Citation: Chunling Qin,  Shuang Chen,  Hassanien Gomaa,  Mohamed A. Shenashen,  Sherif A. El-Safty,  Qian Liu,  Cuihua An,  Xijun Liu,  Qibo Deng,  Ning Hu. Regulating HER and OER Performances of 2D Materials by the External Physical Fields[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230705. doi: 10.3866/PKU.WHXB202307059 shu

Regulating HER and OER Performances of 2D Materials by the External Physical Fields

  • Corresponding author: Cuihua An,  Xijun Liu,  Qibo Deng, 
  • Received Date: 30 July 2023
    Revised Date: 23 September 2023
    Accepted Date: 27 September 2023

    Fund Project: This work was supported by the National Natural Science Foundation of China (12172118, 22075211), Research Program of Local Science and Technology Development under the Guidance of Central (216Z4402G), Science and Technology Project of Hebei Education Department (BJK2022015), “Yuanguang” Scholar Program of the Hebei University of Technology.

  • Hydrogen fuel has long been considered a promising and practical alternative to conventional fossil fuels for shaping the future of our energy landscape. The electrocatalytic water-splitting technique, a sustainable and eco-friendly technology, provides a viable solution for efficiently and abundantly producing high-purity hydrogen on a large scale. However, practical applications of this technology require continuous improvement in the reaction kinetics for the hydrogen evolution reaction (HER) at the anode and the oxygen evolution reaction (OER) at the cathode. Additionally, ongoing optimization of the catalyst’s catalytic activity and structural stability is crucial for the practical implementation of this technology. The selection of suitable catalysts is of paramount importance in water splitting. As a result, two-dimensional (2D) nanomaterials have become a focal point in water electrolysis due to their unique physicochemical properties and abundant active sites. The atomic thinness of 2D materials makes their electronic structure easily adjustable, allowing for the precise control of electrocatalytic performance through morphological modifications, defect engineering, phase transitions, cocatalyst deposition, and element doping. However, the complex system structure design and the potentially mutual interference of various chemical components could hinder further improvements in hydrogen evolution performance. Fortunately, the distinctive physicochemical characteristics of 2D materials can synergize with external physical fields, leading to enhanced electrocatalytic performance through distinct effects. For example, magnetic fields, electric fields, and light fields can induce thermal effects, effectively reducing charge transfer resistance and bubble coverage on the catalyst surface. Strain can regulate the d-band center, thus controlling adsorption energy. Moreover, the superposition of multiple physical fields and the multiple effects of a single physical field offer enormous potential for enhancing electrocatalytic performance. It is evident that the regulation of electrocatalytic performance through physical fields holds significant untapped potential. Consequently, the roles and mechanisms of external physical field assistance in HER and OER have garnered increasing attention. External fields such as electric fields, magnetic fields, strain, light, temperature, and ultrasound can be applied to synthesis and electrocatalysis. This paper first provides a summary of research on the synthesis of physical field-assisted electrolytic water catalysts. It then classifies studies on field-assisted HER and OER based on different mechanisms. Finally, it outlines the key challenges and prospects in this rapidly evolving research field.
  • 加载中
    1. [1]

      (1) Jiang, K. Z.; Kang, K. L.; Xu Z. B.; Zheng, S. J. Journal of Hebei University of Technology 2023, 52, 1. doi:10.14081/j.cnki.hgdxb.2023.04.001

    2. [2]

      (2) Li, X.; Li, Z. Q.; Liu, H. Y.; Lu, S. Y. Rare Metals 2023, 42, 1808. doi: 10.1007/s12598-022-02251-3

    3. [3]

      (3) Feng, J. X.; Zheng, D.; Yin, R. L.; Niu, X. X.; Xu, X. L.; Meng, S. B.; Ma, S. L.; Shi, W. H.; Wu, F. F.; Liu, W. X.; et al. Small Struct. 2023, 4 (7), 2200340. doi: 10.1002/sstr.202200340

    4. [4]

      (4) Chen, S. S.; Lian, K.; Liu, W. X.; Liu, Q.; Qi, G. C.; Luo, J.; Liu, X. J. Nano Res. 2023, 16, 9214. doi: 10.1007/s12274-023-5798-4

    5. [5]

      (5) Xu, Y. L.; Zhang, X. L.; Liu, Y. Y.; Wang, R. J.; Yang, Y. W.; Chen, J. F. Environ. Sci. Pollut. Res. 2023, 30, 11302. doi: 10.1007/s11356-022-24728-5

    6. [6]

      (6) Avani, A. V.; Anila, E. I. Int. J. Hydrog. Energy 2022, 47, 20475. doi: 10.1016/j.ijhydene.2022.04.252

    7. [7]

      (7) Cui, S. F.; Li, M.; Bo, X. J. Int. J. Hydrog. Energy 2020, 45, 21221. doi: 10.1016/j.ijhydene.2020.05.006

    8. [8]

      (8) Zhao, S.; Li, J. X.; An, C. H.; Lin, L. Y.; Deng, Q. B.; Hu, N. Acta Mech. Sin. 2024, 40, 423284. doi: 10.1007/s10409-023-423284-x

    9. [9]

      (9) Ding, J. Y.; Yang, H.; Zhang, S. S.; Liu, Q.; Cao, H. Q.; Luo, J.; Liu, X. J. Small 2022, 18 (52), 2204524. doi: 10.1002/smll.202204524

    10. [10]

      (10) Qin, Z. G.; Liu, W. X.; Que, W. B.; Feng, J. X.; Shi, W. H.; Wu, F. F.; Cao, X. H. ChemPhysMater 2023, 2, 185. doi: 10.1016/j.chphma.2022.11.001

    11. [11]

      (11) Ge, S. M.; Zhang, L. W.; Hou, J. R.; Liu, S.; Qin, Y. J.; Liu, Q.; Cai, X. B.; Sun, Z. Y.; Yang, M. S.; Luo, J.; et al. ACS Appl. Energy Mater. 2022, 5, 9487. doi: 10.1021/acsaem.2c01006

    12. [12]

