Citation: Zhuo Han,  Danfeng Zhang,  Haixian Wang,  Guorui Zheng,  Ming Liu,  Yanbing He. Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230703. doi: 10.3866/PKU.WHXB202307034 shu

Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries

  • Corresponding author: Ming Liu,  Yanbing He, 
  • Received Date: 19 July 2023
    Revised Date: 26 August 2023
    Accepted Date: 26 August 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (U2001220).

  • One of the crucial directions in the pursuit of high-energy-density lithium batteries involves pairing Ni-rich cathodes with lithium metal anodes (LMAs). However, battery systems with high energy density often suffer from issues such as poor phase structure stability and inadequate interface compatibility. These problems are exacerbated under the actual operating conditions with high cut-off voltages and wide temperature ranges. Interface degradation, in such cases, accelerates the destruction of phase structure, leading to rapid performance deterioration of electrode materials. Compared to methods like ion doping and surface coating, an approach centered around electrolyte-induced interface reconstruction modification through solvent-lithium salt optimization or functional additives shows promise. This approach allows for simultaneous electrochemical cyclic modification of both high-energy-density cathode and anode materials, and it can be easily integrated into large-scale industrial production. Ester-based electrolytes, while possessing greater voltage stability compared to ether-based electrolytes, still exhibit side reactions at the interface between high Ni-content cathodes and the electrolyte, as well as between Li metal anodes and the electrolyte. In the absence of effective cathode-electrolyte interface (CEI) and solid-electrolyte interface (SEI) protection, persistent side reactions occur, ultimately leading to electrode failure. To address these challenges and simultaneously enhance electrode/electrolyte interface compatibility while regulating electrolyte solvation structure, functional additives are employed to modify the electrochemical behavior of the high-energy-density battery interface. Traditional ether electrolytes often employ lithium hexafluorophosphate (LiPF6) as the primary salt. However, LiPF6 suffers from poor thermal stability. Its decomposition or hydrolysis generates hydrogen fluoride (HF), which corrodes the cathode. Moreover, LiPF6 decomposition releases phosphorus pentafluoride (PF5), triggering the ring-opening of ethylene carbonate (EC), leading to electrolyte failure. PF5 can also react with water to produce acidic compounds, further deteriorating battery performance. The extraction of Li+ ions in the cathode reduces oxygen binding energy, facilitating the release of lattice oxygen. This can lead to side reactions between reactive oxygen species and the electrolyte, increasing interface impedance. To tackle these issues, choosing electrolyte additives with diverse functions can expand the potential of electrolytes. By leveraging various functional electrolyte additives, it becomes possible to inhibit irreversible structural transformations in the cathode, prevent O2/CO2 precipitation, suppress interface side reactions, and facilitate the removal of acid-water impurities. This comprehensive study delves into the impact of different functional electrolyte additives on interface film reconstruction, interfacial adsorption stability, synergy on high-energy-density anode interface, and acid-water impurity removal in Ni-rich cathode and anode materials. The research opens up new avenues for the identification and design of specific functionalized additives, paving the way for achieving stable cycling in high-energy-density Ni-rich lithium batteries.
  • 加载中
    1. [1]

      (1) Yan, C.; Xu, Y.; Xia, J.; Gong, C.; Chen, K. J. Energy Chem. 2016, 25 (4), 659. doi: 10.1016/j.jechem.2016.04.010

    2. [2]

      (2) Park, G.-T.; Yoon, D. R.; Kim, U.-H.; Namkoong, B.; Lee, J.; Wang, M. M.; Lee, A. C.; Gu, X. W.; Chueh, W. C.; Yoon, C. S.; et al. Energy Environ. Sci. 2021, 14 (12), 6616. doi: 10.1039/d1ee02898g

    3. [3]

      (3) Jin, D.; Song, D.; Friesen, A.; Lee, Y. M.; Ryou, M.-H. Electrochim. Acta 2018, 259, 578. doi: 10.1016/j.electacta.2017.11.029

    4. [4]

      (4) Ryu, H.-H.; Namkoong, B.; Kim, J.-H.; Belharouak, I.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2021, 6 (8), 2726. doi: 10.1021/acsenergylett.1c01089

    5. [5]

      (5) Park, J. Y.; Jo, M.; Hong, S.; Park, S.; Park, J. H.; Kim, Y. I.; Kim, S. O.; Chung, K. Y.; Byun, D.; Kim, S. M.; et al. Adv. Energy Mater. 2022, 12 (29), 2201151. doi: 10.1002/aenm.202201151

