Citation: Ruonan Li,  Shijie Liang,  Yunhua Xu,  Cuifen Zhang,  Zheng Tang,  Baiqiao Liu,  Weiwei Li. 氯取代近红外双缆共轭高分子材料与低能量损失单组分有机太阳能电池[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230703. doi: 10.3866/PKU.WHXB202307037 shu

氯取代近红外双缆共轭高分子材料与低能量损失单组分有机太阳能电池

  • Corresponding author: Yunhua Xu,  Baiqiao Liu,  Weiwei Li, 
  • Received Date: 20 July 2023
    Revised Date: 17 September 2023
    Accepted Date: 20 September 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52073016, 22105180).

  • 近红外型双缆共轭高分子材料的光电转换效率(PCE)已经超过了10%,然而较大的能量损失限制了其性能的进一步提升。本工作中,我们合成了两个氯取代的近红外双缆共轭聚合物材料,分别命名为as-DCPIC-Cl和as-DCPIC-2Cl。氯原子的引入使得单组分有机太阳能电池的能量损失低至0.57 eV。其中,基于as-DCPIC-Cl的器件实现了10.14%的PCE,为基于非稠环电子受体的双缆共轭聚合物的最高性能。研究表明,氯原子在实现高性能单组分有机太阳能电池方面具有重要的作用。
  • 加载中
    1. [1]

      (1) Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11

    2. [2]

      (2) Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245. doi: 10.1039/C2CS15313K

    3. [3]

      (3) Roncali, J.; Grosu, I. Adv. Sci. 2019, 6, 1801026. doi: 10.1002/advs.201801026

    4. [4]

      (4) He, Y.; Wang, B.; Lüer, L.; Feng, G.; Osvet, A.; Heumüller, T.; Liu, C.; Li, W.; Guldi, D. M.; Li, N.; et al. Adv. Energy Mater. 2021, 12, 2103406. doi: 10.1002/aenm.202103406

    5. [5]

      (5) Xia, D.; Li, C.; Li, W. Chem. Rec. 2019, 19, 962. doi: 10.1002/tcr.201800131

    6. [6]

      (6) Roncali, J. Chem. Soc. Rev. 2005, 34, 483. doi: 10.1039/b415941c

    7. [7]

      (7) He, Y.; Li, N.; Heumüller, T.; Wortmann, J.; Hanisch, B.; Aubele, A.; Lucas, S.; Feng, G.; Jiang, X.; Li, W.; et al. Joule 2022, 6, 1160. doi: 10.1016/j.joule.2022.05.008

    8. [8]

      (8) He, Y.; Li, N.; Brabec, C. J. Org. Mater. 2021, 3, 228. doi: 10.1055/s-0041-1727234

    9. [9]

      (9) He, Y.; Heumüller, T.; Lai, W.; Feng, G.; Classen, A.; Du, X.; Liu, C.; Li, W.; Li, N.; Brabec, C. J. Adv. Energy Mater. 2019, 9, 1900409. doi: 10.1002/aenm.201900409

    10. [10]

    11. [11]

      (11) Wu, Y.; Fan, Q.; Fan, B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C.-S.; Woo, H. Y.; Yip, H.-L.; et al. ACS Energy Lett. 2022, 7, 2196. doi: 10.1021/acsenergylett.2c01082

    12. [12]

      (12) Li, S.; Yuan, X.; Zhang, Q.; Li, B.; Li, Y.; Sun, J.; Feng, Y.; Zhang, X.; Wu, Z.; Wei, H.; et al. Adv. Mater. 2021, 33, e2101295. doi: 10.1002/adma.202101295

    13. [13]

      (13) Hu, H.; Mu, X.; Li, B.; Gui, R.; Shi, R.; Chen, T.; Liu, J.; Yuan, J.; Ma, J.; Gao, K.; et al. Adv. Sci. 2023, 10, 2205040. doi: 10.1002/advs.202205040

    14. [14]

      (14) Wu, Y.; Guo, J.; Wang, W.; Chen, Z.; Chen, Z.; Sun, R.; Wu, Q.; Wang, T.; Hao, X.; Zhu, H.; et al. Joule 2021, 5, 1800. doi: 10.1016/j.joule.2021.05.002

    15. [15]

      (15) Li, S.; Li, B.; Yang, X.; Wei, H.; Wu, Z.; Li, Y.; Hu, Y.; Woo, H. Y.; Yuan, J. J. Mater. Chem. A 2022, 10, 12997. doi: 10.1039/d2ta02307e

    16. [16]

      (16) Kwon, N. Y.; Park, S. H.; Cho, S.; Lee, D. W.; Harit, A. K.; Woo, H. Y.; Cho, M. J.; Choi, D. H. Polym. Chem. 2022, 13, 3335. doi: 10.1039/d2py00413e

    17. [17]

      (17) Guo, J.; Wu, Y.; Wang, W.; Wang, T.; Min, J. Sol. RRL 2022, 6, 2101024. doi: 10.1002/solr.202101024

    18. [18]