      (12) Liu, W. X.; Feng, J. X.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, Y.; Luo, J.; Liu, X. J. Nano Res. 2022, 16, 2325. doi: 10.1007/s12274-022-4929-7

    13. [13]

      (13) Liu, W. X.; Niu, X. X.; Feng, J. X.; Yin, R. L.; Ma, S. L.; Que, W. B.; Dai, J. L.; Tang, J. W.; Wu, F. F.; Shi, W. H.; et al. ACS Appl. Mater. Interfaces 2023, 15, 15344. doi: 10.1021/acsami.2c21616

    14. [14]

      (14) Zhu, Y. L.; Tahini, H. A.; Hu, Z. W.; Dai, J.; Chen, Y. B.; Sun, H. N.; Zhou, W.; Liu, M. L.; Smith, S. C.; Wang, H. T.; et al. Nat. Commun. 2019, 10, 149. doi: 10.1038/s41467-018-08117-6

    15. [15]

      (15) Suryanto, B. H. R.; Wang, Y.; Hocking, R. K.; Adamson, W.; Zhao, C. Nat. Commun. 2019, 10, 5599. doi: 10.1038/s41467-019-13415-8

    16. [16]

      (16) Gao, R.; Dai, Q. B.; Du, F.; Yan, D. P.; Dai, L. M. J. Am. Chem. Soc. 2019, 141, 11658. doi: 10.1021/jacs.9b05006

    17. [17]

      (17) Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W.; et al. Nat. Commun. 2018, 9, 924. doi: 10.1038/s41467-018-03429-z

    18. [18]

      (18) Shi, H. H.; Liang, H. F.; Ming, F. W.; Wang, Z. C. Angew. Chem. Int. Ed. 2017, 56, 573. doi: 10.1002/anie.201610211

    19. [19]

      (19) Xie, J. F.; Xie, Y. Chem.-Eur. J. 2016, 22, 3588. doi: 10.1002/chem.201501120

    20. [20]

    21. [21]

      (21) Haider, Z.; Fatima, S.; Zahra, S. A.; Li, H.; Jafri, S. H. M.; Amin, F.; Rizwan, S. ACS Appl. Nano Mater. 2023, 6, 2374. doi: 10.1021/acsanm.2c04428

    22. [22]

      (22) An, C. H.; Dong, D. D.; Wu, S.; Gao, L. X.; Chen, X. D.; Jiao, P. G.; Deng, Q. B.; Li, J. S.; Hu, N. Chem. Asian J. 2023, 18 (14), e202300429. doi: 10.1002/asia.202300429

    23. [23]

      (23) Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Small Methods 2019, 3 (12), 1900653. doi: 10.1002/smtd.201900653

    24. [24]

      (24) Ma, Y. H.; Leng, D. F.; Zhang, X. M.; Fu, J. J.; Pi, C. R.; Zheng, Y.; Gao, B. A.; Li, X. G.; Li, N.; Chu, P. K.; et al. Small 2022, 18 (39), 2203173. doi: 10.1002/smll.202203173

    25. [25]

    26. [26]

      (26) Guo, J. W.; Wei, Z. J.; Wang, K.; Zhang, H. Int. J. Hydrog. Energy 2021, 46, 27529. doi: 10.1016/j.ijhydene.2021.06.013

    27. [27]

      (27) Zhou, Y.; Guo, Q. Y.; Luo, J. B.; Wang, X. Z.; Sun, F. C.; Wang, C. C.; Wang, S. T.; Zhang, J. Int. J. Hydrog. Energy 2023, 48, 4984. doi: 10.1016/j.ijhydene.2022.11.075

    28. [28]

      (28) Zhou, Y.; Chen, Y. L.; Wei, M. B.; Fan, H. G.; Liu, X. Y.; Liu, Q. Y.; Liu, Y. M.; Cao, J.; Yang, L. L. CrystEngComm 2021, 23, 69. doi: 10.1039/d0ce01527j

    29. [29]

      (29) Deng, K.; Zhou, T.; Mao, Q.; Wang, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, H.; Wang, L. Adv. Mater. 2022, 34 (18), 2110680. doi: 10.1002/adma.202110680

    30. [30]

      (30) Mishra, S. S.; Kumbhakar, P.; Nellaiappan, S.; Katiyar, N. K.; Tromer, R.; Wollner, C. F.; Galvao, D. S.; Tiwary, C. S.; Ghosh, C.; Dasgupta, A.; et al. Energy Technol. 2023, 11 (2), 2200860. doi: 10.1002/ente.202200860

    31. [31]

      (31) Deng, K.; Wang, W. X.; Mao, Q. Q.; Yu, H. J.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Small 2022, 18 (32), 2203020. doi: 10.1002/smll.202203020

    32. [32]

      (32) Yan, H. L.; Li, P. F.; Liu, X. H.; Chen, S. M. New J. Chem. 2021, 45, 22758. doi: 10.1039/d1nj04956a

    33. [33]

      (33) Tang, L.; Xu, R. Z.; Tan, J. Y.; Luo, Y. T.; Zou, J. Y.; Zhang, Z. T.; Zhang, R. J.; Zhao, Y.; Lin, J.H.; Zou, X. L.; et al. Adv. Funct. Mater. 2020, 31 (5), 2006941. doi: 10.1002/adfm.202006941

    34. [34]

      (34) Li, Y.; Gu, Q. F.; Johannessen, B.; Zheng, Z.; Li, C.; Luo, Y. T.; Zhang, Z. Y.; Zhang, Q.; Fan, H. I.; Luo, W. B.; et al. Nano Energy 2021, 84, 105898. doi: 10.1016/j.nanoen.2021.105898

    35. [35]

      (35) Lai, Y. J.; Tan, J. Y.; Cai, Z. Y.; Zhang, R. J.; Teng, C. J.; Zhao, S. L.; Lin J. H.; Liu, B. L. APL Mater. 2021, 9 (5), 051123. doi: 10.1063/5.0048946

    36. [36]

      (36) Liu, W. X.; Que, W.B.; Yin, R. L.; Dai, J. L.; Zheng, D.; Feng, J. X.; Xu, X. L.; Wu, F. F.; Shi, W. H.; Liu, X. J.; et al. Appl. Catal. B Environ. 2023, 328, 122488. doi: 10.1016/j.apcatb.2023.122488

    37. [37]

      (37) Wang, J.; Wei, J. K.; An, C. H.; Tang, H. L.; Deng, Q. B.; Li, J. S. Chem. Commun. 2022, 58, 10907. doi: 10.1039/d2cc03630d

    38. [38]

      (38) Han, R. X.; Chang, P.; Tao, J. G. Journal of Hebei University of Technology 2020, 49, 18. doi:10.14081/j.cnki.hgdxb.2020.01.002.

