Citation: Ruonan Li, Shijie Liang, Yunhua Xu, Cuifen Zhang, Zheng Tang, Baiqiao Liu, Weiwei Li. 氯取代近红外双缆共轭高分子材料与低能量损失单组分有机太阳能电池[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230703. doi: 10.3866/PKU.WHXB202307037
-
近红外型双缆共轭高分子材料的光电转换效率(PCE)已经超过了10%,然而较大的能量损失限制了其性能的进一步提升。本工作中,我们合成了两个氯取代的近红外双缆共轭聚合物材料,分别命名为as-DCPIC-Cl和as-DCPIC-2Cl。氯原子的引入使得单组分有机太阳能电池的能量损失低至0.57 eV。其中,基于as-DCPIC-Cl的器件实现了10.14%的PCE,为基于非稠环电子受体的双缆共轭聚合物的最高性能。研究表明,氯原子在实现高性能单组分有机太阳能电池方面具有重要的作用。
-
-
[1]
(1) Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11
-
[2]
(2) Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245. doi: 10.1039/C2CS15313K
-
[3]
(3) Roncali, J.; Grosu, I. Adv. Sci. 2019, 6, 1801026. doi: 10.1002/advs.201801026
-
[4]
(4) He, Y.; Wang, B.; Lüer, L.; Feng, G.; Osvet, A.; Heumüller, T.; Liu, C.; Li, W.; Guldi, D. M.; Li, N.; et al. Adv. Energy Mater. 2021, 12, 2103406. doi: 10.1002/aenm.202103406
-
[5]
(5) Xia, D.; Li, C.; Li, W. Chem. Rec. 2019, 19, 962. doi: 10.1002/tcr.201800131
-
[6]
(6) Roncali, J. Chem. Soc. Rev. 2005, 34, 483. doi: 10.1039/b415941c
-
[7]
(7) He, Y.; Li, N.; Heumüller, T.; Wortmann, J.; Hanisch, B.; Aubele, A.; Lucas, S.; Feng, G.; Jiang, X.; Li, W.; et al. Joule 2022, 6, 1160. doi: 10.1016/j.joule.2022.05.008
-
[8]
(8) He, Y.; Li, N.; Brabec, C. J. Org. Mater. 2021, 3, 228. doi: 10.1055/s-0041-1727234
-
[9]
(9) He, Y.; Heumüller, T.; Lai, W.; Feng, G.; Classen, A.; Du, X.; Liu, C.; Li, W.; Li, N.; Brabec, C. J. Adv. Energy Mater. 2019, 9, 1900409. doi: 10.1002/aenm.201900409
-
[10]
-
[11]
(11) Wu, Y.; Fan, Q.; Fan, B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C.-S.; Woo, H. Y.; Yip, H.-L.; et al. ACS Energy Lett. 2022, 7, 2196. doi: 10.1021/acsenergylett.2c01082
-
[12]
(12) Li, S.; Yuan, X.; Zhang, Q.; Li, B.; Li, Y.; Sun, J.; Feng, Y.; Zhang, X.; Wu, Z.; Wei, H.; et al. Adv. Mater. 2021, 33, e2101295. doi: 10.1002/adma.202101295
-
[13]
(13) Hu, H.; Mu, X.; Li, B.; Gui, R.; Shi, R.; Chen, T.; Liu, J.; Yuan, J.; Ma, J.; Gao, K.; et al. Adv. Sci. 2023, 10, 2205040. doi: 10.1002/advs.202205040
-
[14]
(14) Wu, Y.; Guo, J.; Wang, W.; Chen, Z.; Chen, Z.; Sun, R.; Wu, Q.; Wang, T.; Hao, X.; Zhu, H.; et al. Joule 2021, 5, 1800. doi: 10.1016/j.joule.2021.05.002
-
[15]
(15) Li, S.; Li, B.; Yang, X.; Wei, H.; Wu, Z.; Li, Y.; Hu, Y.; Woo, H. Y.; Yuan, J. J. Mater. Chem. A 2022, 10, 12997. doi: 10.1039/d2ta02307e
-
[16]
(16) Kwon, N. Y.; Park, S. H.; Cho, S.; Lee, D. W.; Harit, A. K.; Woo, H. Y.; Cho, M. J.; Choi, D. H. Polym. Chem. 2022, 13, 3335. doi: 10.1039/d2py00413e
-
[17]
(17) Guo, J.; Wu, Y.; Wang, W.; Wang, T.; Min, J. Sol. RRL 2022, 6, 2101024. doi: 10.1002/solr.202101024
-
[18]
(18) Liang, S.; Jiang, X.; Xiao, C.; Li, C.; Chen, Q.; Li, W. Acc. Chem. Res. 2021, 54, 2227. doi: 10.1021/acs.accounts.1c00070
-
[19]
(19) Cravino, A.; Zerza, G.; Maggini, M.; Bucella, S.; Svensson, M.; Andersson, M. R.; Neugebauer, H.; Sariciftci, N. S. Chem. Commun. 2000, No. 24, 2487. doi: 10.1039/B008072L
-
[20]
(20) Cravino, A.; Zerza, G.; Neugebauer, H.; Maggini, M.; Bucella, S.; Menna, E.; Svensson, M.; Andersson, M. R.; Brabec, C. J.; Sariciftci, N. S. J. Phys. Chem. B 2002, 106, 70. doi: 10.1021/jp013077y
-
[21]
(21) Jousselme, B.; Blanchard, P.; Levillain, E.; de Bettignies, R.; Roncali, J. Macromolecules 2003, 36, 3020. doi: 10.1021/ma034047r
-
[22]
