Citation: Xinyi Zhang,  Kai Ren,  Yanning Liu,  Zhenyi Gu,  Zhixiong Huang,  Shuohang Zheng,  Xiaotong Wang,  Jinzhi Guo,  Igor V. Zatovsky,  Junming Cao,  Xinglong Wu. Progress on Entropy Production Engineering for Electrochemical Catalysis[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230705. doi: 10.3866/PKU.WHXB202307057 shu

Progress on Entropy Production Engineering for Electrochemical Catalysis

  • Corresponding author: Junming Cao,  Xinglong Wu, 
  • Received Date: 29 July 2023
    Revised Date: 31 August 2023
    Accepted Date: 3 September 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2023YFE0202000), the National Natural Science Foundation of China (52302222), the Natural Science Foundation of Jilin Province (20230508177RC), the 111 Project (B13013), the China Postdoctoral Science Foundation (2022M720704, 2023T160094) and the Fundamental Research Funds for the Central Universities (2412022QD038).

  • As for the accurate synthesis of high-performance electrochemical catalysts with good robustness, the rational design on atomic level is still a priority. Entropy, as one of the most significant thermodynamic parameters, measure the disorder of a system, which is a significant quantity for materials. The values are primarily determined by the crystal structure, magnetic moments and the atomic and electronic vibrations of the materials. According to the configurational entropy of the system, we usually divide the material into low entropy materials (LEMs) (∆Smix < 1R), medium entropy materials (MEMs) (1R ≤ ∆Smix ≥ 1.5R) and high entropy materials (HEMs) (∆Smix > 1.5R), where R is the gas molar constant. HEMs are those that consist of five or more major elements of roughly equal proportion, in a highly uniform, random manner, which typically consist of one or two major elements compared to traditional materials. As the entropy value increases, the intrinsic physical, chemical and structural properties of the material change accordingly, resulting in special physicochemical properties (e.g., strength, electrical conductivity, corrosion resistance, etc.). Moreover, due to its multi-element combination, the HEMs can be precisely regulated by selecting different elements and their ratios according to the needs, which overcomes the limitations of the traditional catalysts in terms of relatively single component, structure and field of application. Importantly, the synergistic high entropy effect and multi-component arrangement at the atomic-level interface produced by the coexistence of different metal elements in HEMs can exert higher catalytic activity, selectivity and stability in different reactions. This has attracted a lot of attention from researchers, especially in the field of electrocatalysis. In this review systematically summarizes the fundamental concepts of high-entropy catalysts (HECs), synthetic approaches (“top-down” and “bottom-up”), and the structure-performance relationships of HEMs in different types of electrocatalytic processes, mainly including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), alcohol oxidation reaction (AOR), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2RR) etc. Thus, the advantages and potential of high-performance electrocatalysts based on entropy increase engineering are illuminate. At the same time, it is summarized and discussed that HECs are currently facing problems and challenges such as complicated material rational design, complex preparation process, the mechanism of electrocatalytic processes in which multiple metal elements interact is ambiguous, and poor stability under extreme reaction conditions. Finally, the main problems and challenges facing the current HECs research. We look forward to the future design ideas, synthesis methods different research areas and industrial applications of HECs based on entropy enhancement engineering.
  • 加载中
    1. [1]

      (1) Wang, X.; Gu, Z.; Edison, H.; Zhao, X.; Wu, X.; Liu, Y. Interdiscip. Mater. 2022, 1, 417. doi:10.1002/idm2.12041

    2. [2]

      (2) You, B.; Sun, Y. Acc. Chem. Res. 2018, 51, 1571. doi:10.1021/acs.accounts.8b00002

    3. [3]

      (3) Bui, T. S.; Lovell, E. C.; Daiyan, R.; Amal, R. Adv. Mater. 2023, 35, e2205814. doi:10.1002/adma.202205814

    4. [4]

      (4) Wang, C.; Lv, Z.; Yang, W.; Feng, X.; Wang, B. Chem. Soc. Rev. 2023, 52, 1382. doi:10.1039/d2cs00843b

    5. [5]

      (5) Zhao, C.; Liu, J.; Wang, J.; Ren, D.; Li, B.; Zhang, Q. Chem. Soc. Rev. 2021, 50, 7745. doi:10.1039/d1cs00135c

    6. [6]

      (6) Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Adv. Mater. 2022, 34, 2108133. doi:10.1002/adma.202108133

    7. [7]

      (7) Cao, J.; Zatovsky, I.; Gu, Z.; Yang, J.; Zhao, X.; Guo, J.; Xu, H.; et al. Prog. Mater. Sci. 2023, 135, 101105. doi:10.1016/j.pmatsci.2023.101105

    8. [8]

      (8) Wang, Y.; Wang, S.; Ma, Z.; Yan, L.; Zhao, X.; Xue, Y.; Huo, J.; Yuan, X.; Li, S.; Zhai, Q. Adv. Mater. 2022, 34, e2107488. doi:10.1002/adma.202107488

    9. [9]

      (9) Li, X.; Wang, S.; Li, L.; Sun, Y.; Xie, Y. J. Am. Chem. Soc. 2020, 142, 9567. doi:10.1021/jacs.0c02973

    10. [10]

      (10) Yu, J.; Li, B.; Zhao, C.; Zhang, Q. Energy Environ. Sci. 2020, 13, 3253. doi:10.1039/D0EE01617A

    11. [11]

