Citation: Chunchun Wang,  Changjun You,  Ke Rong,  Chuqi Shen,  Fang Yang,  Shijie Li. An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(VI)[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230704. doi: 10.3866/PKU.WHXB202307045 shu

An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(VI)

  • Corresponding author: Shijie Li, lishijie@zjou.edu.cn
  • Received Date: 23 July 2023
    Revised Date: 25 August 2023
    Accepted Date: 25 August 2023

    Fund Project: This work has been financially supported by National Natural Science Foundation of China (U1809214, 51708504), the Natural Science Foundation of Zhejiang Province of China (LY20E080014), and the Science and Technology Project of Zhoushan of China (2022C41011).

  • Hexavalent chromium (Cr(VI)) may be a hazardous and non-biodegradable waste matter which will cause substantial environmental damage. Fabricating powerful photosystems to achieve efficacious elimination of Cr(VI) holds eminent promise in solving environmental issues. Thanks to their outstanding photo/electrical properties, large surface area, and customizable structure, metal-organic framework (MOF) catalysts have attracted widespread attention within the field of pollutant degradation and reduction. Nevertheless, due to the recombination of photo-generated charge carriers, pristine semiconductor MOFs’ photocatalytic performance is inadequate. To overcome this challenge, one of the most typical and effective strategies is to create heterojunctions by combining MOFs with another semiconductor. Among these strategies, the innovative step-scheme (S-scheme) heterojunction has gained increasing prominence. Unlike traditional type II and Z-scheme heterojunctions, the built-in electric field at the S-scheme heterojunction boundary enhances spatial charge separation and boosts redox capacity, thereby improving photocatalytic performance. In this study, a creative MOF-based S-scheme architecture with oxygen vacancies (OV) was built via in situ growth of MIL-101(Fe) crystals on the surface of OV-rich BiOCl microspheres. The optimized MIL-101(Fe)/BiOCl heterojunction exhibited exceptional photocatalytic performance in photo-reducing high concentrations of Cr(VI) and 88.5% of Cr(VI) solution (10 mg·L-1, 100 mL) can be removed within 60 min, which is about 4.4 and 9.0 times that of BiOCl and MIL-101(Fe). Besides, the MIL-101(Fe)/BiOCl manifests impressive practical implementation prospect due to its high anti-interference property, robustness and reusability. Photoelectron spectroscopy results validated that built-in electric field, bending band, and Coulomb attraction facilitated the transition of photoelectrons from the conduction band (CB) of BiOCl to the valence band (VB) of MIL-101(Fe), where they recombined with the photo-created holes. This suggests an S-scheme interfacial photo-carrier detachment mechanism at the MIL-101(Fe)/BiOCl interface. In addition, BET measurements indicated a notable increase in surface area with the introduction of MIL-101(Fe). The OV-rich S-scheme MIL-101(Fe)/BiOCl heterostructure boasts more reactive sites, enhanced interfacial charge separation, and optimal redox ability of photo-carriers, leading to enhanced photocatalytic properties. Measurements of active radical scavenging and electron spin resonance (ESR) confirm that e- and ·O2- are the primary active species during photocatalysis. These discoveries would open up new avenues for developing defective semiconductor/MOF S-scheme photocatalyst for environmental purification.
  • 加载中
    1. [1]

      (1) Li, X.; He, F.; Wang, Z.; Xing, B. Eco-Environ. Health 2022, 1, 181. doi:10.1016/j.eehl.2022.10.001

    2. [2]

      (2) Jeon, I.; Ryberg, E. C.; Alvarez, P. J. J.; Kim, J. H. Nat. Sustain. 2022, 5, 801. doi:10.1038/s41893-022-00915-7

    3. [3]

      (3) Deng, H.; Tu, Y.; Wang, H.; Wang, Z.; Li, Y.; Chai, L.; Zhang, W.; Lin, Z. Eco-Environ. Health 2022, 1, 229. doi:10.1016/j.eehl.2022.11.003

    4. [4]

      (4) Mallik, A. K.; Moktadir, M. A.; Rahman, M. A.; Shahruzzaman, M.; Rahman, M. M. J. Hazard. Mater. 2022, 423, 127041. doi:10.1016/j.jhazmat.2021.127041

    5. [5]

      (5) Cong, Y.; Shen, L.; Wang, B.; Cao, J.; Pan, Z.; Wang, Z.; Wang, K.; Li, Q.; Li, X. Water Res. 2022, 222, 118919. doi:10.1016/j.watres.2022.118919

    6. [6]

