Citation:
Xinyi Zhang, Kai Ren, Yanning Liu, Zhenyi Gu, Zhixiong Huang, Shuohang Zheng, Xiaotong Wang, Jinzhi Guo, Igor V. Zatovsky, Junming Cao, Xinglong Wu. Progress on Entropy Production Engineering for Electrochemical Catalysis[J]. Acta Physico-Chimica Sinica,
;2024, 40(7): 230705.
doi:
10.3866/PKU.WHXB202307057
-
As for the accurate synthesis of high-performance electrochemical catalysts with good robustness, the rational design on atomic level is still a priority. Entropy, as one of the most significant thermodynamic parameters, measure the disorder of a system, which is a significant quantity for materials. The values are primarily determined by the crystal structure, magnetic moments and the atomic and electronic vibrations of the materials. According to the configurational entropy of the system, we usually divide the material into low entropy materials (LEMs) (∆Smix < 1R), medium entropy materials (MEMs) (1R ≤ ∆Smix ≥ 1.5R) and high entropy materials (HEMs) (∆Smix > 1.5R), where R is the gas molar constant. HEMs are those that consist of five or more major elements of roughly equal proportion, in a highly uniform, random manner, which typically consist of one or two major elements compared to traditional materials. As the entropy value increases, the intrinsic physical, chemical and structural properties of the material change accordingly, resulting in special physicochemical properties (e.g., strength, electrical conductivity, corrosion resistance, etc.). Moreover, due to its multi-element combination, the HEMs can be precisely regulated by selecting different elements and their ratios according to the needs, which overcomes the limitations of the traditional catalysts in terms of relatively single component, structure and field of application. Importantly, the synergistic high entropy effect and multi-component arrangement at the atomic-level interface produced by the coexistence of different metal elements in HEMs can exert higher catalytic activity, selectivity and stability in different reactions. This has attracted a lot of attention from researchers, especially in the field of electrocatalysis. In this review systematically summarizes the fundamental concepts of high-entropy catalysts (HECs), synthetic approaches (“top-down” and “bottom-up”), and the structure-performance relationships of HEMs in different types of electrocatalytic processes, mainly including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), alcohol oxidation reaction (AOR), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2RR) etc. Thus, the advantages and potential of high-performance electrocatalysts based on entropy increase engineering are illuminate. At the same time, it is summarized and discussed that HECs are currently facing problems and challenges such as complicated material rational design, complex preparation process, the mechanism of electrocatalytic processes in which multiple metal elements interact is ambiguous, and poor stability under extreme reaction conditions. Finally, the main problems and challenges facing the current HECs research. We look forward to the future design ideas, synthesis methods different research areas and industrial applications of HECs based on entropy enhancement engineering.
-
-
-
[1]
(1) Wang, X.; Gu, Z.; Edison, H.; Zhao, X.; Wu, X.; Liu, Y. Interdiscip. Mater. 2022, 1, 417. doi:10.1002/idm2.12041
-
[2]
(2) You, B.; Sun, Y. Acc. Chem. Res. 2018, 51, 1571. doi:10.1021/acs.accounts.8b00002