      (11) Guo, J.; Gu, Z.; Du, M.; Zhao, X.; Wang, X.; Wu, X. Mater. Today 2023, 66, 1369. doi:10.1016/j.mattod.2023.03.020

    12. [12]

      (12) Bueno, S.; Ashberry, H.; Shafei, I.; Skrabalak, S. Acc. Chem. Res. 2021, 54, 1662. doi:10.1021/acs.accounts.0c00655

    13. [13]

      (13) Wang, T.; Chutia, A.; Brett, D.; Shearing, P.; He, G.; Chai, G.; Parkin, I. Energy Environ. Sci. 2021, 14, 2639. doi:10.1039/D0EE03915B

    14. [14]

      (14) Wang, X.; Sokolowski, J.; Liu, H.; Wu, G. Chin. J. Catal. 2020, 41, 739. doi:10.1016/S1872-2067(19)63407-8

    15. [15]

      (15) Zahran, Z.; Mohamed, E.; Tsubonouchi, Y.; Ishizaki, M.; Togashi, T.; Kurihara, M.; Saito, K.; Yuia, T.; Yagi, M. Energy Environ. Sci. 2021, 14, 5358. doi:10.1039/D1EE00509J

    16. [16]

      (16) Wang, M.; Wang, Y.; Mao, S.; Shen, S. Nano Energy 2021, 88, 106216. doi:10.1016/j.nanoen.2021.106216

    17. [17]

      (17) Sun, J.; Zhao, Z.; Li, J.; Li, Z.; Meng, X. Rare Metals 2022, 42, 751. doi:10.1007/s12598-022-02168-x

    18. [18]

      (18) Glasscott, M.; Pendergast, A.; Goines, S.; Bishop, A.; Hoang, A.; Renault, C.; Dick, J. Nat. Commun. 2019, 10, 2650. doi:10.1038/s41467-019-10303-z

    19. [19]

      (19) Gludovatz, B.; Hohenwarter, A.; Thurston, K.; Bei, H.; Wu, Z.; George, E.; Ritchie, R. Nat. Commun. 2016, 7, 10602. doi:10.1038/ncomms10602

    20. [20]

      (20) Laplanche, G.; Kostka, A.; Reinhart, C.; Hunfeld, J.; Eggeler, G.; George, E. Acta Mater. 2017, 128, 292. doi:10.1016/j.actamat.2017.02.036

    21. [21]

      (21) Wu, Z.; Bei, H.; Pharr, G.; George, E. Acta Mater. 2014, 81, 428. doi:10.1016/j.actamat.2014.08.026

    22. [22]

      (22) Zhang, Z.; Mao, M.; Wang, J.; Gludovatz, B.; Zhang, Z.; Mao, S. X.; George, E.; Yu, Q.; Ritchie, R. Nat. Commun. 2015, 6, 10143. doi:10.1038/ncomms10143

    23. [23]

      (23) George, E.; Raabe, D.; Ritchie, R. Nat. Rev. Mater. 2019, 4, 515. doi:10.1038/s41578-019-0121-4

    24. [24]

      (24) Zou, Y.; Ma, H.; Spolenak, R. Nat. Commun. 2015, 6, 7748. doi:10.1038/ncomms8748

    25. [25]

      (25) Chuang, M. H.; Tsai, M. H.; Wang, W. R.; Lin, S. J.; Yeh, J. W. Acta Mater. 2011, 59, 6308. doi:10.1016/j.actamat.2011.06.041

    26. [26]

      (26) Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Adv. Eng. Mater. 2004, 6, 299. doi:10.1002/adem.200300567

    27. [27]

      (27) Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Mater. SciEng A 2004, 375, 213. doi:10.1016/j.msea.2003.10.257

    28. [28]

      (28) Tsai, M. H.; Yeh, J. W. Mater. Res. Lett. 2014, 2, 107. doi:10.1080/21663831.2014.912690

    29. [29]

      (29) Singh, A. Matter 2021, 4, 23. doi:10.1016/j.matt.2020.12.021

    30. [30]

      (30) He, Q.; Tang, P.; Chen, H.; Lan, S.; Wang, J.; Luan, J.; Du, M.; Liu, Y.; Liu, C.; Pao, C.; et al. Acta Mater. 2021, 216, 117140. doi:10.1016/j.actamat.2021.117140

    31. [31]

      (31) Kusada, K.; Mukoyoshi, M.; Wu, D.; Kitagawa, H. Angew. Chem. Int. Ed. 2022, 61, e202209616. doi:10.1002/anie.202209616

    32. [32]

      (32) Huang, X.; Yang, G.; Li, S.; Wang, H.; Cao, Y.; Peng, F.; Yu, H. J. Energy Chem. 2022, 68, 721. doi:10.1016/j.jechem.2021.12.026

    33. [33]

      (33) Yao, Y.; Liu, Z.; Xie, P.; Huang, Z.; Li, T.; Morris, D.; Finfrock, Z.; Zhou, J.; Jiao, M.; Gao, J.; et al. Sci. Adv. 2020, 6, eaaz0510. doi:10.1126/sciadv.aaz0510

    34. [34]

      (34) Yeh, J. W.; Chang, S. Y.; Hong, Y. D.; Chen, S. K.; Lin, S. J. Mater. Chem. Phys. 2007, 103, 41. doi:10.1016/j.matchemphys.2007.01.003

    35. [35]