    6. [6]

      (6) Kim, K.; Ma, H.; Park, S.; Choi, N.-S. ACS Energy Lett. 2020, 5 (5), 1537. doi: 10.1021/acsenergylett.0c00468

    7. [7]

      (7) Guo, H. J.; Wang, H. X.; Guo, Y. J.; Liu, G. X.; Wan, J.; Song, Y. X.; Yang, X. A.; Jia, F. F.; Wang, F. Y.; Guo, Y. G.; et al. J. Am. Chem. Soc. 2020, 142 (49), 20752. doi: 10.1021/jacs.0c09602

    8. [8]

      (8) Zhao, H.; Wang, J.; Shao, H.; Xu, K.; Deng, Y. Energy Environ. Mater. 2021, 5 (1), 327. doi: 10.1002/eem2.12180

    9. [9]

      (9) Tan, S.; Shadike, Z.; Li, J.; Wang, X.; Yang, Y.; Lin, R.; Cresce, A.; Hu, J.; Hunt, A.; Waluyo, I.; et al. Nat. Energy 2022, 7 (6), 484. doi: 10.1038/s41560-022-01020-x

    10. [10]

      (10) Campion, C. L.; Li, W. T.; Lucht, B. J. Electrochem. Soc. 2005, 152 (12), A2327. doi: 10.1149/1.2083267

    11. [11]

      (11) Tebbe, J. L.; Fuerst, T. F.; Musgrave, C. B. ACS Appl. Mater. Interfaces 2016, 8 (40), 26664. doi: 10.1021/acsami.6b06157

    12. [12]

      (12) Zhang, Y.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z.; et al. Energy Environ. Sci. 2020, 13 (1), 183. doi: 10.1039/c9ee02543j

    13. [13]

      (13) Negi, R. S.; Culver, S. P.; Wiche, M.; Ahmed, S.; Volz, K.; Elm, M. T. Phys. Chem. Chem. Phys. 2021, 23 (11), 6725. doi: 10.1039/d0cp06422j

    14. [14]

      (14) Liu, W.; Li, X.; Xiong, D.; Hao, Y.; Li, J.; Kou, H.; Yan, B.; Li, D.; Lu, S.; Koo, A.; et al. Nano Energy 2018, 44, 111. doi: 10.1016/j.nanoen.2017.11.010

    15. [15]

      (15) Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Nat. Commun. 2017, 8, 14101. doi: 10.1038/ncomms14101

    16. [16]

    17. [17]

      (17) Ding, Y.; Deng, B.; Wang, H.; Li, X.; Chen, T.; Yan, X.; Wan, Q.; Qu, M.; Peng, G. J. Alloys Compd. 2019, 774, 451. doi: 10.1016/j.jallcom.2018.09.286

    18. [18]

      (18) Zhao, J.; Zhang, X.; Liang, Y.; Han, Z.; Liu, S.; Chu, W.; Yu, H. ACS Energy Lett. 2021, 6 (7), 2552. doi: 10.1021/acsenergylett.1c00750

    19. [19]

      (19) Jiao, T.; Liu, G.; Zou, Y.; Yang, X.; Zhang, X.; Fu, A.; Zheng, J.; Yang, Y. J. Power Sources 2021, 515, 230618. doi: 10.1016/j.jpowsour.2021.230618

    20. [20]

      (20) Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L. Energy Environ. Sci. 2018, 11 (9), 2600. doi: 10.1039/c8ee00364e

    21. [21]

      (21) Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6 (6), 1806. doi: 10.1039/c3ee24414h

    22. [22]

      (22) Zhang, Q.; Pan, J.; Lu, P.; Liu, Z.; Verbrugge, M. W.; Sheldon, B. W.; Cheng, Y.-T.; Qi, Y.; Xiao, X. Nano Lett. 2016, 16 (3), 2011. doi: 10.1021/acs.nanolett.5b05283

    23. [23]

      (23) Park, J. W.; Park, D. H.; Go, S.; Nam, D.-H.; Oh, J.; Han, Y.-K.; Lee, H. Energy Stor. Mater. 2022, 50, 75. doi: 10.1016/j.ensm.2022.05.009

    24. [24]

      (24) von Aspern, N.; Diddens, D.; Kobayashi, T.; Börner, M.; Stubbmann-Kazakova, O.; Kozel, V.; Röschenthaler, G.-V.; Smiatek, J.; Winter, M.; Cekic-Laskovic, I. ACS Appl. Mater. Interfaces 2019, 11 (18), 16605. doi: 10.1021/acsami.9b03359

