Citation: Yan Kong,  Wei Wei,  Lekai Xu,  Chen Chen. 电催化氮集成二氧化碳还原反应合成有机氮化合物[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230704. doi: 10.3866/PKU.WHXB202307049 shu

电催化氮集成二氧化碳还原反应合成有机氮化合物

  • Corresponding author: Chen Chen, cchen@mail.tsinghua.edu.cn
  • Received Date: 26 July 2023
    Revised Date: 9 September 2023
    Accepted Date: 11 September 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2021YFF0500503), National Natural Science Foundation of China (21925202, 21872076), and International Joint Mission On Climate Change and Carbon Neutrality.

  • 以化石能源如煤、石油和天然气为主要能源的社会发展模式,不仅导致不可再生资源枯竭,还引发大气中CO2浓度持续上升的问题。随着人们对能源结构认识的深化和生态环境保护意识的增强,寻求有效的清洁CO2固定和转化技术已成为研究热点。这些技术可利用太阳能、风能、潮汐能和地热能等可再生能源,促进人工碳循环、碳储存,并缓解环境恶化。在众多CO2固定和催化转化技术中,常温常压下的CO2还原技术受到可再生能源的驱动,有助于人工碳循环、碳储存,减轻环境退化。目前,水溶液中的电催化CO2还原研究已取得显著进展,但在制造其他重要的有机小分子,如尿素、酰胺、胺及其衍生物,甚至氨基酸方面,仍有未开发的潜力。这些产品在肥料、化学品合成、医药化学和航空工业等领域有广泛应用,引起了广泛研究兴趣。通过氮集成的电催化CO2还原反应制造有机氮化合物,能显著提高CO2电还原技术的实际应用价值,同时也为生物小分子的起源提供参考,因此具有重要意义。然而,该过程涉及CO2和含氮无机物的电化学耦合,包含多步电子和质子转移过程,因此面临着缓慢的动力学和复杂的反应机制。在本综述中,我们详细讨论了氮集成电催化CO2还原生成不同产物的具体反应路径和合理的催化剂设计策略,这对于指导高效电催化剂的设计至关重要。尽管已经通过一系列策略取得了一定的研究进展,但仍然存在一些需要解决的挑战,这限制了它们在大规模实际应用中的发展。最后,我们对该领域的发展限制和改进的可能方向进行了讨论,希望这能有助于氮集成电催化CO2还原反应催化剂的进一步发展。
  • 加载中
    1. [1]

      (1) Mongo, M.; Belaid, F.; Ramdani, B. Environ. Sci. Policy 2021, 118, 1. doi: 10.1016/j.envsci.2020.12.004

    2. [2]

      (2) Wang, H.; Zhang, R. Sustain. Prod. Consump. 2022, 29, 259. doi: 10.1016/j.spc.2021.10.016

    3. [3]

      (3) Li, W.; Yin, Z.; Gao, Z.; Wang, G.; Li, Z.; Wei, F.; Wei, X.; Peng, H.; Hu, X.; Xiao, L.; et al. Nat. Energy 2022, 7, 835. doi: 10.1038/s41560-022-01092-9

    4. [4]

      (4) Li, S.; Chen, W.; Dong, X.; Zhu, C.; Chen, A.; Song, Y.; Li, G.; Wei, W.; Sun, Y. Nat. Commun. 2022, 13, 3080. doi: 10.1038/s41467-022-30733-6

    5. [5]

      (5) Wang, X.; Jiang, Y.; Mao, K.; Gong, W.; Duan, D.; Ma, J.; Zhong, Y.; Li, J.; Liu, H.; Long, R.; et al. J. Am. Chem. Soc. 2022, 144, 22759. doi: 10.1021/jacs.2c11109

    6. [6]

      (6) Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y. Chem. Soc. Rev. 2021, 50, 12897. doi: 10.1039/D1CS00535A

    7. [7]

      (7) Birdja, Y. Y.; Perez-Gallent, E.; Figueiredo, M. C.; Gottle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Nat. Energy 2019, 4, 732. doi: 10.1038/s41560-019-0450-y