      (35) Huang, K.; Zhang, B.; Wu, J.; Zhang, T.; Peng, D.; Cao, X.; Zhang, Z.; et al. J. Mater. Chem. A 2020, 8, 11938. doi:10.1039/D0TA02125C

    36. [36]

      (36) Tsai, K.; Y.; Tsai; H.; M.; Yeh, J. W. Acta Mater. 2013, 61, 4887. doi:10.1016/j.actamat.2013.04.058

    37. [37]

      (37) Ruffa, A. R. Phys. Rev. B 1982, 25, 5895. doi:10.1103/PhysRevB.25.5895

    38. [38]

      (38) Zhang, W.; Liaw, P.; Zhang, Y. Sci. China Mater. 2018, 61, 2. doi:10.1007/s40843-017-9195-8

    39. [39]

      (39) Chen, H.; Lin, W.; Zhang, Z.; Jie, K.; Mullins, D.; Sang, X.; Yang, S.; Jafta, C.; Bridges, C.; Hu, X.; et al. ACS Mater. Lett. 2019, 1, 83. doi:10.1021/acsmaterialslett.9b00064

    40. [40]

      (40) Yao, Y.; Huang, Z.; Xie, P.; Lacey, SD.; Jacob, R.; Xie, H.; Chen, F.; Nie, A.; Pu, T.; Rehwoldt, M.; et al. Science 2018, 359, 1489. doi:10.1126/science.aan5412

    41. [41]

      (41) Miracle, D.; Senkov, O. Acta Mater. 2017, 112, 448. doi:10.1016/j.actamat.2016.08.081

    42. [42]

      (42) Yusenko, K. V.; Riva, S.; Carvalho, P. A.; Yusenko, M. V.; Arnaboldi, S.; Sukhikh, A. S.; Hanfland, M.; Gromilov, SA. Scr. Mater. 2017, 138, 22. doi:10.1016/j.scriptamat.2017.05.022

    43. [43]

      (43) Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Prog. Mater. Sci. 2014, 61, 1. doi:10.1016/j.pmatsci.2013.10.001

    44. [44]

      (44) Gibbs, J. W. Am. J. Sci. 1878, 16, 441. doi:10.2475/ajs.s3-16.96.441

    45. [45]

      (45) Nair, R.; Arora, H.; Grewal, H. Int. J. Miner. Metall. Mater. 2020, 27, 1353. doi:10.1007/s12613-020-2000-9

    46. [46]

      (46) Ranganathan, S. Curr. Sci. 2003, 85, 1404. doi:10.1038/nature02146

    47. [47]

      (47) Pang, J.; Zhang, H.; Zhang, L.; Zhu, Z.; Fu, H.; Li, H.; Wang, A.; Li, Z.; Zhang, H. Mater. Lett. 2021, 290, 129428. doi:10.1016/j.matlet.2021.129428

    48. [48]

      (48) Chen, J.; Zhang, T.; Gao, Y.; Huang, J.; Qin, H.; Wang, F.; Zhao, K.; Peng, X.; Zhang, C.; Liu, L.; et al. Adv. Mater. 2021, 33, 2101845. doi:10.1002/adma.202101845

    49. [49]

      (49) Wang, Y.; Gu, Z.; Wang, D.; Xie, C.; Wang, H.; Huang, G.; Liu, B.; Zou, Y.; Li, T.; Wang, S. Angew. Chem. Int. Ed. 2021, 60, 20253. doi:10.1002/anie.202107390

    50. [50]

      (50) Xu, W.; Chen, H.; Jie, K.; Yang, Z.; Li, T.; Dai, S. Angew. Chem. Int. Ed. 2019, 58, 5018. doi:10.1002/anie.201900787

    51. [51]

      (51) Fang, G.; Gao, J.; Lv, J.; Jia, H.; Li, H.; Liu, W.; Xie, G.; Chen, Z.; Huang, Y.; Yuan, Q.; et al. Appl. Catal. B 2019, 268, 118431. doi:10.1016/j.apcatb.2019.118431

    52. [52]

      (52) Jin, Z.; Lyu, J.; Zhao, Y.; Li, H.; Lin, X.; Xie, G.; Liu, X.; Kai, J.; Qiu, H. ACS Mater. Lett. 2020, 2, 1698. doi:10.1021/acsmaterialslett.0c00434

    53. [53]

      (53) Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L.; Zhang, L.; Liang, S.; Lu, J.; Kruzic, J. Adv. Funct. Mater. 2021, 32, 2101586. doi:10.1002/adfm.202101586

    54. [54]

      (54) Lacey, S.; Qi, D.; Huang, Z.; Luo, J.; Xie, H.; Lin, Z.; Kirsch, D.; Vattipalli, V.; Povinelli, C.; Fan, W.; et al. Nano Lett. 2019, 19, 5149. doi:10.1021/acs.nanolett.9b01523

    55. [55]

      (55) Bueno, SL.; Leonardi, A.; Kar, N.; Chatterjee, K.; Zhan, X.; Chen, C.; Wang, Z.; Engel, M.; Fung, V.; Skrabalak, S. ACS Nano 2022, 16, 18873. doi:10.1021/acsnano.2c07787

    56. [56]

      (56) Gao, S.; Hao, S.; Huang, Z.; Yuan, Y.; Han, S.; Lei, L.; Zhang, X.; Shahbazian-Yassar, R.; Lu, J. Nat. Commun. 2020, 11, 2016. doi:10.1038/s41467-020-15934-1

    57. [57]