-
[3]
(3) Bui, T. S.; Lovell, E. C.; Daiyan, R.; Amal, R. Adv. Mater. 2023, 35, e2205814. doi:10.1002/adma.202205814
-
[4]
(4) Wang, C.; Lv, Z.; Yang, W.; Feng, X.; Wang, B. Chem. Soc. Rev. 2023, 52, 1382. doi:10.1039/d2cs00843b
-
[5]
(5) Zhao, C.; Liu, J.; Wang, J.; Ren, D.; Li, B.; Zhang, Q. Chem. Soc. Rev. 2021, 50, 7745. doi:10.1039/d1cs00135c
-
[6]
(6) Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Adv. Mater. 2022, 34, 2108133. doi:10.1002/adma.202108133
-
[7]
(7) Cao, J.; Zatovsky, I.; Gu, Z.; Yang, J.; Zhao, X.; Guo, J.; Xu, H.; et al. Prog. Mater. Sci. 2023, 135, 101105. doi:10.1016/j.pmatsci.2023.101105
-
[8]
(8) Wang, Y.; Wang, S.; Ma, Z.; Yan, L.; Zhao, X.; Xue, Y.; Huo, J.; Yuan, X.; Li, S.; Zhai, Q. Adv. Mater. 2022, 34, e2107488. doi:10.1002/adma.202107488
-
[9]
(9) Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi:10.1021/jacs.0c02973
-
[10]
(10) Yu, J.; Li, B.; Zhao, C.; Zhang, Q. Energy Environ. Sci. 2020, 13, 3253. doi:10.1039/D0EE01617A
-
[11]
(11) Guo, J.; Gu, Z.; Du, M.; Zhao, X.; Wang, X.; Wu, X. Mater. Today 2023, 66, 1369. doi:10.1016/j.mattod.2023.03.020
-
[12]
(12) Bueno, S.; Ashberry, H.; Shafei, I.; Skrabalak, S. Acc. Chem. Res. 2021, 54, 1662. doi:10.1021/acs.accounts.0c00655
-
[13]
(13) Wang, T.; Chutia, A.; Brett, D.; Shearing, P.; He, G.; Chai, G.; Parkin, I. Energy Environ. Sci. 2021, 14, 2639. doi:10.1039/D0EE03915B
-
[14]
(14) Wang, X.; Sokolowski, J.; Liu, H.; Wu, G. Chin. J. Catal. 2020, 41, 739. doi:10.1016/S1872-2067(19)63407-8
-
[15]
(15) Zahran, Z.; Mohamed, E.; Tsubonouchi, Y.; Ishizaki, M.; Togashi, T.; Kurihara, M.; Saito, K.; Yuia, T.; Yagi, M. Energy Environ. Sci. 2021, 14, 5358. doi:10.1039/D1EE00509J
-
[16]
(16) Wang, M.; Wang, Y.; Mao, S.; Shen, S. Nano Energy 2021, 88, 106216. doi:10.1016/j.nanoen.2021.106216
-
[17]
(17) Sun, J.; Zhao, Z.; Li, J.; Li, Z.; Meng, X. Rare Metals 2022, 42, 751. doi:10.1007/s12598-022-02168-x
-
[18]
(18) Glasscott, M.; Pendergast, A.; Goines, S.; Bishop, A.; Hoang, A.; Renault, C.; Dick, J. Nat. Commun. 2019, 10, 2650. doi:10.1038/s41467-019-10303-z
-
[19]
(19) Gludovatz, B.; Hohenwarter, A.; Thurston, K.; Bei, H.; Wu, Z.; George, E.; Ritchie, R. Nat. Commun. 2016, 7, 10602. doi:10.1038/ncomms10602
-
[20]
(20) Laplanche, G.; Kostka, A.; Reinhart, C.; Hunfeld, J.; Eggeler, G.; George, E. Acta Mater. 2017, 128, 292. doi:10.1016/j.actamat.2017.02.036
-
[21]
(21) Wu, Z.; Bei, H.; Pharr, G.; George, E. Acta Mater. 2014, 81, 428. doi:10.1016/j.actamat.2014.08.026
-
[22]
(22) Zhang, Z.; Mao, M.; Wang, J.; Gludovatz, B.; Zhang, Z.; Mao, S. X.; George, E.; Yu, Q.; Ritchie, R. Nat. Commun. 2015, 6, 10143. doi:10.1038/ncomms10143
-
[23]
(23) George, E.; Raabe, D.; Ritchie, R. Nat. Rev. Mater. 2019, 4, 515. doi:10.1038/s41578-019-0121-4
-
[24]
(24) Zou, Y.; Ma, H.; Spolenak, R. Nat. Commun. 2015, 6, 7748. doi:10.1038/ncomms8748
-
[25]
(25) Chuang, M. H.; Tsai, M. H.; Wang, W. R.; Lin, S. J.; Yeh, J. W. Acta Mater. 2011, 59, 6308. doi:10.1016/j.actamat.2011.06.041
-
[26]
(26) Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. doi:10.1002/adem.200300567
-
[27]
(27) Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Mater. SciEng A 2004, 375, 213. doi:10.1016/j.msea.2003.10.257
-
[28]
(28) Tsai, M. H.; Yeh, J. W. Mater. Res. Lett. 2014, 2, 107. doi:10.1080/21663831.2014.912690
-
[29]
(29) Singh, A. Matter 2021, 4, 23. doi:10.1016/j.matt.2020.12.021
-
[30]