    8. [8]

      (8) Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y; Wen, Z. H.; Dai, L. M. Chem. Soc. Rev. 2021, 50, 4993. doi: 10.1039/D0CS00071J

    9. [9]

      (9) Pan, F.; Yang, Y. Energy Environ. Sci. 2020, 13, 2275. doi: 10.1039/D0EE00900H

    10. [10]

      (10) Ting, L. R. L.; Garcia-Muelas, R.; Martin, A. J.; Veenstra, F. L. P.; Chen, S. T.; Peng, Y.; Per, E. Y. X.; Pablo-Garcia, S.; Lopez, N.; Perez-Ramirez, J.; et al. Angew. Chem. Int. Ed. 2020, 59, 21072. doi: 10.1002/anie.202008289

    11. [11]

      (11) Chang, X.; Malkani, A.; Yang, X.; Xu, B. J. Am. Chem. Soc. 2020, 142, 2975. doi: 10.1021/jacs.9b11817

    12. [12]

      (12) Tang, C.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Angew. Chem., Int. Ed. 2021, 60, 19572. doi: 10.1002/anie.202101522

    13. [13]

      (13) Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Nat. Catal. 2019, 2, 290. doi: 10.1038/s41929-019-0252-4

    14. [14]

      (14) Chen, G.; Yuan, Y. F.; Jiang, H.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Nat. Energy 2020, 5, 605. doi: 10.1038/s41560-020-0654-1

    15. [15]

      (15) Peter, A. A.; Norskov, J. L. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461P

    16. [16]

      (16) Ma, W.; Xie, S.; Liu, T.; Fan, Q.; Ye, J.; Sun, F.; Jiang, Z.; Zhang, Q.; Cheng, J.; Wang, Y. Nat. Catal. 2020, 3, 478. doi: 10.1038/s41929-020-0450-0

    17. [17]

      (17) Li, L.; Ozden, A.; Guo, S.; de Arquer, F. P. G.; Wang, C.; Zhang, M.; Zhang, J.; Jiang, H.; Wang, W.; Dong, H.; et al. Nat. Commun. 2021, 12, 5223. doi: 10.1038/s41467-021-25573-9

    18. [18]

      (18) Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li, H.; Li, A.; Pao, C.-W.; et al. Nat. Nanotechnol. 2021, 16, 1386. doi: 10.1038/s41565-021-00974-5

    19. [19]

      (19) Jiang, M. M.; Zhu, M. F.; Wang, M. J.; He, Y.; Luo, X. J.; Wu, C. J.; Zhang, L. Y.; Jin, Z. ACS Nano 2023, 17, 3209. doi: 10.1021/acsnano.2c11046

    20. [20]

      (20) Li, J. N.; Zhang, Y. X.; Kuruvinashetti, K.; Kornienko, N. Nat. Rev. Chem. 2022, 6, 303. doi: 10.1038/s41570-022-00379-5

    21. [21]

      (21) Bogdanov, D.; Ram, M.; Aghahosseini, A; Gulagi, A.; Oyewo A.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa. L.; et al. Energy 2021, 227, 120467. doi: 10.1016/j.energy.2021.120467

    22. [22]

      (22) Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140. doi: 10.1038/s41563-020-0788-3

    23. [23]

      (23) Shin, H.; Hansen, K. U.; Jiao, F. Nat. Sustain. 2021, 4, 911. doi: 10.1038/s41893-021-00739-x

    24. [24]

      (24) De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S.; Jaramillo, T.; Sargent E. Science 2019, 364, eaav3506. doi: 10.1126/science.aav3506

    25. [25]

      (25) Li, J.; Kornienko, N. Chem. Sci. 2022, 13, 3957. doi: 10.1039/d1sc06590d

    26. [26]

      (26) Eller, K.; Henkes, E.; Rossbacher, R.; Hoke, H.