      (57) Park, C.; Senthil, R. A.; Jeong, G.; Choi, M. Small 2023, 19, e2207820. doi:10.1002/smll.202207820

    58. [58]

      (58) Qiao, H.; Saray, M.; Wang, X.; Xu, S.; Chen, G.; Huang, Z.; Chen, C.; Zhong, G.; Dong, Q.; Hong, M.; et al. ACS Nano 2021, 15, 14928. doi:10.1021/acsnano.1c05113

    59. [59]

      (59) Li, H.; Pa, Y.; Lai, J.; Wang, L.; Feng, S. Chin. J. Struct. Chem. 2022, 41, 2208003. doi:10.14102/j.cnki.0254-5861.2022-0125

    60. [60]

      (60) Tao, L.; Sun, M.; Zhou, Y.; Luo, M.; Lv, F.; Li, M.; Zhang, Q.; Gu, L.; Huang, B.; Guo, S. J. Am. Chem. Soc. 2022, 14, 10582. doi:10.1021/jacs.2c03544

    61. [61]

      (61) Minamihara, H.; Kusada, K.; Wu, D.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kumara, L. S. R.; Ohara, K.; Sakata, O.; Kawaguchi, S.; et al. J. Am. Chem. Soc. 2022, 144, 11525. doi:10.1021/jacs.2c02755

    62. [62]

      (62) Liu, Y.; Hsieh, C.; Hsu, L.; Lin, K.; Hsiao, Y.; Chi, C.; Lin, J.; Chang, C.; Lin, S.; Wu, C, Y.; et al. Sci. Adv. 2023, 9, eadf9931. doi:10.1126/sciadv.adf9931

    63. [63]

      (63) Rao, P.; Deng, Y.; Fan, W.; Luo, J.; Deng, P.; Li, J.; Shen, Y.; Tian, X. Nat. Commun. 2022, 13, 5071. doi:10.1038/s41467-022-32850-8

    64. [64]

      (64) Zhu, H.; Zhu, Z.; Hao, J.; Sun, S.; Lu, S.; Wang, C.; Ma, P.; Dong, W. F.; Du, M. L. Chem. Eng. J. 2022, 431, 133251. doi:10.1016/j.cej.2021.133251

    65. [65]

      (65) Zhu, H.; Sun, S.; Hao, J.; Zhuang, Z.; Zhang, S.; Wang, T.; Kang, Q.; Lu, S.; Wang, X.; Lai, F.; et al. Energy Environ. Sci. 2023, 16, 619. doi:10.1039/d2ee03185j

    66. [66]

      (66) Li, H.; Huang, H.; Chen, Y.; Lai, F.; Fu, H.; Zhang, L.; Zhang, N.; Bai, S.; Liu, T. Adv. Mater. 2022, 35, 2209242. doi:10.1002/adma.202209242

    67. [67]

      (67) Du, M.; Geng, P.; Pei, C.; Jiang, X.; Shan, Y.; Hu, W.; Ni, L.; Pang, H. Angew. Chem. Int. Ed. 2022, 61, e202209350. doi:10.1002/anie.202209350

    68. [68]

      (68) Kosanović, C.; Bronić, J.; Subotić, B.; Smit, I.; Stubičar, M.; Tonejc, A.; Yamamoto, T. Thermochim. Acta 1993, 276, 91103. doi:10.1016/0040-6031(95)02792-0

    69. [69]

      (69) Beldon, P.; Fabian, L.; Stein, R.; Thirumurugan, A.; Cheetham, A.; Friscic, T. Angew. Chem. Int. Ed. 2010, 49, 9640. doi:10.1002/anie.201005547

    70. [70]

      (70) Friscic, T. Chem. Soc. Rev. 2012, 41, 3493. doi:10.1039/c2cs15332g

    71. [71]

      (71) James, S.; Adams, C.; Bolm, C.; Braga, D.; Collier, P.; Friscic, T.; Grepioni, F.; Harris, K.; Hyett, G.; Jones, W.; et al. Chem. Soc. Rev. 2012, 41, 413. doi:10.1039/c1cs15171a

    72. [72]

      (72) Grätz, S.; Wolfrum, B.; Borchardt, L. Green Chem. 2017, 19, 2973. doi:10.1039/c7gc00693d

    73. [73]

      (73) Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S.; et al. Adv. Energy Mater. 2022, 12, 2103090. doi:10.1002/aenm.202103090

    74. [74]

      (74) Jin, Z.; Lyu, J.; Hu, K.; Chen, Z.; Liu, X.; Lin, X.; Qiu, H. Small 2022, 18, 2107207. doi:10.1002/smll.202107207

    75. [75]

      (75) Liao, Y.; Li, Y.; Zhao, R.; Zhang, J.; Zhao, L.; Ji, L.; Zhang, Z.; Liu, X.; Qin, G.; Zhang, X. Nat. Sci. Rev. 2022, 9, nwac041. doi:10.1093/nsr/nwac041

    76. [76]

      (76) Yang, J.; Dai, B.; Chiang, C.; Chiu, I.; Pao, C.; Lu, S.; Tsao, I.; Lin, S.; Chiu, C.; Yeh, J.; et al. ACS Nano 2021, 15, 12324. doi:10.1021/acsnano.1c04259

    77. [77]

      (77) Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S.; et al. Nano Res. 2021, 15, 4807. doi:10.1007/s12274-021-3804-2

    78. [78]