    39. [39]

      (39) Butburee, T.; Ponchai, J.; Meeporn, K.; Phawa, C.; Chakthranont, P.; Khemthong, P.; Mano, P.; Namuangruk, S.; Chinsirikul, W.; Faungnawakij, K.; et al. Small 2022, 18 (51), 2204767. doi: 10.1002/smll.202204767

    40. [40]

      (40) Luo, Y. T.; Zhang, S. Q.; Pan, H. Y.; Xiao, S. J.; Guo, Z. L.; Tang, L.; Khan, U.; Ding, B. F.; Li, M.; Cai, Z. Y.; et al. ACS Nano 2020, 14, 767. doi: 10.1021/acsnano.9b07763

    41. [41]

      (41) Jiao, P. G.; Ye, D. H.; Zhu, C. Y.; Wu, S.; Qin, C. L.; An, C. H.; Hu, N.; Deng, Q. B. Nanoscale 2022, 14, 14322. doi: 10.1039/d2nr03687h

    42. [42]

      (42) An, C. H.; Kang, W.; Deng, Q. B.; Hu, N. Rare Metals 2021, 41, 378. doi: 10.1007/s12598-021-01791-4

    43. [43]

      (43) Li, K.; Xu, J.; Chen, C.; Xie, Z. Z.; Liu, D.; Qu, D. Y.; Tang, H. L.; Wei, Q.; Deng, Q. B.; Li, J. S.; et al. J. Colloid Interface Sci. 2021, 582, 591. doi: 10.1016/j.jcis.2020.08.071

    44. [44]

      (44) An, C. H.; Wang, Y. C.; Huang, R.; Li, Y. Q.; Wang, C.; Wu, S.; Gao, L. X.; Zhu, C. Y.; Deng, Q. B.; Hu, N. Colloid Surf. A-Physicochem. Eng. Asp. 2023, 667, 131360. doi: 10.1016/j.colsurfa.2023.131360

    45. [45]

      (45) Hu, S. Q.; Ge, S. Y.; Liu, H. M.; Kang, S.; Yu, Q. M.; Liu, B. L. Adv. Funct. Mater. 2022, 32 (23), 2201726. doi:10.1002/adfm.202201726

    46. [46]

      (46) Liu, H. M.; Xie, R. K.; Luo, Y. T.; Cui, Z. C.; Yu, Q. M.; Gao, Z. Q.; Zhang, Z. Y.; Yang, F. N.; Kang, X.; Ge, S. Y.; et al. Nat. Commun. 2022, 13 (1), 6382. doi: 10.1038/s41467-022-34121-y

    47. [47]

      (47) Yu, Q. M.; Zhang, Z. Y.; Qiu, S. Y.; Luo, Y. T.; Liu, Z. B.; Yang, F. N.; Liu, H. M.; Ge, S.Y.; Zou, X. L.; Ding, B. F.; et al. Nat. Commun. 2021, 12 (1), 6051. doi: 10.1038/s41467-021-26315-7

    48. [48]

      (48) Luo, Y. T.; Tang, L.; Khan, U.; Yu, Q. M.; Cheng, H. M.; Zou, X. L.; Liu, B. L. Nat. Commun. 2019, 10, 269. doi: 10.1038/s41467-018-07792-9

    49. [49]

      (49) Xu, Y.; Cheng, J.; Lv, H. K.; Ding, L. W.; Zhang, K.; Hu, A. N.; Yang, X. Chem. Eng. J. 2023, 470, 144344. doi: 10.1016/j.cej.2023.144344

    50. [50]

      (50) Son, E.; Lee, S. J.; Seo, J.; Kim, U.; Kim, S. H.; Baik, J. M.; Han, Y. K.; Park, H. ACS Nano 2023, 17, 10817. doi: 10.1021/acsnano.3c02344

    51. [51]

      (51) Zhao, W.; Cui, C. C.; Xu, Y. H.; Liu, Q. Y.; Zhang, Y.; Zhang, Z. H.; Lu, S. C.; Rong, Z. Q.; Li, X. Z.; Fang, Y. Y. Adv. Mater. 2023, 35 (29), 2301593. doi: 10.1002/adma.202301593

    52. [52]

      (52) Wang, J. H.; Yan, M. Y.; Zhao, K. N.; Liao, X. B.; Wang, P. Y.; Pan, X. L.; Yang, W.; Mai, L. Q. Adv. Mater. 2017, 29 (7), 1604464. doi: 10.1002/adma.201604464

    53. [53]

      (53) Qin, X.; Teng, J.; Guo, W. Y.; Wang, L.; Xiao, S. N.; Xu, Q. J.; Min, Y. L.; Fan, J. C. Catal. Lett. 2022, 153, 673. doi: 10.1007/s10562-022-04032-0

    54. [54]

      (54) An, C. H.; Wang, T. Y.; Wang, S. K.; Chen, X. D.; Han, X. P.; Wu, S.; Deng, Q. B.; Zhao, L. B.; Hu, N. Ultrason. Sonochem. 2023, 98, 106503. doi: 10.1016/j.ultsonch.2023.106503

    55. [55]

      (55) Zhang, H.; Wei, T. R.; Qiu, Y.; Zhang, S. S.; Liu, Q.; Hu, G. Z.; Luo, J.; Liu, X. J. Small 2023, 19 (16), 2207249. doi: 10.1002/smll.202207249

    56. [56]

    57. [57]