(30) He, Q.; Tang, P.; Chen, H.; Lan, S.; Wang, J.; Luan, J.; Du, M.; Liu, Y.; Liu, C.; Pao, C.; et al. Acta Mater. 2021, 216, 117140. doi:10.1016/j.actamat.2021.117140
-
[31]
(31) Kusada, K.; Mukoyoshi, M.; Wu, D.; Kitagawa, H. Angew. Chem. Int. Ed. 2022, 61, e202209616. doi:10.1002/anie.202209616
-
[32]
(32) Huang, X.; Yang, G.; Li, S.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. J. Energy Chem. 2022, 68, 721. doi:10.1016/j.jechem.2021.12.026
-
[33]
(33) Yao, Y.; Liu, Z.; Xie, P.; Huang, Z.; Li, T.; Morris, D.; Finfrock, Z.; Zhou, J.; Jiao, M.; Gao, J.; et al. Sci. Adv. 2020, 6, eaaz0510. doi:10.1126/sciadv.aaz0510
-
[34]
(34) Yeh, J. W.; Chang, S. Y.; Hong, Y. D.; Chen, S. K.; Lin, S. J. Mater. Chem. Phys. 2007, 103, 41. doi:10.1016/j.matchemphys.2007.01.003
-
[35]
(35) Huang, K.; Zhang, B.; Wu, J.; Zhang, T.; Peng, D.; Cao, X.; Zhang, Z.; et al. J. Mater. Chem. A 2020, 8, 11938. doi:10.1039/D0TA02125C
-
[36]
(36) Tsai, K.; Y.; Tsai; H.; M.; Yeh, J. W. Acta Mater. 2013, 61, 4887. doi:10.1016/j.actamat.2013.04.058
-
[37]
(37) Ruffa, A. R. Phys. Rev. B 1982, 25, 5895. doi:10.1103/PhysRevB.25.5895
-
[38]
(38) Zhang, W.; Liaw, P.; Zhang, Y. Sci. China Mater. 2018, 61, 2. doi:10.1007/s40843-017-9195-8
-
[39]
(39) Chen, H.; Lin, W.; Zhang, Z.; Jie, K.; Mullins, D.; Sang, X.; Yang, S.; Jafta, C.; Bridges, C.; Hu, X.; et al. ACS Mater. Lett. 2019, 1, 83. doi:10.1021/acsmaterialslett.9b00064
-
[40]
(40) Yao, Y.; Huang, Z.; Xie, P.; Lacey, SD.; Jacob, R.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Science 2018, 359, 1489. doi:10.1126/science.aan5412
-
[41]
(41) Miracle, D.; Senkov, O. Acta Mater. 2017, 112, 448. doi:10.1016/j.actamat.2016.08.081
-
[42]
(42) Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, SA. Scr. Mater. 2017, 138, 22. doi:10.1016/j.scriptamat.2017.05.022
-
[43]
(43) Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. doi:10.1016/j.pmatsci.2013.10.001
-
[44]
(44) Gibbs, J. W. Am. J. Sci. 1878, 16, 441. doi:10.2475/ajs.s3-16.96.441
-
[45]
(45) Nair, R.; Arora, H.; Grewal, H. Int. J. Miner. Metall. Mater. 2020, 27, 1353. doi:10.1007/s12613-020-2000-9
-
[46]
(46) Ranganathan, S. Curr. Sci. 2003, 85, 1404. doi:10.1038/nature02146
-
[47]
(47) Pang, J.; Zhang, H.; Zhang, L.; Zhu, Z.; Fu, H.; Li, H.; Wang, A.; Li, Z.; Zhang, H. Mater. Lett. 2021, 290, 129428. doi:10.1016/j.matlet.2021.129428
-
[48]
(48) Chen, J.; Zhang, T.; Gao, Y.; Huang, J.; Qin, H.; Wang, F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L.; et al. Adv. Mater. 2021, 33, 2101845. doi:10.1002/adma.202101845
-
[49]
(49) Wang, Y.; Gu, Z.; Wang, D.; Xie, C.; Wang, H.; Huang, G.; Liu, B.; Zou, Y.; Li, T.; Wang, S. Angew. Chem. Int. Ed. 2021, 60, 20253. doi:10.1002/anie.202107390
-
[50]
(50) Xu, W.; Chen, H.; Jie, K.; Yang, Z.; Li, T.; Dai, S. Angew. Chem. Int. Ed. 2019, 58, 5018. doi:10.1002/anie.201900787
-
[51]
(51) Fang, G.; Gao, J.; Lv, J.; Jia, H.; Li, H.; Liu, W.; Xie, G.; Chen, Z.; Huang, Y.; Yuan, Q.; et al. Appl. Catal. B 2019, 268, 118431. doi:10.1016/j.apcatb.2019.118431
-
[52]
(52) Jin, Z.; Lyu, J.; Zhao, Y.; Li, H.; Lin, X.; Xie, G.; Liu, X.; Kai, J.; Qiu, H. ACS Mater. Lett. 2020, 2, 1698. doi:10.1021/acsmaterialslett.0c00434
-
[53]
(53) Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L.; Zhang, L.; Liang, S.; Lu, J.; Kruzic, J. Adv. Funct. Mater. 2021, 32, 2101586. doi:10.1002/adfm.202101586
-
[54]
(54) Lacey, S.; Qi, D.; Huang, Z.; Luo, J.; Xie, H.; Lin, Z.; Kirsch, D.; Vattipalli, V.; Povinelli, C.; Fan, W.; et al. Nano Lett. 2019, 19, 5149. doi:10.1021/acs.nanolett.9b01523
