Citation: Shijie Ren, Mingze Gao, Rui-Ting Gao, Lei Wang. Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230704. doi: 10.3866/PKU.WHXB202307040
-
Metal-organic frameworks (MOFs) as efficient electrocatalysts can be employed as the promising cocatalysts in photoelectrochemistry. Herein, a strategy is developed to metal-organic frameworks as oxygen evolution cocatalyst (OEC) combined with semiconductor for improving the charge transport and reducing the bulk/surface carrier recombination. This advanced CoFe MOF/BiVO4 photoanode exhibits a photocurrent density of 4.5 mA·cm-2 at 1.23 V (vs. RHE) under AM 1.5G illumination, achieving outstanding long-term photostability. Remarkably, with the reconstruction of MOF in the long-term water oxidation reaction, more stable metal oxyhydroxides are formed on the surface of BiVO4 and the photocurrent density of the photoelectrode is further enhanced to 5 mA·cm-2. From density functional theory calculations, the enhanced photoelectrochemical (PEC) performance can be attributed to the coupling effect between Co and Fe decreasing the free energy barriers and accelerating the reaction kinetics. This work focuses on the reconfiguration of CoFe MOF catalyst to bimetallic hydroxide during long-term water oxidation. This work enables us to develop an effective pathway to design and fabricate efficient and stable photoanodes through MOFs catalysts for feasible PEC water splitting.
-
-
[1]
(1) Landman, A.; Dotan, H.; Shter, G. E.; Wullenkord, M.; Houaijia, A.; Maljusch, A.; Grader, G. S.; Rothschild, A. Nat. Mater. 2017, 16, 646. doi:10.1038/NMAT4876
-
[2]
(2) Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B.; et al. Angew. Chem. Int. Ed. 2019, 58, 9155. doi:10.1002/ange.201903936
-
[3]
(3) Jorge, A. B.; Jervis, R.; Periasamy, A. P.; Qiao, M.; Feng, J. Y.; Tran, L. N.; Titirici, M.-M. Adv. Energy Mater. 2020, 10, 1902494. doi:10.1002/aenm.201902494
-
[4]
(4) Li, G.; Wang, X. L.; Seo, M. H.; Hemmati, S.; Yu, A. P.; Chen, Z. W. J. Mater. Chem. A 2017, 5, 10895. doi:10.1039/C7TA02745A
-
[5]
(5) Yu, M. Z.; Wang, Z. Y.; Liu, J. S.; Sun, F.; Yang, P. J.; Qiu, J. S. Nano Energy 2019, 63, 103880. doi:10.1016/j.nanoen.2019.103880
-
[6]
(6) Jin, L.; AlOtaibi, B.; Benetti, D.; Li, S.; Zhao, H. G.; Mi, Z. T.; Vomiero, A.; Rosei, F. Adv. Sci. 2016, 3, 1500345. doi:10.1002/advs.201500345
-
[7]
(7) Samuel, E.; Joshi, B.; Kim, M.-W.; Swihart, M. T.; Yoon, S. S. Nano Energy 2020, 72, 104648. doi:10.1016/j.nanoen.2020.104648
-
[8]
-
[9]
-
[10]
-
[11]
-
[12]
(12) Kuang, P. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Appl. Catal. B-Environ. 2017, 218, 570. doi:10.1016/j.apcatb.2017.07.002
-
[13]
-
[14]
(14) Rettie, A. J. E.; Lee, H. C.; Marshall, L. G.; Lin, J. F.; Capan, C.; Lindemuth, J.; McCloy, J. S.; Zhou, J.; Bard, A. J.; Mullins, C. B. J. Am. Chem. Soc. 2013, 135, 11389. doi:10.1021/ja405550k
-
[15]
(15) Lu, H.; Andrei, V.; Jenkinson, K. J.; Regoutz, A.; Li, N.; Creissen, C. E.; Wheatley, A. E. H.; Hao, H.; Reisner, E.; Wright, D. S.; et al. Adv. Mater. 2018, 30, 1804033. doi:10.1002/adma.201804033
-
[16]
(16) Grigioni, I.; Ganzer, L.; Camargo, V. A.; Bozzini, F. B.; Cerullo, G.; Selli, E. ACS Energy Lett. 2019, 4, 2213. doi:10.1021/acsenergylett.9b01150
-
[17]
(17) Li, H. F.; Yu, H. T.; Quan, X.; Chen, S.; Zhao, H. M. Adv. Funct. Mater. 2015, 25, 3074. doi:10.1002/adfm.201500521
-
[18]
(18) Gao, R.-T.; He, D.; Wu, L.; Hu, K.; Liu, X. H.; Su, Y. G.; Wang, L. Angew. Chem. Int. Ed. 2020, 59, 6213. doi:10.1002/anie.201915671
-
[19]
(19) Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H.-Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L.; et al. Angew. Chem. Int. Ed. 2021, 60, 1433. doi:10.1002/anie.202012550
