An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(VI)
- Corresponding author: Shijie Li, lishijie@zjou.edu.cn
Citation: Chunchun Wang, Changjun You, Ke Rong, Chuqi Shen, Fang Yang, Shijie Li. An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(VI)[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230704. doi: 10.3866/PKU.WHXB202307045
(1) Li, X.; He, F.; Wang, Z.; Xing, B. Eco-Environ. Health 2022, 1, 181. doi:10.1016/j.eehl.2022.10.001
(2) Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J. H. Nat. Sustain. 2022, 5, 801. doi:10.1038/s41893-022-00915-7
(3) Deng, H.; Tu, Y.; Wang, H.; Wang, Z.; Li, Y.; Chai, L.; Zhang, W.; Lin, Z. Eco-Environ. Health 2022, 1, 229. doi:10.1016/j.eehl.2022.11.003
(4) Mallik, A. K.; Moktadir, M. A.; Rahman, M. A.; Shahruzzaman, M.; Rahman, M. M. J. Hazard. Mater. 2022, 423, 127041. doi:10.1016/j.jhazmat.2021.127041
(5) Cong, Y.; Shen, L.; Wang, B.; Cao, J.; Pan, Z.; Wang, Z.; Wang, K.; Li, Q.; Li, X. Water Res. 2022, 222, 118919. doi:10.1016/j.watres.2022.118919
(6) Pavithra, K.G.; Jaikumar, V.; Kumar, P. S.; Rajan, P. S. S. J. Clean. Prod. 2019, 228, 580. doi:10.1016/j.jclepro.2019.04.117
(7) Stern, C. M.; Jegede, T. O.; Hulse, V. A.; Elgrishi, N. Chem. Soc. Rev. 2021, 50, 1642. doi:10.1039/D0CS01165G
(8) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi:10.1038/nature06599
(9) Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi:10.1007/s42765-022-00253-5
(10) Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi:10.1016/j.esci.2023.100095
(11) Zou, Z.; Zhang, H.; Lan, J.; Luo, J.; Xie, Y.; Li, Y.; Lü, J.; Cao, R. Nano Mater. Sci. 2023, in press. doi:10.1016/j.nanoms.2022.11.001
(14) Zhou, D.; Luo, H.; Zhang, F.; Wu, J.; Yang, J.; Wang, H. Adv. Fiber Mater. 2022, 4, 1094. doi:10.1007/s42765-022-00149-4
(15) Wang, C.; Liu, K.; Wang, D.; Wang, G.; Chu, P. K.; Meng, Z.; Wang, X. Adv. Fiber Mater. 2022, 4, 1069. doi:10.1007/s42765-022-00142-x
(16) Luan, P.; Zhao, X.; Copenhaver, K.; Ozcan, S.; Zhu, H. Adv. Fiber Mater. 2022, 4, 736. doi:10.1007/s42765-022-00151-w
(17) Sun, J.; Guo, N.; Song, T.; Hao, Y. R.; Sun, J.; Xue, H.; Wang, Q. Adv. Powder Mater. 2022, 1, 100023. doi:10.1016/j.apmate.2021.11.009
(18) Li, M.; Sun, J.; Chen, G.; Wang, S.; Yao, S. Adv. Powder Mater. 2022, 1, 100032. doi:10.1016/j.apmate.2022.01.005
(19) Zhang, F.; Li, X.; Dong, X.; Hao, H.; Lang, X.; Chin. J. Catal. 2022, 43, 2395. doi:doi:10.1016/S1872-2067(22)64127-5
(20) Fu, J.; Li, P.; Lin, Y.; Du, H.; Liu, H.; Zhu, W.; Ren, H. Eco-Environ. Health 2022, 1, 259. doi:10.1016/j.eehl.2022.11.005
(21) Hou, H.; Shao, G.; Yang, W. J. Mater. Chem. A 2021, 9, 13722. doi:10.1039/D1TA02527A
(22) Swift, E. Science 2019, 365, 320. doi:10.1126/science.aax8940
(23) Zhou, P.; Luo, M.; Guo, S. Nat. Rev. Chem. 2022, 6, 823. doi:10.1038/s41570-022-00434-1
(24) Xu, H.; Shi, J.; Lyu, S.; Lang, X. Chin. J. Catal. 2020, 41, 1468. doi:10.1016/S1872-2067(20)63640-3
(25) Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi:10.1016/j.nanoms.2022.03.001
(26) Chen, Z.; Wei, W.; Chen, H.; Ni, B. Eco-Environ. Health 2022, 1, 86. doi:10.1016/j.eehl.2022.05.001
(27) Nishioka, S.; Hojo, K.; Xiao, L.; Gao, T.; Miseki, Y.; Yasuda, S.; Yokoi, T.; Sayama, K.; Mallouk, T. E.; Maeda, K. Sci. Adv. 2022, 8, eadc9115. doi:10.1126/sciadv.adc9115
(28) Shiraishi, Y.; Hashimoto, M.; Chishiro, K.; Moriyama, K.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2020, 142, 7574. doi:10.1021/jacs.0c01683
(29) Li, M.; Yu, S.; Huang, H.; Li, X.; Feng, Y.; Wang, C.; Wang, Y.; Ma, T.; Guo, L.; Zhang, Y. Angew. Chem. Int. Ed. 2019, 58, 9517. doi:10.1002/ange.201904921
(30) Yan, X.; Zhao, H.; Li, T.; Zhang, W.; Liu, Q.; Yuan, Y.; Huang, L.; Yao, L.; Yao, J.; Su, H.; et al. Nanoscale 2019, 11, 10203. doi:10.1039/C9NR02304F