-
[55]
(55) Bueno, SL.; Leonardi, A.; Kar, N.; Chatterjee, K.; Zhan, X.; Chen, C.; Wang, Z.; Engel, M.; Fung, V.; Skrabalak, S. ACS Nano 2022, 16, 18873. doi:10.1021/acsnano.2c07787
-
[56]
(56) Gao, S.; Hao, S.; Huang, Z.; Yuan, Y.; Han, S.; Lei, L.; Zhang, X.; Shahbazian-Yassar, R.; Lu, J. Nat. Commun. 2020, 11, 2016. doi:10.1038/s41467-020-15934-1
-
[57]
(57) Park, C.; Senthil, R. A.; Jeong, G.; Choi, M. Small 2023, 19, e2207820. doi:10.1002/smll.202207820
-
[58]
(58) Qiao, H.; Saray, M.; Wang, X.; Xu, S.; Chen, G.; Huang, Z.; Chen, C.; Zhong, G.; Dong, Q.; Hong, M.; et al. ACS Nano 2021, 15, 14928. doi:10.1021/acsnano.1c05113
-
[59]
(59) Li, H.; Pa, Y.; Lai, J.; Wang, L.; Feng, S. Chin. J. Struct. Chem. 2022, 41, 2208003. doi:10.14102/j.cnki.0254-5861.2022-0125
-
[60]
(60) Tao, L.; Sun, M.; Zhou, Y.; Luo, M.; Lv, F.; Li, M.; Zhang, Q.; Gu, L.; Huang, B.; Guo, S. J. Am. Chem. Soc. 2022, 14, 10582. doi:10.1021/jacs.2c03544
-
[61]
(61) Minamihara, H.; Kusada, K.; Wu, D.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kumara, L. S. R.; Ohara, K.; Sakata, O.; Kawaguchi, S.; et al. J. Am. Chem. Soc. 2022, 144, 11525. doi:10.1021/jacs.2c02755
-
[62]
(62) Liu, Y.; Hsieh, C.; Hsu, L.; Lin, K.; Hsiao, Y.; Chi, C.; Lin, J.; Chang, C.; Lin, S.; Wu, C, Y.; et al. Sci. Adv. 2023, 9, eadf9931. doi:10.1126/sciadv.adf9931
-
[63]
(63) Rao, P.; Deng, Y.; Fan, W.; Luo, J.; Deng, P.; Li, J.; Shen, Y.; Tian, X. Nat. Commun. 2022, 13, 5071. doi:10.1038/s41467-022-32850-8
-
[64]
(64) Zhu, H.; Zhu, Z.; Hao, J.; Sun, S.; Lu, S.; Wang, C.; Ma, P.; Dong, W. F.; Du, M. L. Chem. Eng. J. 2022, 431, 133251. doi:10.1016/j.cej.2021.133251
-
[65]
(65) Zhu, H.; Sun, S.; Hao, J.; Zhuang, Z.; Zhang, S.; Wang, T.; Kang, Q.; Lu, S.; Wang, X.; Lai, F.; et al. Energy Environ. Sci. 2023, 16, 619. doi:10.1039/d2ee03185j
-
[66]
(66) Li, H.; Huang, H.; Chen, Y.; Lai, F.; Fu, H.; Zhang, L.; Zhang, N.; Bai, S.; Liu, T. Adv. Mater. 2022, 35, 2209242. doi:10.1002/adma.202209242
-
[67]
(67) Du, M.; Geng, P.; Pei, C.; Jiang, X.; Shan, Y.; Hu, W.; Ni, L.; Pang, H. Angew. Chem. Int. Ed. 2022, 61, e202209350. doi:10.1002/anie.202209350
-
[68]
(68) Kosanović, C.; Bronić, J.; Subotić, B.; Smit, I.; Stubičar, M.; Tonejc, A.; Yamamoto, T. Thermochim. Acta 1993, 276, 91103. doi:10.1016/0040-6031(95)02792-0
-
[69]
(69) Beldon, P.; Fabian, L.; Stein, R.; Thirumurugan, A.; Cheetham, A.; Friscic, T. Angew. Chem. Int. Ed. 2010, 49, 9640. doi:10.1002/anie.201005547
-
[70]
(70) Friscic, T. Chem. Soc. Rev. 2012, 41, 3493. doi:10.1039/c2cs15332g
-
[71]
(71) James, S.; Adams, C.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K.; Hyett, G.; Jones, W.; et al. Chem. Soc. Rev. 2012, 41, 413. doi:10.1039/c1cs15171a
-
[72]
(72) Grätz, S.; Wolfrum, B.; Borchardt, L. Green Chem. 2017, 19, 2973. doi:10.1039/c7gc00693d
-
[73]
(73) Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S.; et al. Adv. Energy Mater. 2022, 12, 2103090. doi:10.1002/aenm.202103090
-
[74]
(74) Jin, Z.; Lyu, J.; Hu, K.; Chen, Z.; Liu, X.; Lin, X.; Qiu, H. Small 2022, 18, 2107207. doi:10.1002/smll.202107207
-
[75]
(75) Liao, Y.; Li, Y.; Zhao, R.; Zhang, J.; Zhao, L.; Ji, L.; Zhang, Z.; Liu, X.; Qin, G.; Zhang, X. Nat. Sci. Rev. 2022, 9, nwac041. doi:10.1093/nsr/nwac041
-
[76]
(76) Yang, J.; Dai, B.; Chiang, C.; Chiu, I.; Pao, C.; Lu, S.; Tsao, I.; Lin, S.; Chiu, C.; Yeh, J.; et al. ACS Nano 2021, 15, 12324. doi:10.1021/acsnano.1c04259