-
[20]
(20) Zhou, S. Q.; Chen, K. Y.; Huang, J. W.; Wang, L.; Zhang, M. Y.; Bai, B.; Liu, H.; Wang, Q. Z. Appl. Catal. B-Environ. 2020, 266, 118513. doi:10.1016/j.apcatb.2019.118513
-
[21]
(21) Tian, W. J.; Zhang, H. Y.; Sibbons, J.; Sun, H. Q.; Wang, H.; Wang, S. B. Adv. Energy Mater. 2021, 2100911. doi:10.1002/aenm.202100911
-
[22]
(22) Hou, X. A.; Han, Z. K.; Xu, X. J.; Sarker, D.; Zhou, J.; Wu, M. A.; Liu, Z. C.; Huang, M. H.; Jiang, H. Q. Chem. Eng. J. 2021, 418, 129330. doi:10.1016/j.cej.2021.129330
-
[23]
(23) Ling, X. T.; Du, F.; Zhang, Y. T.; Shen, Y.; Gao, W.; Zhou, B.; Wang, Z. Y.; Li, G. L.; Li, T.; Shen, Q.; et al. J. Mater. Chem. A 2021, 9, 13271. doi:10.1039/d1ta90130c
-
[24]
(24) Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J.; et al. Nano Energy 2021, 81, 105606. doi:10.1016/j.nanoen.2020.105606
-
[25]
(25) Ge, K.; Sun, S. J.; Zhao, Y.; Yang, K.; Wang, S.; Zhang, Z. H.; Cao, J. Y.; Yang, Y. F.; Zhang, Y.; Pan, M. W.; et al. Angew. Chem. Int. Ed. 2021, 60, 12097. doi:10.1002/anie.202102632
-
[26]
(26) He, W. H.; Wang, R. R.; Zhang, L.; Zhu, J.; Xiang, X.; Li, F. J. Mater. Chem. A 2015, 3, 17977. doi:10.1039/c5ta04105h
-
[27]
(27) Nishimoto, M.; Kitano, S.; Kowalski, D.; Aoki, Y.; Habazaki, H. ACS Sustain. Chem. Eng. 2021, 9, 9465. doi:10.1021/acssuschemeng.1c03116
-
[28]
(28) Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C.-T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J.; et al. Nat. Energy 2016, 1, 16184. doi:10.1038/NENERGY.2016.184
-
[29]
(29) Chen, J. Y. C.; Dang, L. N.; Liang, H. F.; Bi, W. L.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 15090. doi:10.1021/jacs.5b10699
-
[30]
(30) Hutchings, G. S.; Zhang, Y.; Li, J.; Yonemoto, B. T.; Zhou, X.; Zhu, K.; Jiao, F. J. J. Am. Chem. Soc. 2015, 137, 4223. doi:10.1021/jacs.5b01006
-
[31]
(31) Zhuang, L.; Ge, L.; Liu, H.; Jiang, Z.; Jia, Y.; Li, Z.; Yang, D.; Hocking, R. K.; Li, M.; Zhang, L.; et al. Angew. Chem. Int. Ed. 2019, 58, 13565. doi:10.1002/anie.201907600
-
[32]
(32) Zhang, M.; Zhang, A. M.; Wang, X. X.; Huang, Q.; Zhu, X.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. J. Mater. Chem. A 2018, 6, 8735. doi:10.1039/c8ta01062e
-
[1]
-
-
[1]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[2]
Lan Ma , Cailu He , Ziqi Liu , Yaohan Yang , Qingxia Ming , Xue Luo , Tianfeng He , Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046
-
[3]
Honglian Liang , Xiaozhe Kuang , Fuping Wang , Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073
-
[4]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[5]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[6]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[7]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[8]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[9]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[10]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[11]
Zhuomin Zhang , Hanbing Huang , Liangqiu Lin , Jingsong Liu , Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034
-
[12]
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
-
[13]
Ruilin Han , Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023
-
[14]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[15]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[16]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[17]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[18]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[19]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[20]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(94)
- HTML views(7)