    27. [27]

      Amines, Aliphatic. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany; 2000, 2, 647. doi: 10.1002/14356007.a02_001

    28. [28]

      (27) Vogt, P. F.; Gerulis, J. Amines, Aromatic. Ullmann's Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany; 2000, 2, 699. doi: 10.1002/14356007.a02_037

    29. [29]

      (28) Rothgery, E. F. Kirk-Othmer Encyclopedia of Chemical Technology Wiley-VCH, Hoboken, USA; 2004, 13, 562. doi: 10.1002/0471238961.0825041819030809.a01.pub2

    30. [30]

      (29) Booth, G. Nitro Compounds, Aromatic, Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH, New York, NY, USA; 2000, 24, 301. doi: 10.1002/14356007.a17_411

    31. [31]

      (30) McIsaac, G. F.; David, M. B.; Gertner, G. Z.; Goolsby, D. A. Nature 2001, 414, 166. doi: 10.1038/35102672

    32. [32]

      (31) Boyer, E. W.; Alexander, R. B.; Parton, W. J.; Li, C.; Butterbach-Bahl, K.; Donner, S. D.; Skaggs, R. W.; Grosso, S. J. D. Ecol. Appl. 2006, 16, 2123. doi: 10.1890/1051-0761(2006)016[2123:MDITAA]2.0.CO;2

    33. [33]

      (32) Kayan, D. B.; Koleli, F. Appl. Catal. B: Environ. 2016, 181, 88. doi: 10.1016/j.apcatb.2015.07.045

    34. [34]

      (33) Chen, C.; Zhu, X.; Wen, X.; Zhou, Y.; Zhou, L.; Li, H.; Tao, L.; Li, Q.; Du, S.; Liu, T.; et al. Nat. Chem. 2020, 12, 717. doi: 10.1038/s41557-020-0481-9

    35. [35]

      (34) Yuan, M.; Chen, J.; Bai, Y.; Liu, Z.; Zhang, J.; Zhao, T.; Wang, Q.; Li, S.; He, H.; Zhang, G. Angew. Chem. Int. Ed. 2021, 60, 10910. doi: 10.1002/ange.202101275

    36. [36]

      (35) Wu, Y.; Jiang, Z.; Lin, Z.; Liang, Y.; Wang, H. Nat. Sustain. 2021, 4, 725. doi: 10.1038/s41893-021-00705-7

    37. [37]

      (36) Shibata, M.; Yoshida, K.; Furuya, N. J. Electroanal. Chem. 1995, 387, 143. doi: 10.1016/0022-0728(95)03992-P

    38. [38]

      (37) Xian, J.; Li, S.; Su, H.; Liao, P.; Wang, S.; Zhang, Y.; Yang, W.; Yang, J.; Sun, Y.; Jia, Y.; et al. Angew. Chem. Int. Ed. 2023, 62, e202304007. doi: 10.1002/anie.202304007

    39. [39]

      (38) Tao, Z.; Rooney, C. L.; Liang, Y.; Wang, H. J. Am. Chem. Soc. 2021, 143, 19630. doi: 10.1021/jacs.1c10714

    40. [40]

      (39) Lv, C.; Zhong, L.; Liu, H.; Fang, Z.; Yan, C.; Chen, M.; Kong, Y.; Lee, C.; Liu, D.; Li, S.; et al. Nat. Sustain. 2021, 4, 868. doi: 10.1038/s41893-021-00741-3

    41. [41]

      (40) Wei, X.; Wen, X.; Liu, Y.; Chen, C.; Xie, C.; Wang, D.; Qiu, M.; He, N.; Zhou, P.; Chen, W.; et al. J. Am. Chem. Soc. 2022, 144, 11530. doi: 10.1021/jacs.2c03452

    42. [42]

      (41) Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Xie, C.; Chen, W.; Zheng, J.; et al. Nat. Commun. 2022, 13, 5337. doi: 10.21203/rs.3.rs-1588933/v1

    43. [43]

      (42) Meng, N.; Huang, Y.; Liu, Y.; Yu, Y.; Zhang, B. Cell Rep. Phys. Sci. 2021, 2, 100378. doi: 10.1016/j.xcrp.2021.100378

    44. [44]