    25. [25]

      (25) Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60 (38), 20717. doi: 10.1002/anie.202107957

    26. [26]

      (26) Jiang, G.; Liu, J.; Wang, Z.; Ma, J. Adv. Funct. Mater. 2023, 33 (30), 2300629. doi: 10.1002/adfm.202300629

    27. [27]

      (27) Ma, Y.; Zhou, Y.; Du, C.; Zuo, P.; Cheng, X.; Han, L.; Nordlund, D.; Gao, Y.; Yin, G.; Xin, H. L.; et al. Chem. Mater. 2017, 29 (5), 2141. doi: 10.1021/acs.chemmater.6b04784

    28. [28]

      (28) Piao, Z.; Xiao, P.; Luo, R.; Ma, J.; Gao, R.; Li, C.; Tan, J.; Yu, K.; Zhou, G.; Cheng, H. M. Adv. Mater. 2022, 34 (8), e2108400. doi: 10.1002/adma.202108400

    29. [29]

      (29) Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; et al. Joule 2019, 3 (10), 2550. doi: 10.1016/j.joule.2019.08.004

    30. [30]

      (30) Zou, Y.; Liu, G.; Zhou, K.; Zhang, J.; Jiao, T.; Zhang, X.; Yang, Y.; Zheng, J. ACS Appl. Energy Mater. 2021, 4 (10), 11051. doi: 10.1021/acsaem.1c01977

    31. [31]

      (31) Zhu, H.; Zhang, Y.; Li, M.; Luo, J.; Wei, W.; Zhang, S. J. Electroanal. Chem. 2021, 899, 115682. doi: 10.1016/j.jelechem.2021.115682

    32. [32]

      (32) Gu, W.; Xue, G.; Dong, Q.; Yi, R.; Mao, Y.; Zheng, L.; Zhang, H.; Fan, X.; Shen, Y.; Chen, L. eScience 2022, 2 (5), 486. doi: 10.1016/j.esci.2022.05.003

    33. [33]

      (33) Li, G.; Liao, Y.; Li, Z.; Xu, N.; Lu, Y.; Lan, G.; Sun, G.; Li, W. ACS Appl. Mater. Interfaces 2020, 12 (33), 37013. doi: 10.1021/acsami.0c05623

    34. [34]

      (34) Parida, R.; Reddy, G. N.; Chakraborty, A.; Giri, S.; Jana, M. J. Chem. Inf. Model 2019, 59 (5), 2159. doi: 10.1021/acs.jcim.9b00035

    35. [35]

      (35) Cheng, F.; Zhang, X.; Qiu, Y.; Zhang, J.; Liu, Y.; Wei, P.; Ou, M.; Sun, S.; Xu, Y.; Li, Q.; et al. Nano Energy 2021, 88, 106301. doi: 10.1016/j.nanoen.2021.106301

    36. [36]

      (36) Lu, Z.; Liu, D.; Dai, K.; Liu, K.; Jing, C.; He, W.; Wang, W.; Zhang, C.; Wei, W. Energy Stor. Mater. 2023, 57, 316. doi: 10.1016/j.ensm.2023.02.029

    37. [37]

      (37) Wang, X.; Ren, D.; Liang, H.; Song, Y.; Huo, H.; Wang, A.; Gao, Y.; Liu, J.; Gao, Y.; Wang, L.; et al. Energy Environ. Sci. 2023, 16, 1200. doi: 10.1039/d2ee04109j

    38. [38]

      (38) Chen, Y.; Zhao, W.; Zhang, Q.; Yang, G.; Zheng, J.; Tang, W.; Xu, Q.; Lai, C.; Yang, J.; Peng, C. Adv. Funct. Mater. 2020, 30 (19), 2000396. doi: 10.1002/adfm.202000396

    39. [39]

      (39) Liu, Q.; Chen, Z.; Liu, Y.; Hong, Y.; Wang, W.; Wang, J.; Zhao, B.; Xu, Y.; Wang, J.; Fan, X.; et al. Energy Stor. Mater. 2021, 37, 521. doi: 10.1016/j.ensm.2021.02.039

    40. [40]

      (40) Lin, J.; Yang, Y.; Lin, X.; Li, G.; Zhang, W.; Li, W. ACS Appl. Energy Mater. 2022, 5 (9), 11684. doi: 10.1021/acsaem.2c02160

    41. [41]