      (78) Cao, G.; Liang, J.; Guo, Z.; Yang, K.; Wang, G.; Wang, H.; Wan, X.; Li, Z.; Bai, Y.; Zhang, Y.; et al. Nature 2023, 619, 73. doi:10.1038/s41586-023-06082-9

    79. [79]

      (79) Li, T.; Yao, Y.; Ko, B. H.; Huang, Z.; Dong, Q.; Gao, J.; Chen, W.; Li, J.; Li, S.; Wang, X.; et al. Adv. Funct. Mater. 2021, 31, 2010561. doi:10.1002/adfm.202010561

    80. [80]

    81. [81]

      (81) Li, X.; Chen, C.; Niu, Q.; Li, N.; Yu, L.; Wang, B. Rare Metals. 2022, 41, 3591. doi:10.1007/s12598-022-02061-7

    82. [82]

    83. [83]

      (83) Li, L.; Wang, P.; Qi, S.; Huang, X. Chem. Soc. Rev. 2020, 49, 3072. doi:10.1039/D0CS00013B

    84. [84]

      (84) Zhao, Y.; Tao, L. Chin. Chem. Lett. 2023, 34, 108571. doi:10.1016/j.cclet.2023.108571

    85. [85]

      (85) Du, M.; Guo, J.; Zheng, S.; Liu, Y.; Yang, J.; Zhang, K.; Gu, Z.; Wang, X.; Wu, X. Chin. Chem. Lett. 2023, 34, 107706. doi:10.1016/j.cclet.2022.07.049

    86. [86]

      (86) Lee, S.; Kim, J.; Kwon, K.; Park, S.; Jang, H. Carbon Neutralization 2022, 1, 26. doi:10.1002/cnl2.9

    87. [87]

      (87) Huang, Q.; Liu, X.; Zhang, Z.; Wang, L.; Xiao, B.; Ao, Z. Chin. Chem. Lett. 2023, 34, 108046. doi:10.1016/j.cclet.2022.108046

    88. [88]

      (88) Chen, L.; Hou, C.; Zou, L.; Kitta, M.; Xu, Q. Sci. Bull. 2021, 66, 170. doi:10.1016/j.scib.2020.06.022

    89. [89]

      (89) Wang, J.; Gao, Y.; Kong, H.; Kim, J.; Choi, S.; Ciucci, F.; Hao, Y.; Yang, S.; Shao, Z.; Lim, J. Chem. Soc. Rev. 2020, 49, 9154. doi:10.1039/d0cs00575d

    90. [90]

      (90) Zhang, X. Y.; Han, Y.; Cai, W. W.; Zhang, D.; Wang, Z. C.; Li, H. D.; Sun, Y. Y.; Zhang, Y. Y.; Lai, J. P.; Wang, L. Adv. Mater. Interfaces 2022, 9, 2102154. doi:10.1002/admi.202102154

    91. [91]

      (91) Yuan, C.; Zhao, H.; Huang, S.; Li, J.; Zhang, L.; Zhao, W.; Weng, Y.; Zhang, Y.; Lai, J.; Wang, L. Carbon Neutralization 2023, 2, 467. doi:10.1002/cnl2.77

    92. [92]

      (92) Wang, Z.; Zhang, X.; Wu, X.; Pan, Y.; Li, H.; Han, Y.; Xu, G.; Chi, J.; Lai, J.; Wang, L. Chem. Eng. J. 2022, 437, 135375. doi:10.1016/j.cej.2022.135375

    93. [93]

      (93) Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X, Y.; Jiang, Q. Adv. Funct. Mater. 2020, 31, 2009613. doi:10.1002/adfm.202009613

    94. [94]

      (94) Wang, R.; Huang, J.; Zhang, X.; Han, J.; Zhang, Z.; Gao, T.; Xu, L.; Liu, S.; Xu, P.; Song, B. ACS Nano 2022, 16, 3593. doi:10.1021/acsnano.2c01064

    95. [95]

      (95) Wei, M.; Sun Yu.; Ai, F.; Xi, S.; Zhang, J.; Wang, J. Appl. Catal. B 2023, 334, 122814. doi:10.1016/j.apcatb.2023.122814

    96. [96]

      (96) Fu, X.; Zhang, J.; Zhan, S.; Xia, F.; Wang, C.; Ma, D.; Yue, Q.; Wu, J.; Kang, Y. ACS Catal. 2022, 19, 11955. doi:10.1021/acscatal.2c02778

    97. [97]

      (97) Wang, J.; Zhang, J.; Hu, Y.; Jiang, H.; Li, C. Sci. Bull. 2022, 67, 1890. doi:10.1016/j.scib.2022.08.022

    98. [98]

      (98) Feng, G.; Ning, F.; Song, J.; Shang, H.; Zhang, K.; Ding, Z.; Gao, P.; Chu, W.; Xia, D. J. Am. Chem. Soc. 2021, 143, 17117. doi:10.1021/jacs.1c07643

    99. [99]

      (99) Kang, Y.; Cretu, O.; Kikkawa, J.; Kimoto, K.; Nara, H.; Nugraha, A. S.; Kawamoto, H.; Eguchi, M.; Liao, T.; Sun, Z.; et al. Nat. Commun. 2023, 14, 4182. doi:10.1038/s41467-023-39157-2

    100. [100]

      (100) Zhang, L.; Cai, W.; Bao, N.; Yang, H. Adv. Mater. 2022, 34, 2110511. doi:10.1002/adma.202110511

    101. [101]

