik, M. J.; Chen, Y. G.; Guo, X. W.; Song, C. S. ACS Catal. 2018, 8 (6), 4873. doi: 10.1021/acscatal.7b04150

    12. [12]

      (12) Yang, W. W.; Liu, H. M.; Li, Y. M.; Zhang, J.; Wu, H.; He, D. H. Catal. Today 2016, 259, 438. doi: 10.1016/j.cattod.2015.04.012

    13. [13]

      (13) Liu, H. M.; Li, Y. J.; He, D. H. Energy Technol. 2020, 8 (8), 1900493. doi: 10.1002/ente.201900493

    14. [14]

      (14) Chang, T.; Tamura, M.; Nakagawa, Y.; Fukaya, N.; Choi, J. C.; Mishima, T.; Matsumoto, S.; Hamura, S.; Tomishige, K. Green Chem. 2020, 22 (21), 7321. doi: 10.1039/d0gc02717k

    15. [15]

      (15) Truong, C. C.; Mishra, D. K. J. CO2 Util. 2020, 41, 101252. doi: 10.1016/j.jcou.2020.101252

    16. [16]

      (16) Liu, J. X.; Li, Y. M.; Zhang, J.; He, D. H. Appl. Catal. A-Gen. 2016, 513, 9. doi: 10.1016/j.apcata.2015.12.030

    17. [17]

      (17) Li, H. G.; Jiao, X.; Li, L.; Zhao, N.; Xiao, F. K.; Wei, W.; Sun, Y. H.; Zhang, B. S. Catal. Sci. Technol. 2015, 5 (2), 989. doi: 10.1039/c4cy01237b

    18. [18]

      (18) Su, X. L. N.; Lin, W. W.; Cheng, H. Y.; Zhang, C.; Wang, Y.; Yu, X. J.; Wu, Z. J.; Zhao, F. Y. Green Chem. 2017, 19 (7), 1775. doi: 10.1039/c7gc00260b

    19. [19]

      (19) Zhang, J.; He, D. H. J. Colloid Interface Sci. 2014, 419, 31. doi: 10.1016/j.jcis.2013.12.049

    20. [20]

      (20) Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Nat. Nanotechnol. 2011, 6 (1), 28. doi: 10.1038/nnano.2010.235

    21. [21]

      (21) Wang, J.; Li, Y. Y.; Deng, L.; Wei, N. N.; Weng, Y. K.; Dong, S.; Qi, D. P.; Qiu, J.; Chen, X. D.; Wu, T. Adv. Mater. 2017, 29 (3), 1603730. doi: 10.1002/adma.201603730

    22. [22]

      (22) Reithofer, M. R.; Sum, Y. N.; Zhang, Y. G. Green Chem. 2013, 15 (8), 2086. doi: 10.1039/c3gc40790j

    23. [23]

      (23) Park, C. Y.; Huy, N. P.; Shin, E. W. Mol. Catal. 2017, 435, 99. doi: 10.1016/j.mcat.2017.03.025

    24. [24]

      (24) Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Catal. Sci. Technol. 2021, 11 (3), 1007. doi: 10.1039/d0cy01821j

    25. [25]

      (25) Liu, H. M.; Li, Y. J.; Ma, L.; Liu, J. X.; He, D. H. Fuel 2022, 315, 123294. doi: 10.1016/j.fuel.2022.123294

    26. [26]

      (26) Gelle, A.; Jin, T.; de la Garza, L.; Price, G. D.; Besteiro, L. V.; Moores, A. Chem. Rev. 2020, 120 (2), 986. doi: 10.1021/acs.chemrev.9b00187

    27. [27]

      (27) Xu, Y.; Bai, P.; Zhou, X. D.; Akimov, Y.; Png, C. E.; Ang, L. K.; Knoll, W.; Wu, L. Adv. Opt. Mater. 2019, 7 (9), 1801433. doi: 10.1002/adom.201801433

    28. [28]

      (28) Kim, M.; Lee, J. H.; Nam, J. M. Adv. Sci. 2019, 6 (17), 1900471. doi: 10.1002/advs.201900471

    29. [29]

      (29) Madhumitha, G.; Fowsiya, J.; Gupta, N.; Kumar, A.; Singh, M. J. Phys. Chem. Solids 2019, 127, 43. doi: 10.1016/j.jpcs.2018.12.005

    30. [30]

      (30) Reddy, K.; Reddy, A. J.; Krishna, R. H.; Nagabhushana, B. M.; Gopal, R. J. Asian Ceram. Soc. 2017, 5 (3), 350. doi: 10.1016/j.jascer.2017.06.008

    31. [31]

      (31) Karimi-Maleh, H.; Yola, M. L.; Atar, N.; Orooji, Y.; Karimi, F.; Kumar, P. S.; Rouhi, J.; Baghayeri, M. J. Colloid Interface Sci. 2021, 592, 174. doi: 10.1016/j.jcis.2021.02.066

    32. [32]

      (32) Lukashuk, L.; Yigit, N.; Rameshan, R.; Kolar, E.; Teschner, D.; Havecker, M.; Knop-Gericke, A.; Schlogl, R.; Fottinger, K.; Rupprechter, G. ACS Catal. 2018, 8 (9), 8630. doi: 10.1021/acscatal.8b01237

    33. [33]