      (6) Pavithra, K.G.; Jaikumar, V.; Kumar, P. S.; Rajan, P. S. S. J. Clean. Prod. 2019, 228, 580. doi:10.1016/j.jclepro.2019.04.117

    7. [7]

      (7) Stern, C. M.; Jegede, T. O.; Hulse, V. A.; Elgrishi, N. Chem. Soc. Rev. 2021, 50, 1642. doi:10.1039/D0CS01165G

    8. [8]

      (8) Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301. doi:10.1038/nature06599

    9. [9]

      (9) Li, S.; Cai, M.; Wang, C.; Liu, Y. Adv. Fiber Mater. 2023, 5, 994. doi:10.1007/s42765-022-00253-5

    10. [10]

      (10) Sun, X.; Li, L.; Jin, S.; Shao, W.; Wang, H.; Zhang, X.; Xie, Y. eScience 2023, 3, 100095. doi:10.1016/j.esci.2023.100095

    11. [11]

      (11) Zou, Z.; Zhang, H.; Lan, J.; Luo, J.; Xie, Y.; Li, Y.; Lü, J.; Cao, R. Nano Mater. Sci. 2023, in press. doi:10.1016/j.nanoms.2022.11.001

    12. [12]

    13. [13]

    14. [14]

      (14) Zhou, D.; Luo, H.; Zhang, F.; Wu, J.; Yang, J.; Wang, H. Adv. Fiber Mater. 2022, 4, 1094. doi:10.1007/s42765-022-00149-4

    15. [15]

      (15) Wang, C.; Liu, K.; Wang, D.; Wang, G.; Chu, P. K.; Meng, Z.; Wang, X. Adv. Fiber Mater. 2022, 4, 1069. doi:10.1007/s42765-022-00142-x

    16. [16]

      (16) Luan, P.; Zhao, X.; Copenhaver, K.; Ozcan, S.; Zhu, H. Adv. Fiber Mater. 2022, 4, 736. doi:10.1007/s42765-022-00151-w

    17. [17]

      (17) Sun, J.; Guo, N.; Song, T.; Hao, Y. R.; Sun, J.; Xue, H.; Wang, Q. Adv. Powder Mater. 2022, 1, 100023. doi:10.1016/j.apmate.2021.11.009

    18. [18]

      (18) Li, M.; Sun, J.; Chen, G.; Wang, S.; Yao, S. Adv. Powder Mater. 2022, 1, 100032. doi:10.1016/j.apmate.2022.01.005

    19. [19]

      (19) Zhang, F.; Li, X.; Dong, X.; Hao, H.; Lang, X.; Chin. J. Catal. 2022, 43, 2395. doi:doi:10.1016/S1872-2067(22)64127-5

    20. [20]

      (20) Fu, J.; Li, P.; Lin, Y.; Du, H.; Liu, H.; Zhu, W.; Ren, H. Eco-Environ. Health 2022, 1, 259. doi:10.1016/j.eehl.2022.11.005

    21. [21]

      (21) Hou, H.; Shao, G.; Yang, W. J. Mater. Chem. A 2021, 9, 13722. doi:10.1039/D1TA02527A

    22. [22]

      (22) Swift, E. Science 2019, 365, 320. doi:10.1126/science.aax8940

    23. [23]

      (23) Zhou, P.; Luo, M.; Guo, S. Nat. Rev. Chem. 2022, 6, 823. doi:10.1038/s41570-022-00434-1

    24. [24]

      (24) Xu, H.; Shi, J.; Lyu, S.; Lang, X. Chin. J. Catal. 2020, 41, 1468. doi:10.1016/S1872-2067(20)63640-3

    25. [25]

      (25) Liang, Z.; Xue, Y.; Wang, X.; Zhang, X.; Tian, J.; Cui, H. Nano Mater. Sci. 2023, 5, 202. doi:10.1016/j.nanoms.2022.03.001

    26. [26]

      (26) Chen, Z.; Wei, W.; Chen, H.; Ni, B. Eco-Environ. Health 2022, 1, 86. doi:10.1016/j.eehl.2022.05.001

    27. [27]

      (27) Nishioka, S.; Hojo, K.; Xiao, L.; Gao, T.; Miseki, Y.; Yasuda, S.; Yokoi, T.; Sayama, K.; Mallouk, T. E.; Maeda, K. Sci. Adv. 2022, 8, eadc9115. doi:10.1126/sciadv.adc9115

    28. [28]

      (28) Shiraishi, Y.; Hashimoto, M.; Chishiro, K.; Moriyama, K.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2020, 142, 7574. doi:10.1021/jacs.0c01683

    29. [29]