      (101) Zhang, L.; Cai, W.; Bao, N. Adv. Mater. 2021, 33, e2100745. doi:10.1002/adma.202100745

    102. [102]

      (102) Abdelhafiz, A.; Wang, B.; Harutyunyan, A. R.; Li, J. Adv. Energy Mater. 2022, 12, 2200742. doi:10.1002/aenm.202200742

    103. [103]

      (103) Yi, L.; Xiao, S.; Wei, Y.; Li, D.; Wang, R.; Guo, S.; Hu, W. Chem. Eng. J. 2023, 469, 144015. doi:10.1016/j.cej.2023.144015

    104. [104]

      (104) Nguyen, T.; Su, Y.; Lin, C.; Ting, J. Adv. Funct. Mater. 2021, 31, 2106229. doi:10.1002/adfm.202106229

    105. [105]

      (105) Maulana, A.; Chen, P.; Shi, Z.; Yang, Y.; Lizandara, C.; Seeler, F.; Abruna, H.; Muller.; D. Schierle-Arndt, K.; Yang, P. Nano Lett. 2023, 23, 6637. doi:10.1021/acs.nanolett.3c01831

    106. [106]

      (106) Hao, J.; Zhuang, Z.; Cao, K.; Gao, G.; Wang, C.; Lai, F.; Lu, S. Ma, P.; Dong, W.; Liu, T.; et al. Nat. Commun. 2022, 13, 2662. doi:10.1038/s41467-022-30379-4

    107. [107]

      (107) Jo, S.; Kim, MC.; Lee, K.; Choi, H.; Zhang, L.; Sohn, J. Adv. Energy Mater. 2023, 2301420. doi:10.1002/aenm.202301420

    108. [108]

      (108) Wang, T.; Chen, H.; Yang, Z.; Liang, J.; Dai, S. J. Am. Chem. Soc. 2020, 142, 4550. doi:10.1021/jacs.9b12377

    109. [109]

      (109) Zhang, W.; Feng, X.; Mao, Z. X.; Li, J.; Wei, Z. Adv. Funct. Mater. 2022, 32, 2204110. doi:10.1002/adfm.202204110

    110. [110]

      (110) Zhu, G.; Jiang, Y.; Yang, H.; Wang, H.; Fang, Y.; Wang, L.; Xie, M. Qiu, P.; Luo, W. Adv. Mater. 2022, 34, e2110128. doi:10.1002/adma.202110128

    111. [111]

      (111) Zeng, K.; Zhang, J.; Gao, W.; Wu, L.; Liu, H.; Gao, J.; Li, Z.; Zhou, J.; Li, T.; Liang, Z.; et al. Adv. Funct. Mater. 2022, 32, 2204643. doi:10.1002/adfm.202204643

    112. [112]

      (112) Wu, D.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kubota, Y.; Kitagawa, H. J. Am. Chem. Soc. 2020, 142, 13833. doi:10.1021/jacs.0c04807

    113. [113]

      (113) Chen, W.; Luo, S.; Sun, M.; Wu, X.; Zhou, Y.; Liao, Y.; Tang, M.; Fan, X.; Huang, B.; Quan, Z. Adv. Mater. 2022, 34, 2206276. doi:10.1002/adma.202206276

    114. [114]

      (114) Zhan, C.; Bu, L.; Sun, H.; Huang, X.; Zhu, Z.; Yang, T.; Ma, H.; Li, L.; Wang, Y.; Geng, H.; et al. Angew. Chem. Int. Ed. 2022, 62, e202213783. doi:10.1002/anie.202213783

    115. [115]

      (115) Sun, Y.; Yu, L.; Xu, S.; Xie, S.; Jiang, L.; Duan, J.; Zhu, J.; Chen, S. Small 2022, 18, e2106358. doi:10.1002/smll.202106358

    116. [116]

      (116) Zhang, D.; Zhao, H.; Wu, X.; Deng, Y.; Wang, Z.; Han, Y.; Li, H.; Shi, Y.; Chen, X.; Li, S.; et al. Adv. Funct. Mater. 2020, 31, 2006939. doi:10.1002/adfm.202006939

    117. [117]

      (117) John, C.; Alireza, A.; Leily, M.; Arashdeep, S.; Saurabhm, N. M.; Aditya, P.; Zahra, H.; Sina, R.; Andrew, B.; Meenesh, R. S.; et al. Adv. Mater. 2021, 33, 2100347. doi:10.1002/adma.202100347

    118. [118]

      (118) Ma, Q.; Mu, S. Interdiscip. Mater. 2022, 2, 53. doi:10.1002/idm2.12059

    119. [119]

      (119) Shi, P.; Si, D.; Yao, M.; Liu, T.; Huang, Y.; Zhang, T.; Cao, R. Sci. China Mater. 2022, 65, 1531. doi:10.1007/s40843-021-1919-5

    120. [120]

      (120) Wang, X.; Ma, R.; Li, S.; Xu, M.; Liu, L.; Feng, Y.; Thomas, T.; Yang, M.; Wang, J. Adv. Energy Mater. 2023, 13, 2300765. doi:10.1002/aenm.202300765

    121. [121]

      (121) Choi, M.; Wang, L.; Stoerzinger, K.; Chung, S.; Chambers, S.; Du, Y. Adv. Energy Mater. 2023, 13, 2300239. doi:10.1002/aenm.202300239

    122. [122]