      (57) Zhu, D. D.; Liu, J. L.; Zhao, Y. Q.; Zheng, Y.; Qiao, S. Z. Small 2019, 15 (14), 1805511. doi: 10.1002/smll.201805511

    58. [58]

      (58) Wang, X. M.; Zhang, H.; Yang, Z.; Zhang, C.; Liu, S. X. Ultrason. Sonochem. 2019, 59, 104714. doi: 10.1016/j.ultsonch.2019.104714

    59. [59]

      (59) Zhao, L.; Wen, M.; Tian, Y. K.; Wu, Q. S.; Fu, Y. Q. J. Energy Chem. 2022, 74, 203. doi: 10.1016/j.jechem.2022.07.017

    60. [60]

      (60) Zhang, C.; Tan, J. Y.; Pan, Y. K.; Cai, X. K.; Zou, X. L.; Cheng, H. M.; Liu B. L. Natl. Sci. Rev. 2020, 7, 324. doi: 10.1093/nsr/nwz156

    61. [61]

      (61) Zhang, C.; Luo, Y. T.; Tan, J. Y.; Yu, Q. M.; Yang, F. N.; Zhang, Z. Y.; Yang, L. S.; Cheng, H. M.; Liu B. L. Nat. Commun. 2020, 11, 3724. doi: 10.1038/s41467-020-17121-8

    62. [62]

      (62) Zhou, D.; Yin, J. Z. Nano 2020, 15 (10), 2050118. doi: 10.1142/S1793292020501180

    63. [63]

      (63) Contreras-Pereda, N.; Moghzi, F.; Baselga, J.; Zhong, H. X.; Janczak, J.; Soleimannejad, J.; Dong, R. H.; Ruiz-Molina, D. Ultrason. Sonochem. 2021, 70, 105292. doi: 10.1016/j.ultsonch.2020.105292

    64. [64]

      (64) He, C. H.; Hu, X. C.; Wang, J.; Bu, L. Z.; Zhan, C. H.; Xu, B. Y.; Li, L. G.; Li, Y. C.; Huang, X. Q. Sci. China-Mater. 2022, 65, 3470. doi: 10.1007/s40843-022-2098-x

    65. [65]

      (65) Wang, Q.; Wang, S.; Li, J. Y.; Gan, Y. C.; Jin, M. T.; Shi, R.; Amini, A.; Wang, N.; Cheng, C. Adv. Sci. 2023, 10 (3), 2205638. doi: 10.1002/advs.202205638

    66. [66]

      (66) Yang, S.; Wu, J.; Wang, C.; Yan, H.; Han, L. Q.; Feng, J. M.; Zhang, B.; Li, D. J.; Yu, G.; Luo, B. R. Dalton Trans. 2022, 51, 13351. doi: 10.1039/d2dt02066a

    67. [67]

      (67) Zhu, L. L.; Wang, Z.; Li, C. D.; Li, H.; Huang, Y. A.; Li, H.; Wu, Z. Q.; Lin, S.; Li, N.; Zhu, X. B.; et al. J. Mater. Chem. A 2022, 10, 21013. doi: 10.1039/d2ta05954a

    68. [68]

      (68) Xiong, G. W.; Chen, Y. K.; Zhou, Z. Q.; Liu, F.; Liu, X. Y.; Yang, L. J.; Liu, Q. L.; Sang, Y. H.; Liu, H.; Zhang, X. L.; et al. Adv. Funct. Mater. 2021, 31 (15), 2009580. doi: 10.1002/adfm.202009580

    69. [69]

      (69) Solomon, G.; Mazzaro, R.; Morandi, V.; Concina, I.; Vomiero, A. Crystals 2020, 10 (11), 1040. doi: 10.3390/cryst10111040

    70. [70]

      (70) Hu, R.; Jiang, H. Y.; Xian, J. L.; Mi, S. Y.; Wei, L. Y.; Fang, G. Y.; Guo, J. Y.; Xu, S. Q.; Liu, Z. Y.; Jin, H. Y.; et al. Appl. Catal. B-Environ. 2022, 317, 121728. doi: 10.1016/j.apcatb.2022.121728

    71. [71]

      (71) Sarwar, S.; Ali, A.; Liu, Z. Q.; Li, J. H.; Uprety, S.; Lee, H.; Wang, R. G.; Park, M. J.; Bozack, M. J.; Adamczyk, A. J.; et al. J. Colloid Interface Sci. 2021, 581, 847. doi: 10.1016/j.jcis.2020.07.122

    72. [72]

      (72) Rafai, S.; Qiao, C.; Wang, Z. T.; Cao, C. B.; Mahmood, T.; Naveed, M.; Younas, W.; Khalid, S. ChemElectroChem 2019, 6, 5469. doi: 10.1002/celc.201901363

    73. [73]

      (73) Zhang, H.; Xiao, X. J.; Xu, H. L.; Wang, L.; Li, Y.; Ouyang, C. Y.; Zhong, S. L. Nanoscale 2023, 15, 4429. doi: 10.1039/d2nr06184h

    74. [74]

      (74) Ma, Y.; Wang, F. G.; Fan, R. Y.; Wang, H. Y.; Yu, W. L.; Liu, H. J.; Chi, J. Q.; Wang, L.; Chai, Y. M.; Dong, B. Int. J. Hydrog. Energy 2021, 46, 35311. doi: 10.1016/j.ijhydene.2021.08.106

    75. [75]

      (75) Shen, H.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Luo, J.; Liu, X. J. Colloid Interface Sci. 2023, 634, 730. doi: 10.1016/j.jcis.2022.12.067

    76. [76]

      (76) Yao, J. D.; Huang, W. J.; Fang, W.; Kuang, M.; Jia, N.; Ren, H.; Liu, D. B.; Lv, C. D.; Liu, C. T.; Xu, J. W.; et al. Small Methods 2020, 4 (10), 2000494. doi: 10.1002/smtd.202000494

    77. [77]

      (77) Zhang, Q.; Li, P. S.; Zhou, D. J.; Chang, Z.; Kuang, Y.; Sun, X. M. Small 2017, 13 (41), 1701648. doi: 10.1002/smll.201701648

    78. [78]