-
[77]
(77) Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S.; et al. Nano Res. 2021, 15, 4807. doi:10.1007/s12274-021-3804-2
-
[78]
(78) Cao, G.; Liang, J.; Guo, Z.; Yang, K.; Wang, G.; Wang, H.; Wan, X.; Li, Z.; Bai, Y.; Zhang, Y.; et al. Nature 2023, 619, 73. doi:10.1038/s41586-023-06082-9
-
[79]
(79) Li, T.; Yao, Y.; Ko, B. H.; Huang, Z.; Dong, Q.; Gao, J.; Chen, W.; Li, J.; Li, S.; Wang, X.; et al. Adv. Funct. Mater. 2021, 31, 2010561. doi:10.1002/adfm.202010561
-
[80]
-
[81]
(81) Li, X.; Chen, C.; Niu, Q.; Li, N.; Yu, L.; Wang, B. Rare Metals. 2022, 41, 3591. doi:10.1007/s12598-022-02061-7
-
[82]
-
[83]
(83) Li, L.; Wang, P.; Qi, S.; Huang, X. Chem. Soc. Rev. 2020, 49, 3072. doi:10.1039/D0CS00013B
-
[84]
(84) Zhao, Y.; Tao, L. Chin. Chem. Lett. 2023, 34, 108571. doi:10.1016/j.cclet.2023.108571
-
[85]
(85) Du, M.; Guo, J.; Zheng, S.; Liu, Y.; Yang, J.; Zhang, K.; Gu, Z.; Wang, X.; Wu, X. Chin. Chem. Lett. 2023, 34, 107706. doi:10.1016/j.cclet.2022.07.049
-
[86]
(86) Lee, S.; Kim, J.; Kwon, K.; Park, S.; Jang, H. Carbon Neutralization 2022, 1, 26. doi:10.1002/cnl2.9
-
[87]
(87) Huang, Q.; Liu, X.; Zhang, Z.; Wang, L.; Xiao, B.; Ao, Z. Chin. Chem. Lett. 2023, 34, 108046. doi:10.1016/j.cclet.2022.108046
-
[88]
(88) Chen, L.; Hou, C.; Zou, L.; Kitta, M.; Xu, Q. Sci. Bull. 2021, 66, 170. doi:10.1016/j.scib.2020.06.022
-
[89]
(89) Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Chem. Soc. Rev. 2020, 49, 9154. doi:10.1039/d0cs00575d
-
[90]
(90) Zhang, X. Y.; Han, Y.; Cai, W. W.; Zhang, D.; Wang, Z. C.; Li, H. D.; Sun, Y. Y.; Zhang, Y. Y.; Lai, J. P.; Wang, L. Adv. Mater. Interfaces 2022, 9, 2102154. doi:10.1002/admi.202102154
-
[91]
(91) Yuan, C.; Zhao, H.; Huang, S.; Li, J.; Zhang, L.; Zhao, W.; Weng, Y.; Zhang, Y.; Lai, J.; Wang, L. Carbon Neutralization 2023, 2, 467. doi:10.1002/cnl2.77
-
[92]
(92) Wang, Z.; Zhang, X.; Wu, X.; Pan, Y.; Li, H.; Han, Y.; Xu, G.; Chi, J.; Lai, J.; Wang, L. Chem. Eng. J. 2022, 437, 135375. doi:10.1016/j.cej.2022.135375
-
[93]
(93) Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X, Y.; Jiang, Q. Adv. Funct. Mater. 2020, 31, 2009613. doi:10.1002/adfm.202009613
-
[94]
(94) Wang, R.; Huang, J.; Zhang, X.; Han, J.; Zhang, Z.; Gao, T.; Xu, L.; Liu, S.; Xu, P.; Song, B. ACS Nano 2022, 16, 3593. doi:10.1021/acsnano.2c01064
-
[95]
(95) Wei, M.; Sun Yu.; Ai, F.; Xi, S.; Zhang, J.; Wang, J. Appl. Catal. B 2023, 334, 122814. doi:10.1016/j.apcatb.2023.122814
-
[96]
(96) Fu, X.; Zhang, J.; Zhan, S.; Xia, F.; Wang, C.; Ma, D.; Yue, Q.; Wu, J.; Kang, Y. ACS Catal. 2022, 19, 11955. doi:10.1021/acscatal.2c02778
-
[97]
(97) Wang, J.; Zhang, J.; Hu, Y.; Jiang, H.; Li, C. Sci. Bull. 2022, 67, 1890. doi:10.1016/j.scib.2022.08.022
-
[98]
(98) Feng, G.; Ning, F.; Song, J.; Shang, H.; Zhang, K.; Ding, Z.; Gao, P.; Chu, W.; Xia, D. J. Am. Chem. Soc. 2021, 143, 17117. doi:10.1021/jacs.1c07643
-
[99]
(99) Kang, Y.; Cretu, O.; Kikkawa, J.; Kimoto, K.; Nara, H.; Nugraha, A. S.; Kawamoto, H.; Eguchi, M.; Liao, T.; Sun, Z.; et al. Nat. Commun. 2023, 14, 4182. doi:10.1038/s41467-023-39157-2
-
[100]
(100) Zhang, L.; Cai, W.; Bao, N.; Yang, H. Adv. Mater. 2022, 34, 2110511. doi:10.1002/adma.202110511
-
[101]
(101) Zhang, L.; Cai, W.; Bao, N. Adv. Mater. 2021, 33, e2100745. doi:10.1002/adma.202100745
-
[102]
(102) Abdelhafiz, A.; Wang, B.; Harutyunyan, A. R.; Li, J. Adv. Energy Mater. 2022, 12, 2200742. doi:10.1002/aenm.202200742
-
[103]
