Citation:
Shijie Ren, Mingze Gao, Rui-Ting Gao, Lei Wang. Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting[J]. Acta Physico-Chimica Sinica,
;2024, 40(7): 230704.
doi:
10.3866/PKU.WHXB202307040
-
Metal-organic frameworks (MOFs) as efficient electrocatalysts can be employed as the promising cocatalysts in photoelectrochemistry. Herein, a strategy is developed to metal-organic frameworks as oxygen evolution cocatalyst (OEC) combined with semiconductor for improving the charge transport and reducing the bulk/surface carrier recombination. This advanced CoFe MOF/BiVO4 photoanode exhibits a photocurrent density of 4.5 mA·cm-2 at 1.23 V (vs. RHE) under AM 1.5G illumination, achieving outstanding long-term photostability. Remarkably, with the reconstruction of MOF in the long-term water oxidation reaction, more stable metal oxyhydroxides are formed on the surface of BiVO4 and the photocurrent density of the photoelectrode is further enhanced to 5 mA·cm-2. From density functional theory calculations, the enhanced photoelectrochemical (PEC) performance can be attributed to the coupling effect between Co and Fe decreasing the free energy barriers and accelerating the reaction kinetics. This work focuses on the reconfiguration of CoFe MOF catalyst to bimetallic hydroxide during long-term water oxidation. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes through MOFs catalysts for feasible PEC water splitting.
-
-
-
[1]
(1) Landman, A.; Dotan, H.; Shter, G. E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G. S.; Rothschild, A. Nat. Mater. 2017, 16, 646. doi:10.1038/NMAT4876
-
[2]
(2) Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B.; et al. Angew. Chem. Int. Ed. 2019, 58, 9155. doi:10.1002/ange.201903936
-
[3]
(3) Jorge, A. B.; Jervis, R.; Periasamy, A. P.; Qiao, M.; Feng, J. Y.; Tran, L. N.; Titirici, M.-M. Adv. Energy Mater. 2020, 10, 1902494. doi:10.1002/aenm.201902494
-
[4]
(4) Li, G.; Wang, X. L.; Seo, M. H.; Hemmati, S.; Yu, A. P.; Chen, Z. W. J. Mater. Chem. A 2017, 5, 10895. doi:10.1039/C7TA02745A
-
[5]
(5) Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. Nano Energy 2019, 63, 103880. doi:10.1016/j.nanoen.2019.103880
-
[6]
(6) Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. Adv. Sci. 2016, 3, 1500345. doi:10.1002/advs.201500345
-
[7]
(7) Samuel, E.; Joshi, B.; Kim, M.-W.; Swihart, M. T.; Yoon, S. S. Nano Energy 2020, 72, 104648. doi:10.1016/j.nanoen.2020.104648
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
(12) Kuang, P. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Appl. Catal. B-Environ. 2017, 218, 570. doi:10.1016/j.apcatb.2017.07.002
-
[13]
-
[14]
(14) Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2013, 135, 11389. doi:10.1021/ja405550k
-
[15]
(15) Lu, H.; Andrei, V.; Jenkinson, K. J.; Regoutz, A.; Li, N.; Creissen, C. E.; Wheatley, A. E. H.; Hao, H.; Reisner, E.; Wright, D. S.; et al. Adv. Mater. 2018, 30, 1804033. doi:10.1002/adma.201804033
-
[16]
(16) Grigioni, I.; Ganzer, L.; Camargo, V. A.; Bozzini, F. B.; Cerullo, G.; Selli, E. ACS Energy Lett. 2019, 4, 2213. doi:10.1021/acsenergylett.9b01150
-
[17]
(17) Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Adv. Funct. Mater. 2015, 25, 3074. doi:10.1002/adfm.201500521
-
[18]
(18) Gao, R.-T.; He, D.; Wu, L.; Hu, K.; Liu, X. H.; Su, Y. G.; Wang, L. Angew. Chem. Int. Ed. 2020, 59, 6213. doi:10.1002/anie.201915671
-
[19]
(19) Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H.-Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L.; et al. Angew. Chem. Int. Ed. 2021, 60, 1433. doi:10.1002/anie.202012550
-
[20]
(20) Zhou, S. Q.; Chen, K. Y.; Huang, J. W.; Wang, L.; Zhang, M. Y.; Bai, B.; Liu, H.; Wang, Q. Z. Appl. Catal. B-Environ. 2020, 266, 118513. doi:10.1016/j.apcatb.2019.118513