      (29) Li, M.; Yu, S.; Huang, H.; Li, X.; Feng, Y.; Wang, C.; Wang, Y.; Ma, T.; Guo, L.; Zhang, Y. Angew. Chem. Int. Ed. 2019, 58, 9517. doi:10.1002/ange.201904921

    30. [30]

      (30) Yan, X.; Zhao, H.; Li, T.; Zhang, W.; Liu, Q.; Yuan, Y.; Huang, L.; Yao, L.; Yao, J.; Su, H.; et al. Nanoscale 2019, 11, 10203. doi:10.1039/C9NR02304F

    31. [31]

      (31) Wu, S.; Sun, W.; Sun, J.; Hood, Z. D.; Yang, S.; Sun, L.; Kent, P. R. C.; Chisholm, M. F. Chem. Mater. 2018, 30, 5128. doi:10.1021/acs.chemmater.8b01629

    32. [32]

      (32) Shi, Y.; Li, J.; Mao, C.; Liu, S.; Wang, X.; Liu, X.; Zhao, S.; Liu, X.; Huang, Y.; Zhang, L. Nat. Commun. 2021, 12, 5923. doi:10.1038/s41467-021-26219-6

    33. [33]

      (33) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi:10.1002/adma.202107668

    34. [34]

      (34) Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi:10.1016/j.jmst.2023.05.009

    35. [35]

      (35) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi:10.1016/S1872-2067(22)64106-8

    36. [36]

      (36) Wang, L.; Bie, C.; Yu, J. Trends Chem. 2022, 4, 973. doi:10.1016/j.trechm.2022.08.008

    37. [37]

      (37) Wang, Z.; Cheng, B.; Zhang, L.; Yu, J.; Li, Y.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2022, 43, 1657. doi:10.1016/S1872-2067(21)64010-X

    38. [38]

      (38) Zhang, J.; Wang, L.; Mousavi, M.; Ghasemi, J. B.; Yu, J. Chin. J. Struct. Chem. 2022, 41, 2206003. doi:10.14102/j.cnki.0254-5861.2022-0150

    39. [39]

      (39) Yue, X.; Cheng, L.; Fan, J.; Xiang, Q. Appl. Catal. B 2022, 304, 120979. doi:10.1016/j.apcatb.2021.120979

    40. [40]

      (40) Xu, Q.; Zhang, L.; Cheng, B.; Fan, J.; Yu, J. Chem 2020, 6, 1543. doi:10.1016/j.chempr.2020.06.010

    41. [41]

      (41) Jabbar, Z. H.; Graimed, B. H.; Okab, A. A.; Alsunbuli, M. M.; Al-husseiny, R. A. J. Photochem. Photobiol. A Chem. 2023, 441, 114734. doi:10.1016/j.jphotochem.2023.114734

    42. [42]

      (42) Wang, L.; Zhu, B.; Zhang, J.; Ghasemi, J. B.; Mousavi, M.; Yu, J. Matter 2023, 5, 4187. doi:10.1016/j.matt.2022.09.009

    43. [43]

      (43) Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi:10.1016/j.jmst.2022.02.016

    44. [44]

    45. [45]

      (45) Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 2214470. doi:10.1002/adfm.202214470

    46. [46]

      (46) Alkanad, K.; Hezam, A.; Drmosh, Q.; Chandrashekar, S. S. G.; AlObaid, A. A.; Warad, I.; Bajiri, M. A.; Krishnappagowda, L. N. Sol. RRL 2021, 5, 2100501. doi:10.1002/solr.202100501

    47. [47]

      (47) Wang, Z.; Liu, R.; Zhang, J.; Dai, K. Chin. J. Struct. Chem. 2022, 41, 2206015. doi:10.14102/j.cnki.0254-5861.2022-0108

    48. [48]

      (48) Ma, L. J.; Wu, H. Q.; Chen, B. Y.; Wang, G.; Lei, B. X.; Zhang, D.; Kuang, D. B. Adv. Mater. Interfaces 2022, 9, 2102522. doi:10.1002/admi.202102522

    49. [49]

      (49) Li, S.; Cai, M.; Wang, C.; Liu, Y.; Li, N.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2022, 123, 177. doi:10.1016/j.jmst.2022.02.012

    50. [50]

      (50) Zhang, Z.; Guo, R.; Tang, J.; Miao, Y.; Gu, J.; Pan, W. J. CO2 Util. 2021, 45, 101453. doi:10.1016/j.jcou.2021.101453

    51. [51]