      (43) Guo, C.; Zhou, W.; Lan, X.; Wang, Y.; Li, T.; Han, S.; Yu, Y.; Zhang, B. J. Am. Chem. Soc. 2022, 144,16006. doi: 10.1021/jacs.2c05660

    45. [45]

      (44) Jouny, M.; Lv, J. J.; Cheng, T.; Ko, B. H.; Zhu, J. J.; Goddard, W. A.; Jiao, F. Nat. Chem. 2019, 11, 846. doi: 10.1038/s41557-019-0312-z

    46. [46]

      (45) Chernyshova, I.; Somasundaran, P.; Ponnurangam, S. Proc. Natl. Acad. Sci. U. S. A., 2018, 115, E9261. doi: 10.1073/pnas.1802256115

    47. [47]

      (46) Tao, Z. X.; Wu, Y. S.; Wu, Z. S.; Shang, B.; Rooney, B.; Wang, H. L. J. Energy Chem. 2022, 65, 367. doi: 10.1016/j.jechem.2021.06.007

    48. [48]

      (47) Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. Joule 2020, 4, 142. doi: 10.1016/j.joule.2019.10.006

    49. [49]

      (48) Wu, Y.; Chen, C.; Yan, X.; Sun, X.; Zhu, Q.; Li, P.; Li, Y.; Liu, S.; Ma, J.; Huang, Y.; et al. Angew. Chem. Int. Ed. 2021, 60, 20803. doi: 10.1002/anie.202105263

    50. [50]

      (49) Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Chem 2019, 5, 263. doi: 10.1016/j.chempr.2018.10.010

    51. [51]

      (50) Smith, C.; Hill, A. K.; Torrente-Murciano, L. Energy Environ. Sci. 2020, 13, 331. doi: 10.1039/c9ee02873k

    52. [52]

      (51) Peng, J.; Wang, X.; Wang, Z.; Liu, B.; Zhang, P.; Li, X.; Li, N. Chin. J. Struc. Chem. 2022, 41, 2209094. doi: 10.14102/j.cnki.0254-5861.2022-0100

    53. [53]

      (52) Wang, J.; Yao, Z.; Hao, L.; Sun, Z. Curr. Opin. Green Sust. 2022, 37, 100648. doi: 10.1016/j.cogsc.2022.100648

    54. [54]

      (53) Feng, Y.; Yang, H.; Zhang, Y.; Huang, X.; Li, L.; Cheng, T.; Shao, Q. Nano Lett. 2020, 20, 8282. doi: 10.1021/acs.nanolett.0c03400

    55. [55]

      (54) Zhu, X.; Zhou, X.; Jing, Y.; Li, Y. Nat. Commun. 2021, 12, 4080. doi: 10.1038/s41467-021-24400-5

    56. [56]

      (55) Pan, Y.; Lin, R.; Chen, Y.; Liu, S.; Zhu, W.; Cao, X.; Chen, W.; Wu, K.; Cheong, W.-C.; Wang, Y.; et al. J. Am. Chem. Soc. 2018, 140, 4218. doi: 10.1021/jacs.8b00814

    57. [57]

      (56) Leverett, J.; Tran-Phu, T.; Yuwono, J, A.; Kumar, P.; Kim, C.; Zhai, Q.; Han, C.; Qu, J.; Cainey, J.; Simonov, A. N.; et al. Adv. Energy Mater. 2022, 12, 2201500. doi: 10.1002/aenm.202201500

    58. [58]

      (57) Zhang, X.; Zhu, X.; Bo, S.; Chen, C.; Qiu, M.; Wei, X.; He, N.; Chen, W.; Zheng, J.; Chen, P.; et al. Nat. Commun. 2022, 13, 5337. doi: 10.1038/s41467-022-33066-6

    59. [59]

      (58) Hadjiivanov, K.; Ivanova, E.; Daturi, M.; Saussey, J.; Lavalley, J. C. Chem. Phys. Lett. 2003, 370, 712. doi: 10.1016/s0009-2614(03)00173-8

    60. [60]