-
[21]
(21) Tian, W. J.; Zhang, H. Y.; Sibbons, J.; Sun, H. Q.; Wang, H.; Wang, S. B. Adv. Energy Mater. 2021, 2100911. doi:10.1002/aenm.202100911
-
[22]
(22) Hou, X. A.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M. A.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Chem. Eng. J. 2021, 418, 129330. doi:10.1016/j.cej.2021.129330
-
[23]
(23) Ling, X. T.; Du, F.; Zhang, Y. T.; Shen, Y.; Gao, W.; Zhou, B.; Wang, Z. Y.; Li, G. L.; Li, T.; Shen, Q.; et al. J. Mater. Chem. A 2021, 9, 13271. doi:10.1039/d1ta90130c
-
[24]
(24) Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J.; et al. Nano Energy 2021, 81, 105606. doi:10.1016/j.nanoen.2020.105606
-
[25]
(25) Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W.; et al. Angew. Chem. Int. Ed. 2021, 60, 12097. doi:10.1002/anie.202102632
-
[26]
(26) He, W. H.; Wang, R. R.; Zhang, L.; Zhu, J.; Xiang, X.; Li, F. J. Mater. Chem. A 2015, 3, 17977. doi:10.1039/c5ta04105h
-
[27]
(27) Nishimoto, M.; Kitano, S.; Kowalski, D.; Aoki, Y.; Habazaki, H. ACS Sustain. Chem. Eng. 2021, 9, 9465. doi:10.1021/acssuschemeng.1c03116
-
[28]
(28) Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C.-T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J.; et al. Nat. Energy 2016, 1, 16184. doi:10.1038/NENERGY.2016.184
-
[29]
(29) Chen, J. Y. C.; Dang, L. N.; Liang, H. F.; Bi, W. L.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 15090. doi:10.1021/jacs.5b10699
-
[30]
(30) Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X.; Zhu, K.; Jiao, F. J. J. Am. Chem. Soc. 2015, 137, 4223. doi:10.1021/jacs.5b01006
-
[31]
(31) Zhuang, L.; Ge, L.; Liu, H.; Jiang, Z.; Jia, Y.; Li, Z.; Yang, D.; Hocking, R. K.; Li, M.; Zhang, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 13565. doi:10.1002/anie.201907600
-
[32]
(32) Zhang, M.; Zhang, A. M.; Wang, X. X.; Huang, Q.; Zhu, X.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. J. Mater. Chem. A 2018, 6, 8735. doi:10.1039/c8ta01062e
-
[1]
-
-
-
[1]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[2]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[3]
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
-
[4]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[5]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[6]
Longsheng Zhan , Yuchao Wang , Mengjie Liu , Xin Zhao , Danni Deng , Xinran Zheng , Jiabi Jiang , Xiang Xiong , Yongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695
-
[7]
Lina Wang , Hairu Wang , Qian Bu , Qiong Mei , Junbo Zhong , Bo Bai , Qizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139
-
[8]
Hailang Deng , Abebe Reda Woldu , Abdul Qayum , Zanling Huang , Weiwei Zhu , Xiang Peng , Paul K. Chu , Liangsheng Hu . Killing two birds with one stone: Enhancing the photoelectrochemical water splitting activity and stability of BiVO4 by Fe ions association. Chinese Chemical Letters, 2024, 35(12): 109892-. doi: 10.1016/j.cclet.2024.109892
-
[9]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[10]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[11]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[12]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[13]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[14]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[15]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[16]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[17]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[18]
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
-
[19]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[20]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(159)
- HTML views(17)