      (78) Lu, Z. Y.; Li, Y. J.; Lei, X. D.; Liu, J. F.; Sun, X. M. Mater. Horizons 2015, 2, 294. doi: 10.1039/c4mh00208c

    79. [79]

      (79) Su, M. X.; Zhou, W. D.; Liu, L.; Chen, M. Y.; Jiang, Z. Z.; Luo, X. F.; Yang, Y.; Yu, T.; Lei, W.; Yuan, C. L. Adv. Funct. Mater. 2022, 32 (22), 2111067. doi: 10.1002/adfm.202111067

    80. [80]

      (80) Li, H.; Liu, S. C.; Liu, Y. ACS Sustain. Chem. Eng. 2021, 9, 12376. doi: 10.1021/acssuschemeng.1c04735

    81. [81]

      (81) Zhou, W. D.; Chen, M. Y.; Guo, M. M.; Hong, A. J.; Yu, T.; Luo, X. F.; Yuan, C. L.; Lei, W.; Wang, S. G. Nano Lett. 2020, 20, 2923. doi: 10.1021/acs.nanolett.0c00845

    82. [82]

      (82) Zhang, Y. Y.; Guo, P.; Niu, S. Q.; Wu, J.; Wang, W.; Song, B.; Wang, X. J.; Jiang, Z. X.; Xu, P. Small Methods 2022, 6 (6), 2200084. doi: 10.1002/smtd.202200084

    83. [83]

      (83) Hu, J.; Du, H. W.; Qu, B.; Jiang, D. C.; Zhu, C. H.; Yuan, Y. P. Int. J. Hydrog. Energy 2021, 46, 21433. doi: 10.1016/j.ijhydene.2021.03.237

    84. [84]

      (84) Ding, J. W.; Wang, F. M.; Pan, F.; Yu, P.; Gao, N.; Goldsmith, R. H.; Cai, S. F.; Yang, R.; He, J. ACS Catal. 2021, 11, 13721. doi: 10.1021/acscatal.1c03811

    85. [85]

      (85) Li, B. L.; Zou, H. L.; Tian, J. K.; Chen, G.; Wang, X. H.; Duan, H.; Li, X. L.; Shi, Y.; Chen, J. R.; Li, L. J.; et al. Nano Energy 2019, 60, 689. doi: 10.1016/j.nanoen.2019.03.093

    86. [86]

      (86) Zabelin, D.; Zabelina, A.; Miliutina, E.; Trelin, A.; Elashnikov, R.; Nazarov, D.; Maximov, M.; Kalachyova, Y.; Sajdl, P.; Lancok, J.; et al. Chem. Eng. J. 2022, 443, 136440. doi: 10.1016/j.cej.2022.136440

    87. [87]

      (87) Zabelina, A.; Zabelin, D.; Miliutina, E.; Lancok, J.; Svorcik, V.; Chertopalov, S.; Lyutakov, O. J. Mater. Chem. A 2021, 9, 17770. doi: 10.1039/d1ta04505a

    88. [88]

      (88) Zabelina, A.; Miliutina, E.; Zabelin, D.; Burtsev, V.; Buravets, V.; Elashnikov, R.; Neubertova, V.; Šťastný, M.; Popelková, D.; Lancok, J.; et al. Chem. Eng. J. 2023, 454, 140441. doi: 10.1016/j.cej.2022.140441

    89. [89]

      (89) Liang, H. Y.; Xi, H. J.; Liu, S. Q.; Zhang, X. M.; Liu, H. Q. Nanoscale 2019, 11, 18183. doi: 10.1039/c9nr06222j

    90. [90]

      (90) Chang, B.; Ai, Z. Z.; Shi, D.; Zhong, Y. Y.; Zhang, K.; Shao, Y. L.; Zhang, L.; Shen, J. X.; Wu, Y. Z.; Hao, X. P. J. Mater. Chem. A 2019, 7, 19573. doi: 10.1039/c9ta06589j

    91. [91]

      (91) Deng, L. Q.; Chang, B.; Shi, D.; Yao, X. G.; Shao, Y. L.; Shen, J. X.; Zhang, B. G.; Wu, Y. Z.; Hao, X. P. Renew. Energy 2021, 170, 858. doi: 10.1016/j.renene.2021.02.040

    92. [92]

      (92) Lee, J. Y.; Kang, S.; Lee, D.; Choi, S.; Yang, S.; Kim, K.; Kim, Y. S.; Kwon, K. C.; Choi, S. H.; Kim, S. M.; et al. Nano Energy 2019, 65, 104053. doi: 10.1016/j.nanoen.2019.104053

    93. [93]

      (93) Yan, Y. B.; Zhai, D.; Liu, Y.; Gong, J.; Chen, J.; Zan, P.; Zeng, Z. P.; Li, S. Z.; Huang, W.; Chen, P. ACS Nano 2020, 14, 1185. doi: 10.1021/acsnano.9b09554

    94. [94]

      (94) Perivoliotis, D. K.; Stangel, C.; Sato, Y.; Suenaga, K.; Tagmatarchis, N. 2D Mater. 2022, 10 (1), 014007. doi: 10.1088/2053-1583/ac9290

    95. [95]

      (95) Meng, H. Y.; Xi, W.; Ren, Z. Y.; Du, S. C.; Wu, J.; Zhao, L.; Liu, B. W.; Fu, H. G. Appl. Catal. B-Environ. 2021, 284, 119707. doi: 10.1016/j.apcatb.2020.119707

    96. [96]

      (96) Chung, C. C.; Yeh, H.; Wu, P. H.; Lin, C. C.; Li, C. S.; Yeh, T. T.; Chou, Y.; Wei, C. Y.; Wen, C. Y.; Chou, Y. C.; et al. ACS Nano 2021, 15, 4627. doi: 10.1021/acsnano.0c08970

    97. [97]

      (97) Ai, L. H.; Li, N.; Chen, M.; Jiang, H. L.; Jiang, J. J. Mater. Chem. A 2021, 9, 16479. doi: 10.1039/d1ta02995a

    98. [98]

