Citation: Shijie Ren,  Mingze Gao,  Rui-Ting Gao,  Lei Wang. Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230704. doi: 10.3866/PKU.WHXB202307040 shu

Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting

  • Corresponding author: Rui-Ting Gao,  Lei Wang, 
  • Received Date: 20 July 2023
    Revised Date: 11 August 2023
    Accepted Date: 11 August 2023

    Fund Project: The work was supported by the National Key Research and Development Program of China (2022YFA1205200) and the National Natural Science Foundation of China (21965024, 22269016).

  • Metal-organic frameworks (MOFs) as efficient electrocatalysts can be employed as the promising cocatalysts in photoelectrochemistry. Herein, a strategy is developed to metal-organic frameworks as oxygen evolution cocatalyst (OEC) combined with semiconductor for improving the charge transport and reducing the bulk/surface carrier recombination. This advanced CoFe MOF/BiVO4 photoanode exhibits a photocurrent density of 4.5 mA·cm-2 at 1.23 V (vs. RHE) under AM 1.5G illumination, achieving outstanding long-term photostability. Remarkably, with the reconstruction of MOF in the long-term water oxidation reaction, more stable metal oxyhydroxides are formed on the surface of BiVO4 and the photocurrent density of the photoelectrode is further enhanced to 5 mA·cm-2. From density functional theory calculations, the enhanced photoelectrochemical (PEC) performance can be attributed to the coupling effect between Co and Fe decreasing the free energy barriers and accelerating the reaction kinetics. This work focuses on the reconfiguration of CoFe MOF catalyst to bimetallic hydroxide during long-term water oxidation. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes through MOFs catalysts for feasible PEC water splitting.
  • 加载中
    1. [1]

      (1) Landman, A.; Dotan, H.; Shter, G. E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G. S.; Rothschild, A. Nat. Mater. 2017, 16, 646. doi:10.1038/NMAT4876

    2. [2]

      (2) Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B.; et al. Angew. Chem. Int. Ed. 2019, 58, 9155. doi:10.1002/ange.201903936

    3. [3]

      (3) Jorge, A. B.; Jervis, R.; Periasamy, A. P.; Qiao, M.; Feng, J. Y.; Tran, L. N.; Titirici, M.-M. Adv. Energy Mater. 2020, 10, 1902494. doi:10.1002/aenm.201902494

    4. [4]

      (4) Li, G.; Wang, X. L.; Seo, M. H.; Hemmati, S.; Yu, A. P.; Chen, Z. W. J. Mater. Chem. A 2017, 5, 10895. doi:10.1039/C7TA02745A

    5. [5]

      (5) Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. Nano Energy 2019, 63, 103880. doi:10.1016/j.nanoen.2019.103880

    6. [6]

      (6) Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. Adv. Sci. 2016, 3, 1500345. doi:10.1002/advs.201500345

    7. [7]

      (7) Samuel, E.; Joshi, B.; Kim, M.-W.; Swihart, M. T.; Yoon, S. S. Nano Energy 2020, 72, 104648. doi:10.1016/j.nanoen.2020.104648

    8. [8]

    9. [9]

    10. [10]

    11. [11]

    12. [12]

      (12) Kuang, P. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Appl. Catal. B-Environ. 2017, 218, 570. doi:10.1016/j.apcatb.2017.07.002

    13. [13]

    14. [14]

      (14) Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2013, 135, 11389. doi:10.1021/ja405550k

    15. [15]

      (15) Lu, H.; Andrei, V.; Jenkinson, K. J.; Regoutz, A.; Li, N.; Creissen, C. E.; Wheatley, A. E. H.; Hao, H.; Reisner, E.; Wright, D. S.; et al. Adv. Mater. 2018, 30, 1804033. doi:10.1002/adma.201804033

    16. [16]

      (16) Grigioni, I.; Ganzer, L.; Camargo, V. A.; Bozzini, F. B.; Cerullo, G.; Selli, E. ACS Energy Lett. 2019, 4, 2213. doi:10.1021/acsenergylett.9b01150

    17. [17]

      (17) Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Adv. Funct. Mater. 2015, 25, 3074. doi:10.1002/adfm.201500521

    18. [18]

      (18) Gao, R.-T.; He, D.; Wu, L.; Hu, K.; Liu, X. H.; Su, Y. G.; Wang, L. Angew. Chem. Int. Ed. 2020, 59, 6213. doi:10.1002/anie.201915671

    19. [19]

      (19) Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H.-Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L.; et al. Angew. Chem. Int. Ed. 2021, 60, 1433. doi:10.1002/anie.202012550

    20. [20]

      (20) Zhou, S. Q.; Chen, K. Y.; Huang, J. W.; Wang, L.; Zhang, M. Y.; Bai, B.; Liu, H.; Wang, Q. Z. Appl. Catal. B-Environ. 2020, 266, 118513. doi:10.1016/j.apcatb.2019.118513

    21. [21]

      (21) Tian, W. J.; Zhang, H. Y.; Sibbons, J.; Sun, H. Q.; Wang, H.; Wang, S. B. Adv. Energy Mater. 2021, 2100911. doi:10.1002/aenm.202100911

    22. [22]

      (22) Hou, X. A.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M. A.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Chem. Eng. J. 2021, 418, 129330. doi:10.1016/j.cej.2021.129330

    23. [23]

      (23) Ling, X. T.; Du, F.; Zhang, Y. T.; Shen, Y.; Gao, W.; Zhou, B.; Wang, Z. Y.; Li, G. L.; Li, T.; Shen, Q.; et al. J. Mater. Chem. A 2021, 9, 13271. doi:10.1039/d1ta90130c

    24. [24]

      (24) Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J.; et al. Nano Energy 2021, 81, 105606. doi:10.1016/j.nanoen.2020.105606

    25. [25]

      (25) Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W.; et al. Angew. Chem. Int. Ed. 2021, 60, 12097. doi:10.1002/anie.202102632

    26. [26]

      (26) He, W. H.; Wang, R. R.; Zhang, L.; Zhu, J.; Xiang, X.; Li, F. J. Mater. Chem. A 2015, 3, 17977. doi:10.1039/c5ta04105h

    27. [27]

      (27) Nishimoto, M.; Kitano, S.; Kowalski, D.; Aoki, Y.; Habazaki, H. ACS Sustain. Chem. Eng. 2021, 9, 9465. doi:10.1021/acssuschemeng.1c03116

    28. [28]

      (28) Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C.-T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J.; et al. Nat. Energy 2016, 1, 16184. doi:10.1038/NENERGY.2016.184

    29. [29]

      (29) Chen, J. Y. C.; Dang, L. N.; Liang, H. F.; Bi, W. L.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 15090. doi:10.1021/jacs.5b10699

    30. [30]

      (30) Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X.; Zhu, K.; Jiao, F. J. J. Am. Chem. Soc. 2015, 137, 4223. doi:10.1021/jacs.5b01006

    31. [31]

      (31) Zhuang, L.; Ge, L.; Liu, H.; Jiang, Z.; Jia, Y.; Li, Z.; Yang, D.; Hocking, R. K.; Li, M.; Zhang, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 13565. doi:10.1002/anie.201907600

    32. [32]

      (32) Zhang, M.; Zhang, A. M.; Wang, X. X.; Huang, Q.; Zhu, X.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. J. Mater. Chem. A 2018, 6, 8735. doi:10.1039/c8ta01062e

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    3. [3]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    6. [6]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    10. [10]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    13. [13]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    16. [16]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(0)
  • Abstract views(93)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return