      (51) Zhou, P.; Shen, Y.; Zhao, S.; Li, G.; Cui, B.; Wei, D.; Shen, Y. Chem. Eng. J. 2022, 407, 126697. doi:10.1016/j.cej.2020.126697

    52. [52]

      (52) Jafarzadeh, M. ACS Appl. Mater. Interfaces 2022, 14, 24993. doi:10.1021/acsami.2c03946

    53. [53]

      (53) Liu, X.; Zhang, Y.; Guo, X.; Pang, H.; Adv. Fiber Mater. 2022, 4, 1463. doi:10.1007/s42765-022-00214-y

    54. [54]

      (54) Peng, S.; Li, R.; Rao, Y.; Huang, Y.; Zhao, Y.; Xiong, M.; Cao, J.; Lee, S. Appl. Catal. B 2022, 316, 121693. doi:10.1016/j.apcatb.2022.121693

    55. [55]

      (55) Bao, C.; Zhao, J.; Sun, Y.; Zhao, X.; Zhang, X.; Zhu, Y.; She, X.; Yang, D.; Xing, B. Environ. Sci. Nano 2021, 8, 2347. doi:10.1039/d1en00250c

    56. [56]

      (56) Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Nature 2020, 586, 549. doi:10.1038/s41586-020-2738-2

    57. [57]

      (57) Fakhria, H.; Farzadkia, M.; Boukherroub, R.; Srivastava, V.; Sillanpää, M. Sol. Energy 2020, 208, 990. doi:10.1016/j.solener.2020.08.050

    58. [58]

      (58) Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Nat. Chem. 2022, 14, 1342. doi:10.1038/s41557-022-01093-x

    59. [59]

      (59) Navalón, S.; Dhakshinamoorthy, A.; Álvaro, M.; Ferrer, B.; García, H. Chem. Rev. 2023, 123, 445. doi:10.1021/acs.chemrev.2c00460

    60. [60]

      (60) Daliran, S.; Oveisi, A. R.; Peng, Y.; López-Magano, A.; Khajeh, M.; Mas-Ballesté, R. N.; Alemán, J.; Luque, R.; Garcia, H. Chem. Soc. Rev. 2022, 51, 7810. doi:10.1039/d1cs00976a

    61. [61]

      (61) Liao, X.; Wang, F.; Wang, F.; Cai, Y.; Yao, Y.; Teng, B. T.; Hao, Q.; Lu, S. Appl. Catal. B 2019, 259, 118064. doi:10.1016/j.apcatb.2019.118064

    62. [62]

      (62) Wang, Y.; Zhong, Z.; Muhammad, Y.; He, H.; Zhao, Z.; Nie, S.; Zhao, Z. Chem. Eng. J. 2020, 398, 125684. doi:10.1016/j.cej.2020.125684

    63. [63]

      (63) Li, B.; Zhao, J.; Lin, X.; Tu, D.; Meng, Y.; Li, Y.; Huang, P.; Zhang, H. J. Clean. Prod. 2022, 355, 131812. doi:10.1016/j.jclepro.2022.131812

    64. [64]

      (64) Liang, R.; He, Z.; Lu, Y.; Yan, G.; Wu, L. Sep. Purif. Technol. 2021, 277, 119442. doi:10.1016/j.seppur.2021.119442

    65. [65]

      (65) Doan, V. D.; Huynh, B. A.; Pham, H. A. L.; Vasseghian, Y.; Le, V. T. Environ. Res. 2021, 201, 111593. doi:10.1016/j.envres.2021.111593

    66. [66]

      (66) Li, S.; Wang, C.; Dong, K.; Zhang, P.; Chen, X.; Li, X. Chin. J. Catal. 2023, 51, 101. doi:10.1016/S1872-2067(23)64479-1

    67. [67]

      (67) Zuo, S.; Ding, Y.; Wu, L.; Yang, F.; Guan, Z.; Ding, S.; Xia, D.; Li, X.; Li, D. Water Res. 2023, 231, 119631. doi:10.1016/j.watres.2023.119631

    68. [68]

      (68) Jia, Z.; Li, T.; Zheng, Z.; Zhang, J.; Liu, J.; Li, R.; Wang, Y.; Zhang, X.; Wang, Y.; Fan, C. Chem. Eng. J. 2020, 380, 122422. doi:10.1016/j.cej.2019.122422

    69. [69]

      (69) Hajiali, M.; Farhadian, M.; Tangestaninejad, S. Appl. Surf. Sci. 2022, 602, 154389. doi:10.1016/j.apsusc.2022.154389

    70. [70]