      (59) Fan, L.; Luo, C.; Li, X.; Lu, F.; Qiu, H.; Sun, M. J. Hazard. Mater. 2012, 215, 272. doi: 10.1016/j.jhazmat.2012.02.068

    61. [61]

      (60) Kong, L.; Jiao, D.; Wang, Z.; Liu, Y.; Shang, Y.; Yin, L.; Cai, Q.; Zhao, J. Chem. Eng. J. 2023, 451, 138885. doi: 10.1016/j.cej.2022.138885

    62. [62]

      (61) Geng, J.; Ji. S.; Jin, M.; Zhang, C.; Xu, M.; Wang, G.; Liang, C.; Zhang, H. Angew. Chem. Int. Ed. 2022, 62, e202210958. doi: 10.1002/anie.202210958

    63. [63]

      (62) Hu, C.; Dai, L. Adv. Mater. 2019, 31, 1804672. doi: 10.1002/adma.201804672

    64. [64]

      (63) Liu, X.; Kumar, P.; Chen, Q.; Zhao, L.; Ye, F.; Ma, X.; Liu, D.; Chen, X.; Dai, L.; Hu, C. Appl. Catal. B. Environ. 2022, 316, 121618. doi: 10.1016/j.apcatb.2022.121618

    65. [65]

      (64) Roy, P.; Pramanik, A.; Sarkar, P. J. Phys. Chem. Lett. 2021, 12, 10837. doi: 10.1021/acs.jpclett.1c03242

    66. [66]

      (65) Meng, N.; Ma, X.; Wang, C.; Wang, Y.; Yang, R.; Shao, J.; Huang, Y.; Xu, Y.; Zhang, B.; Yu, Y. ACS Nano 2022, 16, 9095. doi: 10.1021/acsnano.2c01177

    67. [67]

      (66) Xiong, Z.; Xiao, Y.; Shen, C. Chem. Mater. 2022, 34, 9402. doi: 10.1021/acs.chemmater.2c01572

    68. [68]

      (67) Zhang, D.; Xue, Y.; Zheng, X.; Zhang, C.; Li, Y. Natl. Sci. Rev. 2023, 10, nwac209. doi: 10.1093/nsr/nwac209

    69. [69]

      (68) Yuan, M.; Chen, J.; Zhang, H.; Li, Q.; Zhou, L.; Yang, C.; Liu, R.; Liu, Z.; Zhang, S.; Zhang, G. Energy. Environ. Sci. 2022, 15, 2084. doi: 10.1039/d1ee03918k

    70. [70]

      (69) Zhao, D.; Yu, K.; Song, P.; Feng, W.; Hu, B.; Cheong, W.-C.; Zhuang, Z.; Liu, S.; Sun, K.; et al. Energy Environ. Sci. 2022, 15, 3795. doi: 10.1039/D2EE00878E

    71. [71]

      (70) Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Nat. Commun. 2022, 13, 5471. doi: 10.1038/s41467-022-33258-0

    72. [72]

      (71) Yang, G.; Hsieh, C.; Ho, Y.; Kuo, T.; Kwon, Y.; Lu, Q.; Cheng, M. ACS Catal. 2022, 12, 11494. doi: 10.1021/acscatal.2c02346

    73. [73]

      (72) Liu, S.; Yin, S.; Wang, Z.; Xu, Y.; Li, X.; Wang, L.; Wang, H. Cell Rep. Phys. Sci. 2022, 3: 100869. doi: 10.1016/j.xcrp.2022.100869

    74. [74]

      (73) Huang, Y.; Yang, R.; Wang, C.; Meng, N.; Shi, Y.; Yu, Y.; Zhang, B. ACS Energy Lett. 2022, 7, 284. doi: 10.1021/acsenergylett.1c02471

    75. [75]

      (74) Krzywda, P.; Paradelo Rodríguez A.; Benes, N.; Mei, B.; Mul, G. Appl. Catal. B Environ. 2022, 316, 121512. doi: 10.1016/j.apcatb.2022.121512

    76. [76]