(103) Yi, L.; Xiao, S.; Wei, Y.; Li, D.; Wang, R.; Guo, S.; Hu, W. Chem. Eng. J. 2023, 469, 144015. doi:10.1016/j.cej.2023.144015
-
[104]
(104) Nguyen, T.; Su, Y.; Lin, C.; Ting, J. Adv. Funct. Mater. 2021, 31, 2106229. doi:10.1002/adfm.202106229
-
[105]
(105) Maulana, A.; Chen, P.; Shi, Z.; Yang, Y.; Lizandara, C.; Seeler, F.; Abruna, H.; Muller.; D. Schierle-Arndt, K.; Yang, P. Nano Lett. 2023, 23, 6637. doi:10.1021/acs.nanolett.3c01831
-
[106]
(106) Hao, J.; Zhuang, Z.; Cao, K.; Gao, G.; Wang, C.; Lai, F.; Lu, S. Ma, P.; Dong, W.; Liu, T.; et al. Nat. Commun. 2022, 13, 2662. doi:10.1038/s41467-022-30379-4
-
[107]
(107) Jo, S.; Kim, MC.; Lee, K.; Choi, H.; Zhang, L.; Sohn, J. Adv. Energy Mater. 2023, 2301420. doi:10.1002/aenm.202301420
-
[108]
(108) Wang, T.; Chen, H.; Yang, Z.; Liang, J.; Dai, S. J. Am. Chem. Soc. 2020, 142, 4550. doi:10.1021/jacs.9b12377
-
[109]
(109) Zhang, W.; Feng, X.; Mao, Z. X.; Li, J.; Wei, Z. Adv. Funct. Mater. 2022, 32, 2204110. doi:10.1002/adfm.202204110
-
[110]
(110) Zhu, G.; Jiang, Y.; Yang, H.; Wang, H.; Fang, Y.; Wang, L.; Xie, M. Qiu, P.; Luo, W. Adv. Mater. 2022, 34, e2110128. doi:10.1002/adma.202110128
-
[111]
(111) Zeng, K.; Zhang, J.; Gao, W.; Wu, L.; Liu, H.; Gao, J.; Li, Z.; Zhou, J.; Li, T.; Liang, Z.; et al. Adv. Funct. Mater. 2022, 32, 2204643. doi:10.1002/adfm.202204643
-
[112]
(112) Wu, D.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kubota, Y.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 13833. doi:10.1021/jacs.0c04807
-
[113]
(113) Chen, W.; Luo, S.; Sun, M.; Wu, X.; Zhou, Y.; Liao, Y.; Tang, M.; Fan, X.; Huang, B.; Quan, Z. Adv. Mater. 2022, 34, 2206276. doi:10.1002/adma.202206276
-
[114]
(114) Zhan, C.; Bu, L.; Sun, H.; Huang, X.; Zhu, Z.; Yang, T.; Ma, H.; Li, L.; Wang, Y.; Geng, H.; et al. Angew. Chem. Int. Ed. 2022, 62, e202213783. doi:10.1002/anie.202213783
-
[115]
(115) Sun, Y.; Yu, L.; Xu, S.; Xie, S.; Jiang, L.; Duan, J.; Zhu, J.; Chen, S. Small 2022, 18, e2106358. doi:10.1002/smll.202106358
-
[116]
(116) Zhang, D.; Zhao, H.; Wu, X.; Deng, Y.; Wang, Z.; Han, Y.; Li, H.; Shi, Y.; Chen, X.; Li, S.; et al. Adv. Funct. Mater. 2020, 31, 2006939. doi:10.1002/adfm.202006939
-
[117]
(117) John, C.; Alireza, A.; Leily, M.; Arashdeep, S.; Saurabhm, N. M.; Aditya, P.; Zahra, H.; Sina, R.; Andrew, B.; Meenesh, R. S.; et al. Adv. Mater. 2021, 33, 2100347. doi:10.1002/adma.202100347
-
[118]
(118) Ma, Q.; Mu, S. Interdiscip. Mater. 2022, 2, 53. doi:10.1002/idm2.12059
-
[119]
(119) Shi, P.; Si, D.; Yao, M.; Liu, T.; Huang, Y.; Zhang, T.; Cao, R. Sci. China Mater. 2022, 65, 1531. doi:10.1007/s40843-021-1919-5
-
[120]
(120) Wang, X.; Ma, R.; Li, S.; Xu, M.; Liu, L.; Feng, Y.; Thomas, T.; Yang, M.; Wang, J. Adv. Energy Mater. 2023, 13, 2300765. doi:10.1002/aenm.202300765
-
[121]
(121) Choi, M.; Wang, L.; Stoerzinger, K.; Chung, S.; Chambers, S.; Du, Y. Adv. Energy Mater. 2023, 13, 2300239. doi:10.1002/aenm.202300239
-
[122]
(122) Chen, C.; Sun, M.; Zhang, F.; Li, H.; Sun, M.; Fang, P.; Song, T.; Chen, P.; Chen, W.; Dong, J.; et al. Energy Environ. Sci. 2023, 16, 1685. doi:10.1039/D2EE03930C
-
[123]
(123) Wang, N.; Ou, P.; Miao, R.; Chang, Y.; Wang, Z.; Hung, S.; Abed, J.; Ozden, A.; Chen, H.; Wu, H.; et al. J. Am. Chem. Soc. 2023, 145, 7829. doi:10.1021/jacs.2c12431
-
[124]
(124) Iqbal, S.; Safdar, B.; Hussain, I.; Zhang, K.; Chatzichristodoulou, C. Adv. Energy Mater. 2023, 13, 2203913. doi:10.1002/aenm.202203913
-
[125]