      (70) Lu, C.; Yang, D.; Wang, L.; Wen, S.; Cao, D.; Tu, C.; Gao, L.; Li, Y.; Zhou, Y.; Huang, W. J. Alloy. Compd. 2022, 904, 164046. doi:10.1016/j.jallcom.2022.164046

    71. [71]

      (71) Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643

    72. [72]

      (72) Wang, W.; Li, X.; Deng, F.; Liu, J.; Gao, X.; Huang, J.; Xu, J.; Feng, Z.; Chen, Z.; Han, L. Chin. Chem. Lett. 2022, 33, 5200. doi:10.1016/j.cclet.2022.01.058

    73. [73]

      (73) Huang, B.; Fu, X.; Wang, K.; Wang, L.; Zhang, H.; Liu, Z.; Liu, B.; Li, J. Adv. Powder Mater. 2024, 100140. doi:10.1016/j.apmate.2023.100140

    74. [74]

      (74) Ning, R.; Pang, H.; Yan, Z.; Lu, Z.; Wang, Q.; Wu, Z.; Dai, W.; Liu, L.; Li, Z.; Fan, G.; et al. J. Hazard. Mater. 2022, 435, 129061. doi:10.1016/j.jhazmat.2022.129061

    75. [75]

      (75) Wang, W.; Wang, Z.; Hu, Y.; Liu, Y.; Chen, S. eScience 2022, 2, 438. doi:10.1016/j.esci.2022.04.004

    76. [76]

      (76) He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/S1872-2067(23)64420-1

    77. [77]

      (77) Hua, J.; Wang, Z.; Zhan, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi:10.1016/j.jmst.2023.03.003

    78. [78]

      (78) Li, S.; Liang, J.; Wei, P.; Liu, Q.; Xie, L.; Luo, Y.; Sun, X. eScience 2022, 2, 382. doi:10.1016/j.esci.2022.04.008

    79. [79]

      (79) Liu, Y.; Yu, F.; Wang, F.; Bai, S.; He, G. Chin. J. Struct. Chem. 2022, 41, 2201034. doi:10.14102/j.cnki.0254-5861.2021-0046

    80. [80]

      (80) Gómez-Avilés, A.; Solís, R. R.; García-Frutos, E. M.; Bedia, J.; Belver, C. Chem. Eng. J. 2023, 461, 141889. doi:10.1016/j.cej.2023.141889

    81. [81]

      (81) Li, X.; Hu, Y.; Dong, F.; Huang, J.; Han, L.; Deng, F.; Luo, Y.; Xie, Y.; He, C.; Feng, Z.; et al. Appl. Catal. B 2023, 325, 122341. doi:10.1016/j.apcatb.2022.122341

    82. [82]

      (82) Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S. K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi:10.1016/j.cej.2021.129530

    83. [83]

      (83) Li, X.; Liu, T.; Zhang, Y.; Cai, J.; He, M.; Li, M.; Chen, Z.; Zhang, L. Adv. Fiber Mater. 2022, 4, 1620. doi:10.1007/s42765-022-00189-w

    84. [84]

      (84) Feng, X.; Sun, L.; Wang, W.; Zhao, Y.; Shi, J. Sep. Purif. Technol. 2023, 324, 124520. doi:10.1016/j.seppur.2023.124520

    85. [85]

      (85) Sun, G.; Xiao, B.; Zheng, H.; Shi, J. W.; Mao, S.; He, C.; Li, Z.; Cheng, Y. J. Mater. Chem. A 2021, 9, 9735. doi:10.1039/D1TA01089A

    86. [86]

      (86) Xiong, X.; Yang, H.; Zhang, J.; Lin, J.; Yang, S.; Chen, C.; Xi, J.; Kong, Z.; Song, L.; Zeng, J. J. Alloy. Compd. 2023, 933, 167784. doi:10.1016/j.jallcom.2022.167784

    87. [87]

    88. [88]

      (88) Li, S.; Shao, L.; Yang, Z.; Cheng, S.; Yang, C.; Liu, Y.; Xia, X. Green Energy Environ. 2022, 7, 246. doi:10.1016/j.gee.2020.09.005

    89. [89]

      (89) Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Nat. Commun. 2020, 11, 4613. doi:10.1038/s41467-020-18350-7

    90. [90]

      (90) Bhosale, A. H.; Narra, S.; Bhosale, S. S.; Diau, E. W. -G. J. Phys. Chem. Lett. 2022, 13, 7987. doi:10.1021/acs.jpclett.2c02153

    91. [91]

      (91) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi:10.1002/adma.202100317

  • 加载中
    1. [1]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    2. [2]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    6. [6]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    16. [16]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    17. [17]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(0)
  • Abstract views(92)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return