      (98) Zhang, Y.; Hu, L.; Zhang, Y. C.; Wang, X. Z.; Wang, H. G. Appl. Catal. B-Environ. 2022, 315, 121540. doi: 10.1016/j.apcatb.2022.121540

    99. [99]

      (99) Liang, Y. G.; Zhang, Y. J.; Wang, X. K.; Zhou, J.; Cao, Z. W.; Huang, M. H.; Jiang, H. Q. Mater. Today Energy 2022, 25, 100966. doi: 10.1016/j.mtener.2022.100966

    100. [100]

      (100) Gu, L.; Zhang, C.; Guo, Y. M.; Gao, J.; Yu, Y. F.; Zhang, B. ACS Sustain. Chem. Eng. 2019, 7, 3710. doi: 10.1021/acssuschemeng.8b06117

    101. [101]

      (101) Lv, X. S.; Wei, W.; Zhao, P.; Er, D. Q.; Huang, B. B.; Dai, Y.; Jacob, T. J. Catal. 2019, 378, 97. doi: 10.1016/j.jcat.2019.08.019

    102. [102]

      (102) Wang, L. F.; Shan, Y.; Liu, L. Z. Mater. Chem. Phys. 2020, 239, 122046. doi: 10.1016/j.matchemphys.2019.122046

    103. [103]

      (103) Deng, Q. B.; Huang, R.; Shao, L. H.; Mumyatov, A. V.; Troshin, P. A.; An, C. H.; Wu, S.; Gao, L. X.; Yang, B.; Hu, N. Phys. Chem. Chem. Phys. 2023, 25, 12565. doi: 10.1039/d3cp01077e

    104. [104]

      (104) Yang, Z. Y.; Zhu, J.; Xu, X. L.; Wang, L.; Zhou, G. B.; Yang, Z.; Zhang, Y. F. RSC Adv. 2023, 13, 4056. doi: 10.1039/d2ra07363c

    105. [105]

      (105) Liao, M. S.; Zhu, Q. M.; Li, S. H.; Li, Q. Q.; Tao, Z. T.; Fu, Y. C. Nano Res. 2022, 16, 5419. doi: 10.1007/s12274-022-5170-0

    106. [106]

      (106) Wang, L.; Zeng, Z. H.; Gao, W. P.; Maxson, T.; Raciti, D.; Giroux, M.; Pan, X. Q.; Wang, C.; Greeley, J. Science 2019, 363, 870. doi: 10.1126/science.aat8051

    107. [107]

      (107) Li, A. J.; Hao, Y. Z.; Feng, G.; Zhong, X. L. Catal. Sci. Technol. 2022, 12, 1458. doi: 10.1039/d1cy00261a

    108. [108]

      (108) Guo, K.; Han, X.; Wei, S. Y.; Bao, J. C.; Lin, Y.; Li, Y. F.; Xu, D. D. Nano Lett. 2023, 23, 1085. doi: 10.1021/acs.nanolett.2c04729

    109. [109]

      (109) Lv, F.; Huang, B. L.; Feng, J. R.; Zhang, W. Y.; Wang, K.; Li, N.; Zhou, J. H.; Zhou, P.; Yang, W. X.; Du, Y. P.; et al. Natl. Sci. Rev. 2021, 8 (9), nwab019. doi: 10.1093/nsr/nwab019

    110. [110]

      (110) Wang, Y.; Yang, C. X.; Li, Z. M.; Liang, Z. Z.; Cao, G. Z. Small 2020, 16 (25), 2001973. doi: 10.1002/smll.202001973

    111. [111]

      (111) Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H.;, et al. Nat. Commun. 2019, 10, 1. doi: 10.1038/s41467-019-12997-7

    112. [112]

      (112) Nguyen, D. N.; Phu, T. K. C.; Kim, J.; Hong, W. T.; Kim, J. S.; Roh, S. H.; Park, H. S.; Chung, C. H.; Choe, W. S.; Shin, H.; et al. Small 2022, 18 (45), 2204797. doi: 10.1002/smll.202204797

    113. [113]

      (113) Deng, Q. B.; Jia, H. X.; An, C. H.; Wu, S.; Zhao, S.; Hu, N. Compos. Pt. A-Appl. Sci. Manuf. 2023, 165, 107336. doi: 10.1016/j.compositesa.2022.107336

    114. [114]

      (114) Meng, G.; Sun, W. M.; Mon, A. A.; Wu, X.; Xia, L. Y.; Han, A. J.; Wang, Y.; Zhuang, Z. B.; Liu, J. F.; Wang, D. S.; et al. Adv. Mater. 2019, 31 (37), 1903616. doi: 10.1002/adma.201903616

    115. [115]

      (115) Wang, C.; An, C. H.; Qin, C. L.; Gomaa, H.; Deng, Q. B.; Wu, S.; Hu, N. Nanomaterials 2022, 12 (14), 2480. doi: 10.3390/nano12142480

    116. [116]

      (116) Wu, G.; Han, X.; Cai, J. Y.; Yin, P. Q.; Cui, P. X.; Zheng, X. S.; Li, H.; Chen, C.; Wang, G. M.; Hong, X. Nat. Commun. 2022, 13 (1), 4200. doi: 10.1038/s41467-022-31971-4

    117. [117]

      (117) Shi, Z. K.; Yu, Z. B.; Guo, J.; Jiang, R. H.; Hou, Y. P.; Chen, Y. S.; Chen, H. L.; Wang, M.; Pang, H.; Tang, W. J. Nanoscale 2022, 14, 1370. doi: 10.1039/d1nr07438e

    118. [118]

      (118) Jansonius, R. P.; Schauer, P. A.; Dvorak, D. J.; MacLeod, B. P.; Fork, D. K.; Berlinguette, C. P. Angew. Chem. Int. Ed. 2020, 59, 12192. doi: 10.1002/anie.202005248

    119. [119]

      (119) Huang, T.; Si, Y.; Wu, H. Y.; Xia, L. X.; Lan, Y.; Huang, W. Q.; Hu, W. Y.; Huang, G. F. Chin. Phys. B 2021, 30 (2), 027101. doi: 10.1088/1674-1056/abbbe7