(31) Wu, S.; Sun, W.; Sun, J.; Hood, Z. D.; Yang, S.; Sun, L.; Kent, P. R. C.; Chisholm, M. F. Chem. Mater. 2018, 30, 5128. doi:10.1021/acs.chemmater.8b01629
(32) Shi, Y.; Li, J.; Mao, C.; Liu, S.; Wang, X.; Liu, X.; Zhao, S.; Liu, X.; Huang, Y.; Zhang, L. Nat. Commun. 2021, 12, 5923. doi:10.1038/s41467-021-26219-6
(33) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668
(34) Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi:10.1016/j.jmst.2023.05.009
(35) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi:10.1016/S1872-2067(22)64106-8
(36) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi:10.1016/j.trechm.2022.08.008
(37) Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2022, 43, 1657. doi:10.1016/S1872-2067(21)64010-X
(38) Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi:10.14102/j.cnki.0254-5861.2022-0150
(39) Yue, X.; Cheng, L.; Fan, J.; Xiang, Q. Appl. Catal. B 2022, 304, 120979. doi:10.1016/j.apcatb.2021.120979
(40) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010
(41) Jabbar, Z. H.; Graimed, B. H.; Okab, A. A.; Alsunbuli, M. M.; Al-husseiny, R. A. J. Photochem. Photobiol. A Chem. 2023, 441, 114734. doi:10.1016/j.jphotochem.2023.114734
(42) Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2023, 5, 4187. doi:10.1016/j.matt.2022.09.009
(43) Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi:10.1016/j.jmst.2022.02.016
(45) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 2214470. doi:10.1002/adfm.202214470
(46) Alkanad, K.; Hezam, A.; Drmosh, Q.; Chandrashekar, S. S. G.; AlObaid, A. A.; Warad, I.; Bajiri, M. A.; Krishnappagowda, L. N. Sol. RRL 2021, 5, 2100501. doi:10.1002/solr.202100501
(47) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi:10.14102/j.cnki.0254-5861.2022-0108
(48) Ma, L. J.; Wu, H. Q.; Chen, B. Y.; Wang, G.; Lei, B. X.; Zhang, D.; Kuang, D. B. Adv. Mater. Interfaces 2022, 9, 2102522. doi:10.1002/admi.202102522
(49) Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi:10.1016/j.jmst.2022.02.012
(50) Zhang, Z.; Guo, R.; Tang, J.; Miao, Y.; Gu, J.; Pan, W. J. CO2 Util. 2021, 45, 101453. doi:10.1016/j.jcou.2021.101453
(51) Zhou, P.; Shen, Y.; Zhao, S.; Li, G.; Cui, B.; Wei, D.; Shen, Y. Chem. Eng. J. 2022, 407, 126697. doi:10.1016/j.cej.2020.126697
(52) Jafarzadeh, M. ACS Appl. Mater. Interfaces 2022, 14, 24993. doi:10.1021/acsami.2c03946
(53) Liu, X.; Zhang, Y.; Guo, X.; Pang, H.; Adv. Fiber Mater. 2022, 4, 1463. doi:10.1007/s42765-022-00214-y
(54) Peng, S.; Li, R.; Rao, Y.; Huang, Y.; Zhao, Y.; Xiong, M.; Cao, J.; Lee, S. Appl. Catal. B 2022, 316, 121693. doi:10.1016/j.apcatb.2022.121693
(55) Bao, C.; Zhao, J.; Sun, Y.; Zhao, X.; Zhang, X.; Zhu, Y.; She, X.; Yang, D.; Xing, B. Environ. Sci. Nano 2021, 8, 2347. doi:10.1039/d1en00250c
(56) Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Nature 2020, 586, 549. doi:10.1038/s41586-020-2738-2
(57) Fakhria, H.; Farzadkia, M.; Boukherroub, R.; Srivastava, V.; Sillanpää, M. Sol. Energy 2020, 208, 990. doi:10.1016/j.solener.2020.08.050
(58) Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Nat. Chem. 2022, 14, 1342. doi:10.1038/s41557-022-01093-x
(59) Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Ferrer, B.; García, H. Chem. Rev. 2023, 123, 445. doi:10.1021/acs.chemrev.2c00460
(60) Daliran, S.; Oveisi, A. R.; Peng, Y.; López-Magano, A.; Khajeh, M.; Mas-Ballesté, R. N.; Alemán, J.; Luque, R.; Garcia, H. Chem. Soc. Rev. 2022, 51, 7810. doi:10.1039/d1cs00976a
(61) Liao, X.; Wang, F.; Wang, F.; Cai, Y.; Yao, Y.; Teng, B. T.; Hao, Q.; Lu, S. Appl. Catal. B 2019, 259, 118064. doi:10.1016/j.apcatb.2019.118064