      (18) Liang, S.; Jiang, X.; Xiao, C.; Li, C.; Chen, Q.; Li, W. Acc. Chem. Res. 2021, 54, 2227. doi: 10.1021/acs.accounts.1c00070

    19. [19]

      (19) Cravino, A.; Zerza, G.; Maggini, M.; Bucella, S.; Svensson, M.; Andersson, M. R.; Neugebauer, H.; Sariciftci, N. S. Chem. Commun. 2000, No. 24, 2487. doi: 10.1039/B008072L

    20. [20]

      (20) Cravino, A.; Zerza, G.; Neugebauer, H.; Maggini, M.; Bucella, S.; Menna, E.; Svensson, M.; Andersson, M. R.; Brabec, C. J.; Sariciftci, N. S. J. Phys. Chem. B 2002, 106, 70. doi: 10.1021/jp013077y

    21. [21]

      (21) Jousselme, B.; Blanchard, P.; Levillain, E.; de Bettignies, R.; Roncali, J. Macromolecules 2003, 36, 3020. doi: 10.1021/ma034047r

    22. [22]

      (22) Ramos, A. M.; Rispens, M. T.; van Duren, J. K. J.; Hummelen, J. C.; Janssen, R. A. J. J. Am. Chem. Soc. 2001, 123, 6714. doi: 10.1021/ja015614y

    23. [23]

      (23) Zhang, F.; Svensson, M.; Andersson, M. R.; Maggini, M.; Bucella, S.; Menna, E.; Inganäs, O. Adv. Mater. 2001, 13, 1871. doi: 10.1002/1521-4095(200112)13:24<1871::AID-ADMA1871>3.0.CO;2-3

    24. [24]

      (24) Pierini, F.; Lanzi, M.; Nakielski, P.; Pawłowska, S.; Urbanek, O.; Zembrzycki, K.; Kowalewski, T. A. Macromolecules 2017, 50, 4972. doi: 10.1021/acs.macromol.7b00857

    25. [25]

      (25) Miyanishi, S.; Zhang, Y.; Hashimoto, K.; Tajima, K. Macromolecules 2012, 45, 6424. doi: 10.1021/ma300376m

    26. [26]

      (26) Miyanishi, S.; Zhang, Y.; Tajima, K.; Hashimoto, K. Chem. Commun. 2010, 46, 6723. doi: 10.1039/c0cc01819h

    27. [27]

      (27) Liu, B.; Xu, Y..; Liu, F.; Xie, C.; Liang, S.; Chen, Q.; Li, W. Chin. J. Polym. Sci. 2022, 40, 898. doi: 10.1007/s10118-022-2732-2

    28. [28]

      (28) Wang, R.; Xia, D.; Jiang, X.; Zhao, C.; Zhou, S.; Fang, H.; Wang, J.; Tang, Z.; Xiao, C.; Li, W. ACS Appl. Mater. Interfaces 2022, 14, 47952. doi: 10.1021/acsami.2c10466

    29. [29]

      (29) Li, C.; Wu, X.; Sui, X.; Wu, H.; Wang, C.; Feng, G.; Wu, Y.; Liu, F.; Liu, X.; Tang, Z.; et al. Angew. Chem. Int. Ed. 2019, 58, 15532. doi: 10.1002/anie.201910489

    30. [30]

      (30) Lai, W.; Li, C.; Zhang, J.; Yang, F.; Colberts, F. J. M.; Guo, B.; Wang, Q. M.; Li, M.; Zhang, A.; Janssen, R. A. J.; et al. Chem. Mater. 2017, 29, 7073. doi: 10.1021/acs.chemmater.7b02534

    31. [31]

      (31) Wang, D.; Yang, Z.; Liu, F.; Xiao, C.; Wu, Y.; Li, W. Chin. Chem. Lett. 2022, 33, 466. doi: 10.1016/j.cclet.2021.06.042

    32. [32]

      (32) Fang, H.; Xia, D.; Zhao, C.; Zhou, S.; Wang, R.; Zang, Y.; Xiao, C.; Li, W. Dyes Pigm. 2022, 203, 110355. doi: 10.1016/j.dyepig.2022.110355

    33. [33]

      (33) Jiang, X.; Xue, W.; Lai, W.; Xia, D.; Chen, Q.; Ma, W.; Li, W. J. Mater. Chem. C 2021, 9, 16240. doi: 10.1039/d1tc01195b

    34. [34]

      (34) Yu, P.; Feng, G.; Li, J.; Li, C.; Xu, Y.; Xiao, C.; Li, W. J. Mater. Chem. C 2020, 8, 2790. doi: 10.1039/c9tc06667e

    35. [35]

      (35) Liang, S.; Wang, J.; Ouyang, Y.; Tan, W. L.; McNeill, C. R.; Chen, Q.; Tang, Z.; Li, W. Macromolecules 2022, 55, 2517. doi: 10.1021/acs.macromol.1c02593

    36. [36]

      (36) Xie, C.; Xiao, C.; Jiang, X.; Liang, S.; Liu, C.; Zhang, Z.; Chen, Q.; Li, W. Macromolecules 2021, 55, 322. doi: 10.1021/acs.macromol.1c02111