    120. [120]

      (120) Wei, Y. H.; Gao, F.; Huang, H. C.; Jiang, G. Int. J. Hydrog. Energy 2022, 47, 8338. doi: 10.1016/j.ijhydene.2021.12.210

    121. [121]

      (121) Li, F. F.; Ai, H. Q.; Liu, D.; Lo, K. H.; Pan, H. J. Mater. Chem. A 2021, 9, 17749. doi: 10.1039/d1ta03412j

    122. [122]

      (122) Gao, X. P.; Zhou, Y. N.; Tan, Y. J.; Liu, S. Q.; Cheng, Z. W.; Shen, Z. W. Phys. Chem. Chem. Phys. 2020, 22, 2457. doi: 10.1039/c9cp05548g

    123. [123]

      (123) Gu, Y. T.; Wei, B.; Legut, D.; Fu, Z. H.; Du, S. Y.; Zhang, H. J.; Francisco, J. S.; Zhang, R. F. Adv. Funct. Mater. 2021, 31 (43), 2104285. doi: 10.1002/adfm.202104285

    124. [124]

      (124) Liu, W. W.; Kong, Y. C.; Wang, B.; Li, X. S.; Liu, P. F.; Santiago, A. R. P.; He, T. W. Nanomaterials 2021, 11 (12), 3173. doi: 10.3390/nano11123173

    125. [125]

      (125) Liang, D.; Zhang, Y. W.; Lu, P. F.; Yu, Z. G. Nanoscale 2019, 11, 18329. doi: 10.1039/c9nr06541e

    126. [126]

      (126) Wang, W. Y.; Meng, J.; Hu, Y. J.; Wang, J. J.; Li, Q. X.; Yang, J. L. J. Mater. Chem. A 2022, 10, 9848. doi: 10.1039/d2ta00547f

    127. [127]

      (127) Kong, Y. C.; Ai, H. Q.; Wang, W.; Xie, X. H.; Lo, K. H.; Wang, S. P.; Pan, H. ACS Appl. Nano Mater. 2020, 3, 2804. doi: 10.1021/acsanm.0c00119

    128. [128]

      (128) Lou, H.; Chen, W.; Yu, G. T.; Yang, G. C. Nanoscale 2022, 14, 3069. doi: 10.1039/d1nr06443f

    129. [129]

      (129) Zhao, Z. W.; Liu, C. M.; Tsai, H. S.; Zhou, J. M.; Zhang, Y. Q.; Wang, T. Q.; Ma, G. L.; Qi, C. H.; Huo, M. X. Int. J. Hydrog. Energy 2022, 47, 37429. doi: 10.1016/j.ijhydene.2021.07.117

    130. [130]

      (130) Zhai, L. L.; She, X. J.; Zhuang, L. C.; Li, Y. Y.; Ding, R.; Guo, X. Y.; Zhang, Y. Q.; Zhu, Y.; Xu, K.; Fan, H. J.; et al. Angew. Chem. Int. Ed. 2022, 61 (14), e202116057. doi: 10.1002/anie.202116057

    131. [131]

      (131) He, Y. M.; He, Q. Y.; Wang, L. Q.; Zhu, C.; Golani, P.; Handoko, A. D.; Yu, X. C.; Gao, C. T.; Ding, M. N.; Wang, X. W.; et al. Nat. Mater. 2019, 18, 1098. doi: 10.1038/s41563-019-0426-0

    132. [132]

      (132) Wu, Y. C.; Ringe, S.; Wu, C. L.; Chen, W.; Yang, A. K.; Chen, H.; Tang, M.; Zhou, G. M.; Hwang, H. Y.; Chan, K. R.; et al. Nano Lett. 2019, 19, 7293. doi: 10.1021/acs.nanolett.9b02888

    133. [133]

      (133) Zhang, W. C.; Liao, X. B.; Pan, X. L.; Yan, M. Y.; Li, Y. X.; Tian, X. C.; Zhao, Y.; Xu, L.; Mai, L. Q. Small 2019, 15 (31), 1900964. doi: 10.1002/smll.201900964

    134. [134]

      (134) Wang, Y.; Udyavara, S.; Neurock, M.; Frisbie, C. D. Nano Lett. 2019, 19, 6118. doi: 10.1021/acs.nanolett.9b02079

    135. [135]

      (135) Zhu, X. H.; Wang, C. Y.; Wang, T. L.; Lan, H. H.; Ding, Y.; Shi, H.; Liu, L. S.; Shi, H. W.; Wang, L. Y.; Wang, H. L.; et al. Adv. Mater. 2022, 34 (27), 2202479. doi: 10.1002/adma.202202479

    136. [136]

      (136) Huang, J. Z.; Zhuang, Z. C.; Zhao, Y.; Chen, J. Q.; Zhuo, Z. W.; Liu, Y. W.; Lu, N.; Li, H. Q.; Zhai, T. Y. Angew. Chem. Int. Ed. 2022, 61 (32), e202203522. doi: 10.1002/anie.202203522

    137. [137]

      (137) Chen, J. Q.; Lu, N.; Zha.o, Y.; Huang, J. Z.; Gan, X. J.; Chen, X. Z.; Yang, Z. H.; Wen, Q. L.; Zhai, T. Y.; Liu, Y. W. Nano Lett. 2022, 22, 10154. doi: 10.1021/acs.nanolett.2c04087

    138. [138]

      (138) Wang, Z. G.; Wu, H. H.; Li, Q.; Besenbacher, F.; Li, Y. R.; Zeng, X. C.; Dong, M. D. Adv. Sci. 2020, 7 (3), 1901382. doi: 10.1002/advs.201901382

    139. [139]

      (139) Pan, Y. H.; Wang, X. Z.; Zhang, W.Y.; Tang, L. Y.; Mu, Z. Y.; Liu, C.; Tian, B. L.; Fei, M. C.; Sun, Y. M.; Su, H. H.; et al. Nat. Commun. 2022, 13 (1), 3063. doi: 10.1038/s41467-022-30766-x

    140. [140]