(125) Cavin, J.; Ahmadiparidari, A.; Majidi, L.; Thind, A. S.; Misal, S. N.; Prajapati, A.; Hemmat, Z.; Rastegar, S.; Beukelman, A.; Singh, M. R.; et al. Adv. Mater. 2021, 33, 2100347. doi:10.1002/adma.202100347
-
[126]
(126) Shi, Z.; Li, J.; Wang, Y.; Liu, S.; Zhu, J.; Yang, J.; Wang, X.; Wu, Z.; Bao, X. Nat. Commun. 2023, 14, 843. doi:10.1038/s41467-023-36380-9
-
[127]
(127) Li, Y.; Ding, Y.; Zhang, B.; Huang, Y.; Qi, H.; Das, P.; Zhang, L.; Wang, X.; Wu, Z.; Bao, X. Energy Environ. Sci. 2023, 16, 2629. doi:10.1039/D3EE00747B
-
[128]
(128) Liu, Q.; Wang, L.; Fu, H. J. Mater. Chem. A. 2023, 11, 4400. doi:10.1039/D2TA09626A
-
[129]
(129) Cui, P.; Zhao, L.; Long, Y.; Dai, L.; Hu, C. Angew. Chem. Int. Ed. 2023, 62, e202218269. doi:10.1002/anie.202218269
-
[130]
(130) Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D.; Wegener, E.; Kropf, A.; Martinez, U.; Cheng, Y.; Engelhard, M.; et al. Nat. Catal. 2020, 3, 1044. doi:10.1038/s41929-020-00546-1
-
[131]
(131) Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Nat. Nanotechnol. 2021, 16, 140. doi:10.1038/s41565-020-00824-w
-
[132]
(132) Jin, H.; Xu, Z.; Hu, Z. Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.; Dong, S.; Liu, J.; et al. Nat. Commun. 2023, 14, 1518. doi:10.1038/s41467-023-37268-4
-
[133]
(133) Chi, B.; Zhang, L.; Yang, X.; Zeng, Y.; Deng, Y.; Liu, M.; Huo, J.; Li, C.; Zhang, X.; Shi, X.; et al. ACS Catal. 2023, 13, 4221. doi:10.1021/acscatal.2c06118
-
[134]
(134) Chen, X.; Huang, S.; Zhang, H. J. Alloys Compd. 2021, 894, 162508. doi:10.1016/j.jallcom.2021.162508
-
[135]
(135) Chang, J.; Wang, G.; Chang, X.; Yang, Z.; Wang, H.; Li, B.; Zhang, W.; Kovarik, L.; Du, Y.; Orlovskaya, N.; et al. Nat. Commun. 2023, 14, 1346. doi:10.1038/s41467-023-37011-z
-
[136]
(136) Wang, J.; Zhang, B.; Guo, W.; Wang, L.; Chen, J.; Pan, H.; Sun, W. Adv. Mater. 2023, 35, e2211099. doi:10.1002/adma.202211099
-
[137]
(137) Bai, S.; Xu, Y.; Cao, K.; Huang, X. Adv. Mater. 2020, 33, 2005767. doi:10.1002/adma.202005767
-
[138]
(138) Qin, Y.; Huang, H.; Yu, W.; Zhang, H.; Li, Z.; Wang, Z.; Lai, J.; Wang, L.; Feng, S. Adv. Sci. 2022, 9, e2103722. doi:10.1002/advs.202103722
-
[139]
(139) Han, A.; Zhang, Z.; Yang, J.; Wang, D.; Li, Y. Small 2021, 17, e2004500. doi:10.1002/smll.202004500
-
[140]
(140) Zhang, X.; Hu, J. P.; Fu, N.; Zhou, W. B.; Liu, B.; Deng, Q.; Wu, X. W. Infomat 2022, 4, e12306. doi:10.1002/inf2.12306
-
[141]
(141) Wang, W.; Zhang, X.; Zhang, Y.; Chen, X.; Ye, J.; Chen, J.; Lyu, Z.; Chen, X.; Kuang, Q.; Xie, S.; et al. Nano Lett. 2020, 20, 5458. doi:10.1021/acs.nanolett.0c01908
-
[142]
(142) Shi, Q.; Zhu, C.; Tian, M.; Su, D.; Fu, M.; Engelhard, M.; Chowdhury, I.; Feng, S.; Dua, D.; Lin, Y. Nano Energy 2018, 53, 206. doi:10.1016/j.nanoen.2018.08.047
-
[143]
(143) Li, S.; Wang, J.; Lin, X.; Xie, G.; Huang, Y.; Liu, X.; Qiu, H. J. Adv. Funct. Mater. 2020, 31, 2007129. doi:10.1002/adfm.202007129
-
[144]
(144) Feng, D.; Dong, Y.; Zhang, L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. Angew. Chem. Int. Ed. 2020, 59, 19503. doi:10.1002/anie.202004892
-
[145]
(145) Tang, C.; Qiao, S. Z. Chem. Soc. Rev. 2019, 48, 3166. doi:10.1039/c9cs00280d
-
[146]
(146) Zhao, S.; Lu, X.; Wang, L.; Gale, J.; Amal, R. Adv. Mater. 2019, 31, e1805367. doi:10.1002/adma.201805367
-
[147]
(147) Chu, K.; Qin, J.; Zhu, H.; De Ras, M.; Wang, C.; Xiong, L.; Zhang, L.; Zhang, N.; Martens, J, A.; Hofkens, J.; et al. Sci. China Mater. 2022, 65, 2711. doi:10.1007/s40843-022-2021-y
-
[148]