      (75) Wu, W.; Yang, Y.; Wang, Y.; Lu, T.; Dong, Q.; Zhao, J.; Niu, J.; Liu, Q.; Hao, Z.; Song, S. Chem. Catal. 2022, 2, 3225. doi: 10.1016/j.checat.2022.09.012

    77. [77]

      (76) Zhang, Y.; Jiao, L.; Yang, W.; Xie, C.; Jiang, H.-L. Angew. Chem. Int. Ed. 2021, 60, 7607. doi: 10.1002/anie.202016219

    78. [78]

      (77) Yuan, M.; Zhang, H.; Xu, Y.; Liu, R.; Wang, R.; Zhao, T.; Zhang, J.; Liu, Z.; He, H.; Yang, C.; Zhang, S.; Zhang, G. Chem Catal. 2022, 2, 309. doi: 10.1016/j.checat.2021.11.009

    79. [79]

      (78) Yang, S.; Zhang, W.; Pan, G.; Chen, J.; Deng, J.; Chen, K.; Xie, X.; Han, D.; Dai, M.; Niu, L. Angew. Chem. Int. Ed. 2023, 62, e202312076. doi: 10.1002/anie.202312076

    80. [80]

      (79) Yang, C. H.; Gao, Z. Q.; Wang, D. J.; Li, S. Y.; Li, J. J.; Zhu, Y. T.; Wang, H. Q.; Yang, W. J.; Gao, X. J.; Zhang, Z. C.; et al. Sci. China Mater. 2022, 65, 155. doi: 10.1007/s40843-021-1749-5

    81. [81]

      (80) Wang, R.; Wang, X. Y.; Weng, W. J.; Yao, Y.; Kidkhunthod, P.; Wang, C. C.; Hou, Y.; Guo, J. Angew. Chem. Int. Ed. 2021, 61, e202115503. doi: 10.1002/anie.202115503

    82. [82]

      (81) Wu, Y. S.; Jiang, Z.; Lu, X.; Liang, Y. Y.; Wang, H. L. Nature 2019, 575, 639. doi: 10.1038/s41586-019-1760-8

    83. [83]

      (82) Chen, C.; He, N. H.; Wang, S. Y. Small Sci. 2021, 1, 2100070. doi: 10.1002/smsc.202100070

    84. [84]

      (83) Cao, N.; Quan, Y. L.; Guan, A. X.; Yang, C.; Ji, Y. L.; Zheng, G. F. J. Colloid Interface Sci. 2020, 577, 109. doi: 10.1016/j.jcis.2020.05.014

    85. [85]

      (84) Li, Y.; Chen, C.; Cao, R.; Pan, Z.; He, H.; Zhou, K. Appl. Catal. B 2020, 268, 118747. doi: 10.1016/j.apcatb.2020.118747

    86. [86]

      (85) Jiao, J.; Lin, R.; Liu, S.; Cheong, W.-C.; Zhang, C.; Chen, Z.; Pan, Y.; Tang, J.; Wu, K.; Hung, S.-F.; et al. Nat. Chem. 2019, 11, 222. doi: 10.1038/s41557-018-0201-x

    87. [87]

      (86) Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11, 893. doi: 10.1039/C7EE03245E

    88. [88]

      (87) Yuan, M. L.; Chen, J. W.; Bai, Y. L.; Liu, Z. J.; Zhang, J. X.; Zhao, T. K.; Shi, Q. N.; Li, S. W.; Wang, X.; Zhang, G. J. Chem. Sci. 2021, 12, 6048. doi: 10.1039/D1SC01467F

    89. [89]

      (88) Fang, Y. X.; Liu, X.; Liu, Z. P.; Han, L.; Ai, J.; Zhao, G.; Terasaki, O.; Cui, C. H.; Yang, J. Z.; Liu, C. Y.; et al. Chem 2023, 9, 460. doi: 10.1016/j.chempr.2022.10.017

  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    3. [3]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    4. [4]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    5. [5]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    9. [9]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    10. [10]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    20. [20]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

Metrics
  • PDF Downloads(0)
  • Abstract views(99)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return