(22) Ramos, A. M.; Rispens, M. T.; van Duren, J. K. J.; Hummelen, J. C.; Janssen, R. A. J. J. Am. Chem. Soc. 2001, 123, 6714. doi: 10.1021/ja015614y
-
[23]
(23) Zhang, F.; Svensson, M.; Andersson, M. R.; Maggini, M.; Bucella, S.; Menna, E.; Inganäs, O. Adv. Mater. 2001, 13, 1871. doi: 10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3
-
[24]
(24) Pierini, F.; Lanzi, M.; Nakielski, P.; Pawłowska, S.; Urbanek, O.; Zembrzycki, K.; Kowalewski, T. A. Macromolecules 2017, 50, 4972. doi: 10.1021/acs.macromol.7b00857
-
[25]
(25) Miyanishi, S.; Zhang, Y.; Hashimoto, K.; Tajima, K. Macromolecules 2012, 45, 6424. doi: 10.1021/ma300376m
-
[26]
(26) Miyanishi, S.; Zhang, Y.; Tajima, K.; Hashimoto, K. Chem. Commun. 2010, 46, 6723. doi: 10.1039/c0cc01819h
-
[27]
(27) Liu, B.; Xu, Y..; Liu, F.; Xie, C.; Liang, S.; Chen, Q.; Li, W. Chin. J. Polym. Sci. 2022, 40, 898. doi: 10.1007/s10118-022-2732-2
-
[28]
(28) Wang, R.; Xia, D.; Jiang, X.; Zhao, C.; Zhou, S.; Fang, H.; Wang, J.; Tang, Z.; Xiao, C.; Li, W. ACS Appl. Mater. Interfaces 2022, 14, 47952. doi: 10.1021/acsami.2c10466
-
[29]
(29) Li, C.; Wu, X.; Sui, X.; Wu, H.; Wang, C.; Feng, G.; Wu, Y.; Liu, F.; Liu, X.; Tang, Z.; et al. Angew. Chem. Int. Ed. 2019, 58, 15532. doi: 10.1002/anie.201910489
-
[30]
(30) Lai, W.; Li, C.; Zhang, J.; Yang, F.; Colberts, F. J. M.; Guo, B.; Wang, Q. M.; Li, M.; Zhang, A.; Janssen, R. A. J.; et al. Chem. Mater. 2017, 29, 7073. doi: 10.1021/acs.chemmater.7b02534
-
[31]
(31) Wang, D.; Yang, Z.; Liu, F.; Xiao, C.; Wu, Y.; Li, W. Chin. Chem. Lett. 2022, 33, 466. doi: 10.1016/j.cclet.2021.06.042
-
[32]
(32) Fang, H.; Xia, D.; Zhao, C.; Zhou, S.; Wang, R.; Zang, Y.; Xiao, C.; Li, W. Dyes Pigm. 2022, 203, 110355. doi: 10.1016/j.dyepig.2022.110355
-
[33]
(33) Jiang, X.; Xue, W.; Lai, W.; Xia, D.; Chen, Q.; Ma, W.; Li, W. J. Mater. Chem. C 2021, 9, 16240. doi: 10.1039/d1tc01195b
-
[34]
(34) Yu, P.; Feng, G.; Li, J.; Li, C.; Xu, Y.; Xiao, C.; Li, W. J. Mater. Chem. C 2020, 8, 2790. doi: 10.1039/c9tc06667e
-
[35]
(35) Liang, S.; Wang, J.; Ouyang, Y.; Tan, W. L.; McNeill, C. R.; Chen, Q.; Tang, Z.; Li, W. Macromolecules 2022, 55, 2517. doi: 10.1021/acs.macromol.1c02593
-
[36]
(36) Xie, C.; Xiao, C.; Jiang, X.; Liang, S.; Liu, C.; Zhang, Z.; Chen, Q.; Li, W. Macromolecules 2021, 55, 322. doi: 10.1021/acs.macromol.1c02111
-
[37]
(37) Yang, F.; Li, J.; Li, C.; Li, W. Macromolecules 2019, 52, 3689. doi: 10.1021/acs.macromol.9b00495
-
[38]
(38) Liang, S.; Xu, Y.; Li, C.; Li, J.; Wang, D.; Li, W. Polym. Chem. 2019, 10, 4584. doi: 10.1039/c9py00765b
-
[39]
(39) Yang, Z.; Liang, S.; Liu, B.; Wang, J.; Yang, F.; Chen, Q.; Xiao, C.; Tang, Z.; Li, W. Polym. Chem. 2021, 12, 6865. doi: 10.1039/D1PY01188J
-
[40]
(40) Yang, F.; Wang, X.; Feng, G.; Ma, J.; Li, C.; Li, J.; Ma, W.; Li, W. Sci. China Chem. 2018, 61, 824. doi: 10.1007/s11426-018-9241-0
-
[41]
(41) Xia, D.; Zhou, S.; Tan, W. L.; Karuthedath, S.; Xiao, C.; Zhao, C.; Laquai, F.; McNeill, C. R.; Li, W. Aggregate 2023, 4, e279. doi: 10.1002/agt2.279
-
[42]
(42) Feng, G.; Tan, W.; Karuthedath, S.; Li, C.; Jiao, X.; Liu, A. C. Y.; Venugopal, H.; Tang, Z.; Ye, L.; Laquai, F.; et al. Angew. Chem. Int. Ed. 2021, 60, 25499. doi: 10.1002/anie.202111192
-
[43]
(43) Jiang, X.; Yang, J.; Karuthedath, S.; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Ma, Z.; Tang, Z.; et al. Angew. Chem. Int. Ed. 2020, 59, 21683. doi: 10.1002/anie.202009272