      (122) Chen, C.; Sun, M.; Zhang, F.; Li, H.; Sun, M.; Fang, P.; Song, T.; Chen, P.; Chen, W.; Dong, J.; et al. Energy Environ. Sci. 2023, 16, 1685. doi:10.1039/D2EE03930C

    123. [123]

      (123) Wang, N.; Ou, P.; Miao, R.; Chang, Y.; Wang, Z.; Hung, S.; Abed, J.; Ozden, A.; Chen, H.; Wu, H.; et al. J. Am. Chem. Soc. 2023, 145, 7829. doi:10.1021/jacs.2c12431

    124. [124]

      (124) Iqbal, S.; Safdar, B.; Hussain, I.; Zhang, K.; Chatzichristodoulou, C. Adv. Energy Mater. 2023, 13, 2203913. doi:10.1002/aenm.202203913

    125. [125]

      (125) Cavin, J.; Ahmadiparidari, A.; Majidi, L.; Thind, A. S.; Misal, S. N.; Prajapati, A.; Hemmat, Z.; Rastegar, S.; Beukelman, A.; Singh, M. R.; et al. Adv. Mater. 2021, 33, 2100347. doi:10.1002/adma.202100347

    126. [126]

      (126) Shi, Z.; Li, J.; Wang, Y.; Liu, S.; Zhu, J.; Yang, J.; Wang, X.; Wu, Z.; Bao, X. Nat. Commun. 2023, 14, 843. doi:10.1038/s41467-023-36380-9

    127. [127]

      (127) Li, Y.; Ding, Y.; Zhang, B.; Huang, Y.; Qi, H.; Das, P.; Zhang, L.; Wang, X.; Wu, Z.; Bao, X. Energy Environ. Sci. 2023, 16, 2629. doi:10.1039/D3EE00747B

    128. [128]

      (128) Liu, Q.; Wang, L.; Fu, H. J. Mater. Chem. A. 2023, 11, 4400. doi:10.1039/D2TA09626A

    129. [129]

      (129) Cui, P.; Zhao, L.; Long, Y.; Dai, L.; Hu, C. Angew. Chem. Int. Ed. 2023, 62, e202218269. doi:10.1002/anie.202218269

    130. [130]

      (130) Xie, X.; He, C.; Li, B.; He, Y.; Cullen, D.; Wegener, E.; Kropf, A.; Martinez, U.; Cheng, Y.; Engelhard, M.; et al. Nat. Catal. 2020, 3, 1044. doi:10.1038/s41929-020-00546-1

    131. [131]

      (131) Kodama, K.; Nagai, T.; Kuwaki, A.; Jinnouchi, R.; Morimoto, Y. Nat. Nanotechnol. 2021, 16, 140. doi:10.1038/s41565-020-00824-w

    132. [132]

      (132) Jin, H.; Xu, Z.; Hu, Z. Y.; Yin, Z.; Wang, Z.; Deng, Z.; Wei, P.; Feng, S.; Dong, S.; Liu, J.; et al. Nat. Commun. 2023, 14, 1518. doi:10.1038/s41467-023-37268-4

    133. [133]

      (133) Chi, B.; Zhang, L.; Yang, X.; Zeng, Y.; Deng, Y.; Liu, M.; Huo, J.; Li, C.; Zhang, X.; Shi, X.; et al. ACS Catal. 2023, 13, 4221. doi:10.1021/acscatal.2c06118

    134. [134]

      (134) Chen, X.; Huang, S.; Zhang, H. J. Alloys Compd. 2021, 894, 162508. doi:10.1016/j.jallcom.2021.162508

    135. [135]

      (135) Chang, J.; Wang, G.; Chang, X.; Yang, Z.; Wang, H.; Li, B.; Zhang, W.; Kovarik, L.; Du, Y.; Orlovskaya, N.; et al. Nat. Commun. 2023, 14, 1346. doi:10.1038/s41467-023-37011-z

    136. [136]

      (136) Wang, J.; Zhang, B.; Guo, W.; Wang, L.; Chen, J.; Pan, H.; Sun, W. Adv. Mater. 2023, 35, e2211099. doi:10.1002/adma.202211099

    137. [137]

      (137) Bai, S.; Xu, Y.; Cao, K.; Huang, X. Adv. Mater. 2020, 33, 2005767. doi:10.1002/adma.202005767

    138. [138]

      (138) Qin, Y.; Huang, H.; Yu, W.; Zhang, H.; Li, Z.; Wang, Z.; Lai, J.; Wang, L.; Feng, S. Adv. Sci. 2022, 9, e2103722. doi:10.1002/advs.202103722

    139. [139]

      (139) Han, A.; Zhang, Z.; Yang, J.; Wang, D.; Li, Y. Small 2021, 17, e2004500. doi:10.1002/smll.202004500

    140. [140]

      (140) Zhang, X.; Hu, J. P.; Fu, N.; Zhou, W. B.; Liu, B.; Deng, Q.; Wu, X. W. Infomat 2022, 4, e12306. doi:10.1002/inf2.12306

    141. [141]

      (141) Wang, W.; Zhang, X.; Zhang, Y.; Chen, X.; Ye, J.; Chen, J.; Lyu, Z.; Chen, X.; Kuang, Q.; Xie, S.; et al. Nano Lett. 2020, 20, 5458. doi:10.1021/acs.nanolett.0c01908

    142. [142]