    37. [37]

      (37) Yang, F.; Li, J.; Li, C.; Li, W. Macromolecules 2019, 52, 3689. doi: 10.1021/acs.macromol.9b00495

    38. [38]

      (38) Liang, S.; Xu, Y.; Li, C.; Li, J.; Wang, D.; Li, W. Polym. Chem. 2019, 10, 4584. doi: 10.1039/c9py00765b

    39. [39]

      (39) Yang, Z.; Liang, S.; Liu, B.; Wang, J.; Yang, F.; Chen, Q.; Xiao, C.; Tang, Z.; Li, W. Polym. Chem. 2021, 12, 6865. doi: 10.1039/D1PY01188J

    40. [40]

      (40) Yang, F.; Wang, X.; Feng, G.; Ma, J.; Li, C.; Li, J.; Ma, W.; Li, W. Sci. China Chem. 2018, 61, 824. doi: 10.1007/s11426-018-9241-0

    41. [41]

      (41) Xia, D.; Zhou, S.; Tan, W. L.; Karuthedath, S.; Xiao, C.; Zhao, C.; Laquai, F.; McNeill, C. R.; Li, W. Aggregate 2023, 4, e279. doi: 10.1002/agt2.279

    42. [42]

      (42) Feng, G.; Tan, W.; Karuthedath, S.; Li, C.; Jiao, X.; Liu, A. C. Y.; Venugopal, H.; Tang, Z.; Ye, L.; Laquai, F.; et al. Angew. Chem. Int. Ed. 2021, 60, 25499. doi: 10.1002/anie.202111192

    43. [43]

      (43) Jiang, X.; Yang, J.; Karuthedath, S.; Li, J.; Lai, W.; Li, C.; Xiao, C.; Ye, L.; Ma, Z.; Tang, Z.; et al. Angew. Chem. Int. Ed. 2020, 59, 21683. doi: 10.1002/anie.202009272

    44. [44]

      (44) Feng, G.; Li, J.; Colberts, F. J. M.; Li, M.; Zhang, J.; Yang, F.; Jin, Y.; Zhang, F.; Janssen, R. A. J.; Li, C.; et al. J. Am. Chem. Soc. 2017, 139, 18647. doi: 10.1021/jacs.7b10499

    45. [45]

      (45) Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; et al. Joule 2019, 3, 1765. doi: 10.1016/j.joule.2019.05.008

    46. [46]

      (46) Hu, Z.; Xiao, C.; Tan, W. L.; Liu, B.; Liang, S.; Jiang, X.; McNeil, C. R.; Li, W. Macromolecules 2022, 55, 5188. doi: 10.1021/acs.macromol.2c00444

    47. [47]

      (47) Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317

    48. [48]

      (48) Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; et al. Joule 2019, 3, 1140. doi: 10.1016/j.joule.2019.01.004

    49. [49]

      (49) Liang, S.; Liu, B.; Karuthedath, S.; Wang, J.; He, Y.; Tan, W. L.; Li, H.; Xu, Y.; Li, N.; Hou, J.; et al. Angew. Chem. Int. Ed. 2022, 61, e202209316. doi: 10.1002/anie.202209316

    50. [50]

      (50) Liang, S.; Xiao, C.; Xie, C.; Liu, B.; Fang, H.; Li, W. Adv. Mater. 2023, 35, 2300629. doi: 10.1002/adma.202300629

    51. [51]

      (51) Liu, B.; Liang, S.; Karuthedath, S.; Xiao, C.; Wang, J.; Tan, W. L.; Li, R.; Li, H.; Hou, J.; Tang, Z.; et al. J. Mater. Chem. A 2023, 11, 12236. doi: 10.1039/d3ta01501g

    52. [52]

      (52) Zhang, Z.; Wang, J.; Hu, Z.; Xiao, C.; Chen, Q.; Tang, Z.; Li, W. Chin. Chem. Lett. 2023, 34, 108527. doi: 10.1016/j.cclet.2023.108527

    53. [53]

      (53) Liu, B.; Liang, S.; Karuthedath, S.; He, Y.; Wang, J.; Tan, W. L.; Li, H.; Xu, Y.; Laquai, F.; Brabec, C. J.; et al. Macromolecules 2023, 56, 1154. doi: 10.1021/acs.macromol.2c02184

    54. [54]

      (54) Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Macromolecules 2012, 45, 9611. doi: 10.1021/ma301900h

    55. [55]

      (55) Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Adv. Mater. 2018, 30, 1800868. doi: 10.1002/adma.201800868

    56. [56]

      (56) Li, W.; Hendriks, K. H.; Furlan, A.; Wienk, M. M.; Janssen, R. A. J. Am. Chem. Soc. 2015, 137, 2231. doi: 10.1021/ja5131897

    57. [57]

      (57) Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Phys. Rev. B 2010, 81, 125204. doi: 10.1103/PhysRevB.81.125204

  • 加载中
    1. [1]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    8. [8]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    9. [9]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    10. [10]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    11. [11]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    12. [12]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    16. [16]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(0)
  • Abstract views(95)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return