(148) Chen, J.; Crooks, R.; Seefeldt, L.; Bren, K.; Bullock, R.; Darensbourg, M.; Holland, P.; Hoffman.; Janik, M.; Jones, A.; et al. Science 2018, 360, eaar6611. doi:10.1126/science.aar6611
-
[149]
(149) Shia, L.; Yina, Y.; Wang, S.; Xua, X.; Wua, H.; Zhang, J.; Wang, S.; Suna, H. Appl. Catal. B 2020, 27, 69. doi:10.1016/j.apcatb.2020.119325
-
[150]
(150) Van der Ham, C.; Koper, M.; Hetterscheid, D. Chem. Soc. Rev. 2014, 43, 5183. doi:10.1039/c4cs00085d
-
[151]
(151) Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, e1800191. doi:10.1002/adma.201800191
-
[152]
(152) Han, Y.; Cai, W.; Wu, X.; Qi, W.; Li, B.; Li, H.; Zhang, D.; Pan, Y.; Wang, Z.; Lai, J.; et al. Cell Rep. Phys. Sci. 2020, 1, 100232. doi:10.1016/j.xcrp.2020.100232
-
[153]
(153) Zhao, H.; Zhang, D.; Li, H.; Qi, W.; Wu, X.; Han, Y.; Cai, W.; Wang, Z.; Lai, J.; Wang, L. Adv. Energy Mater. 2020, 10, 2002131. doi:10.1002/aenm.202002131
-
[154]
(154) Li, X.; Wang, S.; Li, L.; Zu, X.; Sun, Y.; Xie, Y. Acc. Chem. Res. 2020, 53, 2964. doi:10.1021/acs.accounts.0c00626
-
[155]
(155) Wang, Q.; Li, J.; Jin, H.; Xin, S.; Gao, H. Infomat 2022, 4, e12311. doi:10.1002/inf2.12311
-
[156]
(156) Wu, Z.; Gao, F.; Gao, M. Energy Environ. Sci. 2021, 14, 1121. doi:10.1039/D0EE02747B
-
[157]
(157) Yin, J.; Jin, J.; Yin, Z.; Zhu, L.; Du, X.; Peng, Y.; Xi, P.; Yan, C.; Sun, S. Nat. Commun. 2023, 14, 1724. doi:10.1038/s41467-023-37360-9
-
[158]
(158) Han, N.; Sun, M.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B.; Li, Y. Adv. Mater. 2021, 33, e2005821. doi:10.1002/adma.202005821
-
[159]
(159) Wang, X.; Wang, Z.; Arquer, F.; Dinh, C.; Ozden, A.; Li, Y.; Nam, D.; Li, J.; Liu, Y.; Wicks, J.; et al. Nat. Energy 2020, 5, 78. doi:10.1038/s41560-020-0607-8
-
[160]
(160) Bi, J.; Li, P.; Liu, J.; Jia, S.; Wang, Y.; Zhu, Q.; Liu, Z.; Han, B. Nat. Commun. 2023, 14, 2823. doi:10.1038/s41467-023-38524-3
-
[161]
(161) Wang, X.; Wang, Z.; Zhuang, T.; Dinh, C.; Li, J.; Nam, D.; Li, F.; Huang, C.; Tan, C.; Chen, Z.; et al. Nat. Commun. 2019, 10, 5186. doi:10.1038/s41467-019-13190-6
-
[162]
-
[163]
(163) Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Yamashita, H. Nat. Commun. 2021, 12, 3884. doi:10.1038/s41467-021-24228-z
-
[1]
-
-
-
[1]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[2]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[3]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[4]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[5]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[6]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[7]
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
-
[8]
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
-
[9]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[10]
Cen Zhou , Biqiong Hong , Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086
-
[11]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[12]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[13]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[14]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[15]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[16]
Yifei Cheng , Jiahui Yang , Wei Shao , Wanqun Zhang , Wanqun Hu , Weiwei Li , Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033
-
[17]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[18]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[19]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
-
[20]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(273)
- HTML views(29)