      (142) Shi, Q.; Zhu, C.; Tian, M.; Su, D.; Fu, M.; Engelhard, M.; Chowdhury, I.; Feng, S.; Dua, D.; Lin, Y. Nano Energy 2018, 53, 206. doi:10.1016/j.nanoen.2018.08.047

    143. [143]

      (143) Li, S.; Wang, J.; Lin, X.; Xie, G.; Huang, Y.; Liu, X.; Qiu, H. J. Adv. Funct. Mater. 2020, 31, 2007129. doi:10.1002/adfm.202007129

    144. [144]

      (144) Feng, D.; Dong, Y.; Zhang, L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. Angew. Chem. Int. Ed. 2020, 59, 19503. doi:10.1002/anie.202004892

    145. [145]

      (145) Tang, C.; Qiao, S. Z. Chem. Soc. Rev. 2019, 48, 3166. doi:10.1039/c9cs00280d

    146. [146]

      (146) Zhao, S.; Lu, X.; Wang, L.; Gale, J.; Amal, R. Adv. Mater. 2019, 31, e1805367. doi:10.1002/adma.201805367

    147. [147]

      (147) Chu, K.; Qin, J.; Zhu, H.; De Ras, M.; Wang, C.; Xiong, L.; Zhang, L.; Zhang, N.; Martens, J, A.; Hofkens, J.; et al. Sci. China Mater. 2022, 65, 2711. doi:10.1007/s40843-022-2021-y

    148. [148]

      (148) Chen, J.; Crooks, R.; Seefeldt, L.; Bren, K.; Bullock, R.; Darensbourg, M.; Holland, P.; Hoffman.; Janik, M.; Jones, A.; et al. Science 2018, 360, eaar6611. doi:10.1126/science.aar6611

    149. [149]

      (149) Shia, L.; Yina, Y.; Wang, S.; Xua, X.; Wua, H.; Zhang, J.; Wang, S.; Suna, H. Appl. Catal. B 2020, 27, 69. doi:10.1016/j.apcatb.2020.119325

    150. [150]

      (150) Van der Ham, C.; Koper, M.; Hetterscheid, D. Chem. Soc. Rev. 2014, 43, 5183. doi:10.1039/c4cs00085d

    151. [151]

      (151) Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. Adv. Mater. 2018, 30, e1800191. doi:10.1002/adma.201800191

    152. [152]

      (152) Han, Y.; Cai, W.; Wu, X.; Qi, W.; Li, B.; Li, H.; Zhang, D.; Pan, Y.; Wang, Z.; Lai, J.; et al. Cell Rep. Phys. Sci. 2020, 1, 100232. doi:10.1016/j.xcrp.2020.100232

    153. [153]

      (153) Zhao, H.; Zhang, D.; Li, H.; Qi, W.; Wu, X.; Han, Y.; Cai, W.; Wang, Z.; Lai, J.; Wang, L. Adv. Energy Mater. 2020, 10, 2002131. doi:10.1002/aenm.202002131

    154. [154]

      (154) Li, X.; Wang, S.; Li, L.; Zu, X.; Sun, Y.; Xie, Y. Acc. Chem. Res. 2020, 53, 2964. doi:10.1021/acs.accounts.0c00626

    155. [155]

      (155) Wang, Q.; Li, J.; Jin, H.; Xin, S.; Gao, H. Infomat 2022, 4, e12311. doi:10.1002/inf2.12311

    156. [156]

      (156) Wu, Z.; Gao, F.; Gao, M. Energy Environ. Sci. 2021, 14, 1121. doi:10.1039/D0EE02747B

    157. [157]

      (157) Yin, J.; Jin, J.; Yin, Z.; Zhu, L.; Du, X.; Peng, Y.; Xi, P.; Yan, C.; Sun, S. Nat. Commun. 2023, 14, 1724. doi:10.1038/s41467-023-37360-9

    158. [158]

      (158) Han, N.; Sun, M.; Zhou, Y.; Xu, J.; Cheng, C.; Zhou, R.; Zhang, L.; Luo, J.; Huang, B.; Li, Y. Adv. Mater. 2021, 33, e2005821. doi:10.1002/adma.202005821

    159. [159]

      (159) Wang, X.; Wang, Z.; Arquer, F.; Dinh, C.; Ozden, A.; Li, Y.; Nam, D.; Li, J.; Liu, Y.; Wicks, J.; et al. Nat. Energy 2020, 5, 78. doi:10.1038/s41560-020-0607-8

    160. [160]

      (160) Bi, J.; Li, P.; Liu, J.; Jia, S.; Wang, Y.; Zhu, Q.; Liu, Z.; Han, B. Nat. Commun. 2023, 14, 2823. doi:10.1038/s41467-023-38524-3

    161. [161]

      (161) Wang, X.; Wang, Z.; Zhuang, T.; Dinh, C.; Li, J.; Nam, D.; Li, F.; Huang, C.; Tan, C.; Chen, Z.; et al. Nat. Commun. 2019, 10, 5186. doi:10.1038/s41467-019-13190-6

    162. [162]

    163. [163]

      (163) Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Yamashita, H. Nat. Commun. 2021, 12, 3884. doi:10.1038/s41467-021-24228-z

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    11. [11]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    12. [12]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Qingcui Yang Wen Liu Li Cao Chen Tang Bing Xu Jie Zhao . For Entropy Hurts: Life Thrives on Negative Entropy. University Chemistry, 2024, 39(9): 151-156. doi: 10.12461/PKU.DXHX202402029

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(2)
  • Abstract views(143)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return