      (140) Wan, T. L.; Liu, J. X.; Tan, X.; Liao, T.; Gu, Y. T.; Du, A. J.; Smith, S.; Kou, L. Z. J. Mater. Chem. A 2022, 10, 22228. doi: 10.1039/d2ta04464a

    141. [141]

      (141) Nedrygailov, II.; Moon, S. Y.; Park, J. Y. Sci. Rep. 2019, 9, 6208. doi: 10.1038/s41598-019-42566-3

    142. [142]

      (142) Qu, J.; Li, Y.; Li, F.; Li, T. M.; Wang, X. Y.; Yin, Y.; Ma, L. B.; Schmidt, O. G.; Zhu, F. ACS Nano 2022, 16, 2921. doi: 10.1021/acsnano.1c10030

    143. [143]

      (143) Bian, J. J.; Sun, C. W. Catal. Sci. Technol. 2020, 10, 6180. doi: 10.1039/c9cy02611h

    144. [144]

      (144) Ghosh, R.; Singh, M.; Chang, L. W.; Lin, H. I.; Chen, Y. S.; Muthu, J.; Papnai, B.; Kang, Y. S.; Liao, Y. M.; Bera, K. P.; et al. ACS Nano 2022, 16, 5743. doi: 10.1021/acsnano.1c10772

    145. [145]

      (145) Ghosh, R.; Papnai, B.; Chen, Y. S.; Yadav, K.; Sankar, R.; Hsieh, Y. P.; Hofmann, M.; Chen, Y. F. Adv. Mater. 2023, 35 (16), 2210746. doi: 10.1002/adma.202210746

    146. [146]

      (146) Bhartiya, P. K.; Bangruwa, N.; Mishra, D. MRS Commun. 2022, 12, 745. doi: 10.1557/s43579-022-00223-3

    147. [147]

      (147) Gao, Y. D.; Bai, L.; Zhang, X.; Yang, F. C. ChemElectroChem 2021, 8, 2087. doi: 10.1002/celc.202100464

    148. [148]

      (148) Ma, Q.; Qiao, H.; Huang, Z. Y.; Liu, F.; Duan, C. G.; Zhou, Y.; Liao, G. C.; Qi, X. Appl. Surf. Sci. 2021, 562, 150213. doi: 10.1016/j.apsusc.2021.150213

    149. [149]

      (149) Zhang, D. X.; Dong, W. X.; Liu, Y. H.; Gu, X. Q.; Yang, T. Y.; Hong, Q.; Li, D.; Zhang, D. Q.; Zhou, H. B.; Huang, H.; et al. ACS Appl. Mater. Interfaces 2021, 13, 42125. doi: 10.1021/acsami.1c09948

    150. [150]

      (150) Farahi, M.; Fathirad, F.; Shamspur, T.; Mostafavi, A. Mater. Chem. Phys. 2023, 293, 126941. doi: 10.1016/j.matchemphys.2022.126941

    151. [151]

      (151) Bai, L.; Jia, S. J.; Gao, Y. D.; Li, C.; Chen, X.; Zhou, S.; Han, J. W.; Yang, F. C.; Zhang, X.; Lu, S. Y. Energy Environ. Mater. 2022, 6, e12456. doi: 10.1002/eem2.12456

    152. [152]

      (152) Shenashen, M.A.; Hassen, D.; El-Safty, S.A.; Isago, H.; Elmarakbi, A.; Yamaguchi, H. Chem. Eng. J. 2017, 313, 83. doi: 10.1016/j.cej.2016.12.003

    153. [153]

      (153) Hassen, D.; El-Safty, S. A.; Tsuchiya, K.; Chatterjee, A.; Elmarakbi, A.; Shenashen, M. A.; Sakai, M. Sci. Rep. 2016, 6, 24330. doi: 10.1038/srep24330

    154. [154]

      (154) Shenashen, M. A.; Hassen, D.; El-Safty, S. A.; Selim, M. M.; Akhtar, N.; Chatterjee, A.; Elmarakbi, A. Adv. Mater. Interfaces 2016, 3 (24), 1600743. doi:10.1002/admi.201600743

    155. [155]

      (155) Hassen, D.; Selim, M. M.; El-Safty, S. A.; Khalil, K. A.; Abu El-Maged, G.; Dewidar, M. Nano-Structures & Nano-Objects 2017, 9, 31. doi: 10.1016/j.nanoso.2016.12.004

    156. [156]

      (156) Hassen, D.; Shenashen, M. A.; El-Safty, A. R.; Elmarakbi, A.; El-Safty, S. A. Sci. Rep. 2018, 8, 3740. doi: 10.1038/s41598-018-21878-w

    157. [157]

      (157) Hassen, D.; Shenashen, M. A.; El-Safty, S. A.; Selim, M. M.; Isago, H.; Elmarakbi, A.; El-Safty, A.; Yamaguchi, H. J. Power Sources 2016, 330, 292. doi: 10.1016/j.jpowsour.2016.08.140

    158. [158]

      (158) Hassan, D. K.; El-Safty, S. A.; Khalil, K. A.; Dewidar, M.; Abu El-Maged, G. Int. J. Electrochem. Sci. 2016, 11, 8374. doi: 10.20964/2016.10.09

    159. [159]

      (159) Hassan, D.; El-Safty, S. A.; Khalil, K. A.; Dewidar, M.; Abu El-Magd, G. Materials 2016, 9, 759. doi: 10.3390/ma9090759

    160. [160]

      (160) Ding, J.; Hou, X.; Qiu, Y.; Zhang, S.; Liu, Q.; Luo, J.; Liu, X. Inorg. Chem. Commun. 2023, 151, 110621. doi: 10.1016/j.inoche.2023.110621

    161. [161]

      (161) Zhang, Q.; Lian, K.; Qi, G.; Zhang, S.; Liu, Q.; Luo, Y.; Luo, J.; Liu, X. Sci. China Mater. 2023, 66, 1681. doi: 10.1007/s40843-022-2379-8

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    9. [9]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    16. [16]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    19. [19]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    20. [20]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

Metrics
  • PDF Downloads(0)
  • Abstract views(481)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return