-
[44]
(44) Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; et al. J. Am. Chem. Soc. 2017, 139, 18647. doi: 10.1021/jacs.7b10499
-
[45]
(45) Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; et al. Joule 2019, 3, 1765. doi: 10.1016/j.joule.2019.05.008
-
[46]
(46) Hu, Z.; Xiao, C.; Tan, W. L.; Liu, B.; Liang, S.; Jiang, X.; McNeil, C. R.; Li, W. Macromolecules 2022, 55, 5188. doi: 10.1021/acs.macromol.2c00444
-
[47]
(47) Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317
-
[48]
(48) Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3, 1140. doi: 10.1016/j.joule.2019.01.004
-
[49]
(49) Liang, S.; Liu, B.; Karuthedath, S.; Wang, J.; He, Y.; Tan, W. L.; Li, H.; Xu, Y.; Li, N.; Hou, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209316. doi: 10.1002/anie.202209316
-
[50]
(50) Liang, S.; Xiao, C.; Xie, C.; Liu, B.; Fang, H.; Li, W. Adv. Mater. 2023, 35, 2300629. doi: 10.1002/adma.202300629
-
[51]
(51) Liu, B.; Liang, S.; Karuthedath, S.; Xiao, C.; Wang, J.; Tan, W. L.; Li, R.; Li, H.; Hou, J.; Tang, Z.; et al. J. Mater. Chem. A 2023, 11, 12236. doi: 10.1039/d3ta01501g
-
[52]
(52) Zhang, Z.; Wang, J.; Hu, Z.; Xiao, C.; Chen, Q.; Tang, Z.; Li, W. Chin. Chem. Lett. 2023, 34, 108527. doi: 10.1016/j.cclet.2023.108527
-
[53]
(53) Liu, B.; Liang, S.; Karuthedath, S.; He, Y.; Wang, J.; Tan, W. L.; Li, H.; Xu, Y.; Laquai, F.; Brabec, C. J.; et al. Macromolecules 2023, 56, 1154. doi: 10.1021/acs.macromol.2c02184
-
[54]
(54) Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Macromolecules 2012, 45, 9611. doi: 10.1021/ma301900h
-
[55]
(55) Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Adv. Mater. 2018, 30, 1800868. doi: 10.1002/adma.201800868
-
[56]
(56) Li, W.; Hendriks, K. H.; Furlan, A.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2015, 137, 2231. doi: 10.1021/ja5131897
-
[57]
(57) Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Phys. Rev. B 2010, 81, 125204. doi: 10.1103/PhysRevB.81.125204
-
[1]
-
-
[1]
Qi Wang , Yicong Gao , Feng Lu , Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141
-
[2]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[3]
Lijun Huo , Mingcun Wang , Tianyi Zhao , Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059
-
[4]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[5]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[6]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[7]
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
-
[8]
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
-
[9]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[10]
Kai Yang , Gehua Bi , Yong Zhang , Delin Jin , Ziwei Xu , Qian Wang , Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045
-
[11]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[12]
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
-
[13]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[14]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[15]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[16]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[17]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[18]
Aiai WANG , Lu ZHAO , Yunfeng BAI , Feng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225
-
[19]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[20]
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(95)
- HTML views(3)