(62) Wang, Y.; Zhong, Z.; Muhammad, Y.; He, H.; Zhao, Z.; Nie, S.; Zhao, Z. Chem. Eng. J. 2020, 398, 125684. doi:10.1016/j.cej.2020.125684
(63) Li, B.; Zhao, J.; Lin, X.; Tu, D.; Meng, Y.; Li, Y.; Huang, P.; Zhang, H. J. Clean. Prod. 2022, 355, 131812. doi:10.1016/j.jclepro.2022.131812
(64) Liang, R.; He, Z.; Lu, Y.; Yan, G.; Wu, L. Sep. Purif. Technol. 2021, 277, 119442. doi:10.1016/j.seppur.2021.119442
(65) Doan, V. D.; Huynh, B. A.; Pham, H. A. L.; Vasseghian, Y.; Le, V. T. Environ. Res. 2021, 201, 111593. doi:10.1016/j.envres.2021.111593
(66) Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi:10.1016/S1872-2067(23)64479-1
(67) Zuo, S.; Ding, Y.; Wu, L.; Yang, F.; Guan, Z.; Ding, S.; Xia, D.; Li, X.; Li, D. Water Res. 2023, 231, 119631. doi:10.1016/j.watres.2023.119631
(68) Jia, Z.; Li, T.; Zheng, Z.; Zhang, J.; Liu, J.; Li, R.; Wang, Y.; Zhang, X.; Wang, Y.; Fan, C. Chem. Eng. J. 2020, 380, 122422. doi:10.1016/j.cej.2019.122422
(69) Hajiali, M.; Farhadian, M.; Tangestaninejad, S. Appl. Surf. Sci. 2022, 602, 154389. doi:10.1016/j.apsusc.2022.154389
(70) Lu, C.; Yang, D.; Wang, L.; Wen, S.; Cao, D.; Tu, C.; Gao, L.; Li, Y.; Zhou, Y.; Huang, W. J. Alloy. Compd. 2022, 904, 164046. doi:10.1016/j.jallcom.2022.164046
(71) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643
(72) Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33, 5200. doi:10.1016/j.cclet.2022.01.058
(73) Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Adv. Powder Mater. 2024, 100140. doi:10.1016/j.apmate.2023.100140
(74) Ning, R.; Pang, H.; Yan, Z.; Lu, Z.; Wang, Q.; Wu, Z.; Dai, W.; Liu, L.; Li, Z.; Fan, G.; et al. J. Hazard. Mater. 2022, 435, 129061. doi:10.1016/j.jhazmat.2022.129061
(75) Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. eScience 2022, 2, 438. doi:10.1016/j.esci.2022.04.004
(76) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1
(77) Hua, J.; Wang, Z.; Zhan, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi:10.1016/j.jmst.2023.03.003
(78) Li, S.; Liang, J.; Wei, P.; Liu, Q.; Xie, L.; Luo, Y.; Sun, X. eScience 2022, 2, 382. doi:10.1016/j.esci.2022.04.008
(79) Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi:10.14102/j.cnki.0254-5861.2021-0046
(80) Gómez-Avilés, A.; Solís, R. R.; García-Frutos, E. M.; Bedia, J.; Belver, C. Chem. Eng. J. 2023, 461, 141889. doi:10.1016/j.cej.2023.141889
(81) Li, X.; Hu, Y.; Dong, F.; Huang, J.; Han, L.; Deng, F.; Luo, Y.; Xie, Y.; He, C.; Feng, Z.; et al. Appl. Catal. B 2023, 325, 122341. doi:10.1016/j.apcatb.2022.122341
(82) Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S. K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi:10.1016/j.cej.2021.129530
(83) Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi:10.1007/s42765-022-00189-w
(84) Feng, X.; Sun, L.; Wang, W.; Zhao, Y.; Shi, J. Sep. Purif. Technol. 2023, 324, 124520. doi:10.1016/j.seppur.2023.124520
(85) Sun, G.; Xiao, B.; Zheng, H.; Shi, J. W.; Mao, S.; He, C.; Li, Z.; Cheng, Y. J. Mater. Chem. A 2021, 9, 9735. doi:10.1039/D1TA01089A
(86) Xiong, X.; Yang, H.; Zhang, J.; Lin, J.; Yang, S.; Chen, C.; Xi, J.; Kong, Z.; Song, L.; Zeng, J. J. Alloy. Compd. 2023, 933, 167784. doi:10.1016/j.jallcom.2022.167784
(88) Li, S.; Shao, L.; Yang, Z.; Cheng, S.; Yang, C.; Liu, Y.; Xia, X. Green Energy Environ. 2022, 7, 246. doi:10.1016/j.gee.2020.09.005
(89) Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi:10.1038/s41467-020-18350-7
(90) Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. -G. J. Phys. Chem. Lett. 2022, 13, 7987. doi:10.1021/acs.jpclett.2c02153
(91) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi:10.1002/adma.202100317
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Fei Jin , Bolin Yang , Xuanpu Wang , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010