      (33) Aparna, T. K.; Sivasubramanian, R.; Dar, M. A. J. Alloy. Compd. 2018, 741, 1130. doi: 10.1016/j.jallcom.2018.01.205

    34. [34]

      (34) Yang, Y. T.; Jiang, K. D.; Guo, J.; Li, J.; Peng, X. L.; Hong, B.; Wang, X. Q.; Ge, H. L. Chem. Eng. J. 2020, 381, 122596. doi: 10.1016/j.cej.2019.122596

    35. [35]

      (35) Wang, C.; Lin, G.; Zhao, J. L.; Wang, S. X.; Zhang, L. B.; Xi, Y. H.; Li, X. T.; Ying, Y. Chem. Eng. J. 2020, 380, 122511. doi: 10.1016/j.cej.2019.122511

    36. [36]

      (36) Wang, J. P.; Wang, Z. Y.; Huang, B. B.; Ma, Y. D.; Liu, Y. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y. ACS Appl. Mater. Interfaces 2012, 4 (8), 4024. doi: 10.1021/am300835p

    37. [37]

      (37) Zheng, Y. H.; Chen, C. Q.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M.; Zhu, J. F. J. Phys. Chem. C 2008, 112 (29), 10773. doi: 10.1021/jp8027275

    38. [38]

      (38) Lin, X. T.; Li, S. J.; He, H.; Wu, Z.; Wu, J. L.; Chen, L. M.; Ye, D. Q.; Fu, M. L. Appl. Catal. B-Environ. 2018, 223, 91. doi: 10.1016/j.apcatb.2017.06.071

    39. [39]

      (39) Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Chem. Eng. J. 2018, 334, 273. doi: 10.1016/j.cej.2017.10.040

    40. [40]

      (40) Gomes, J. R. B.; Ramalho, J. P. P.; Illas, F. Surf. Sci. 2010, 604 (3–4), 428. doi: 10.1016/j.susc.2009.12.009

    41. [41]

      (41) Liu, H. M.; Meng, X. G.; Dao, T. D.; Zhang, H. B.; Li, P.; Chang, K.; Wang, T.; Li, M.; Nagao, T.; Ye, J. H. Angew. Chem. Int. Ed. 2015, 54 (39), 11545. doi: 10.1002/anie.201504933

    42. [42]

      (42) Liu, H. M.; Li, M.; Dao, T. D.; Liu, Y. Y.; Zhou, W.; Liu, L. Q.; Meng, X. G.; Nagao, T.; Ye, J. H. Nano Energy 2016, 26, 398. doi: 10.1016/j.nanoen.2016.05.045

    43. [43]

      (43) Ashokkumar, M.; Muthukumaran, S. J. Magn. Magn. Mater. 2015, 374, 61. doi: 10.1016/j.jmmm.2014.08.023

    44. [44]

      (44) Kulal, N.; Vetrivel, R.; Krishna, N. S. G.; Shanbhag, G. V. ACS Appl. Nano Mater. 2021, 4 (5), 4388. doi: 10.1021/acsanm.0c03166

    45. [45]

      (45) Hu, C. C.; Chang, C. W.; Yoshida, M.; Wang, K. H. J. Mater. Chem. A 2021, 9 (11), 7048. doi: 10.1039/d0ta12413c

    46. [46]

      (46) Zhang, J.; He, D. H. J. Chem. Technol. Biotechnol. 2015, 90 (6), 1077. doi: 10.1002/jctb.4414

    47. [47]

      (47) Li, H. G.; Xin, C. L.; Jiao, X.; Zhao, N.; Xiao, F. K.; Li, L.; Wei, W.; Sun, Y. H. J. Mol. Catal. A-Chem. 2015, 402, 71. doi: 10.1016/j.molcata.2015.03.012

    48. [48]

      (48) Liu, J. X.; Li, Y. J.; Liu, H. M.; He, D. H. Appl. Catal. B-Environ. 2019, 244, 836. doi: 10.1016/j.apcatb.2018.12.018

    49. [49]

      (49) Ingram, D. B.; Christopher, P.; Bauer, J. L.; Linic, S. ACS Catal. 2011, 1 (10), 1441. doi: 10.1021/cs200320h

    50. [50]

      (50) Aguado, E. R.; Cecilia, J. A.; Infantes-Molina, A.; Talon, A.; Storaro, L.; Moretti, E.; Rodriguez-Castellon, E. Dalton Trans. 2020, 49 (13), 3946. doi: 10.1039/c9dt04243a

    51. [51]

      (51) Du, H.; Williams, C. T.; Ebner, A. D.; Ritter, J. A. Chem. Mater. 2010, 22 (11), 3519. doi: 10.1021/cm100703e

    52. [52]

      (52) Stevens, R. W.; Siriwardane, R. V.; Logan, J. Energy Fuels 2008, 22 (5), 3070. doi: 10.1021/ef800209a

    53. [53]

      (53) Reinoso, D. M.; Damiani, D. E.; Tonetto, G. M. Appl. Catal. B- Environ. 2014, 144, 308. doi: 10.1016/j.apcatb.2013.07.026

    54. [54]

      (54) Rakibuddin, M.; Ananthakrishnan, R. RSC Adv. 2015, 5 (83), 68117. doi: 10.1039/c5ra07799k

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    9. [9]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    19. [19]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(0)
  • Abstract views(537)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return