      (41) Zhang, D.; Liu, M.; Ma, J.; Yang, K.; Chen, Z.; Li, K.; Zhang, C.; Wei, Y.; Zhou, M.; Wang, P.; et al. Nat. Commun. 2022, 13 (1), 6966. doi: 10.1038/s41467-022-34717-4

    42. [42]

      (42) Xu, N.; Sun, Y.; Shi, J.; Chen, J.; Liu, G.; Zhou, K.; He, H.; Zhu, J.; Zhang, Z.; Yang, Y. J. Power Sources 2021, 511, 230437. doi: 10.1016/j.jpowsour.2021.230437

    43. [43]

      (43) Zheng, Q.; Xing, L.; Yang, X.; Li, X.; Ye, C.; Wang, K.; Huang, Q.; Li, W. ACS Appl. Mater. Interfaces 2018, 10 (19), 16843. doi: 10.1021/acsami.8b00913

    44. [44]

      (44) Ko, D.-S.; Park, J.-H.; Park, S.; Ham, Y. N.; Ahn, S. J.; Park, J.-H.; Han, H. N.; Lee, E.; Jeon, W. S.; Jung, C. Nano Energy 2019, 56, 434. doi: 10.1016/j.nanoen.2018.11.046

    45. [45]

      (45) He, K.; Cheng, S. H. S.; Hu, J.; Zhang, Y.; Yang, H.; Liu, Y.; Liao, W.; Chen, D.; Liao, C.; Cheng, X.; et al. Angew. Chem. Int. Ed. 2021, 60 (21), 12116. doi: 10.1002/anie.202103403

    46. [46]

      (46) Chen, Y.; He, Q.; Mo, Y.; Zhou, W.; Zhao, Y.; Piao, N.; Liu, C.; Xiao, P.; Liu, H.; Li, B.; et al. Adv. Energy Mater. 2022, 12 (33), 2201631. doi: 10.1002/aenm.202201631

    47. [47]

      (47) Jiang, S.; Xu, X.; Yin, J.; Lei, Y.; Wu, X.; Gao, Y. ACS Appl. Energy Mater. 2022, 5 (11), 13501. doi: 10.1021/acsaem.2c02179

    48. [48]

      (48) Cha, J.; Han, J.-G.; Hwang, J.; Cho, J.; Choi, N.-S. J. Power Sources 2017, 357, 97. doi: 10.1016/j.jpowsour.2017.04.094

    49. [49]

      (49) Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.; Li, Y.; Yang, H. ACS Appl. Mater. Interfaces 2018, 10 (1), 593. doi: 10.1021/acsami.7b14662

    50. [50]

      (50) Yang, J.; Liu, X.; Wang, Y.; Zhou, X.; Weng, L.; Liu, Y.; Ren, Y.; Zhao, C.; Dahbi, M.; Alami, J.; et al. Adv. Energy Mater. 2021, 11 (39), 2101956. doi: 10.1002/aenm.202101956

    51. [51]

      (51) Tian, M.; Ben, L.; Yu, H.; Song, Z.; Yan, Y.; Zhao, W.; Armand, M.; Zhang, H.; Zhou, Z. B.; Huang, X. J. Am. Chem. Soc. 2022, 144 (33), 15100. doi: 10.1021/jacs.2c04124

    52. [52]

      (52) Chung, G. J.; Tran, Y. H. T.; Han, J.; Kim, K.; Lee, Y. S.; Song, S.-W. Chem. Eng. J. 2022, 446, 137288. doi: 10.1016/j.cej.2022.137288

    53. [53]

      (53) Cho, D.-H.; Jo, C.-H.; Cho, W.; Kim, Y.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T. J. Electrochem. Soc. 2014, 161 (6), A920. doi: 10.1149/2.042406jes

    54. [54]

      (54) He, M.; Su, C.-C.; Peebles, C.; Feng, Z.; Connell, J. G.; Liao, C.; Wang, Y.; Shkrob, I. A.; Zhang, Z. ACS Appl. Mater. Interfaces 2016, 8 (18), 11450. doi: 10.1021/acsami.6b01544

    55. [55]

      (55) Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A. Mater. Today 2018, 21 (8), 825. doi: 10.1016/j.mattod.2018.03.037

    56. [56]

      (56) Liu, H.; Naylor, A. J.; Menon, A. S.; Brant, W. R.; Edström, K.; Younesi, R. Adv. Mater. Interfaces 2020, 7 (15), 2000277. doi: 10.1002/admi.202000277

    57. [57]

      (57) Li, J.; Yang, X.; Guan, X.; Guo, R.; Che, Y.; Lan, J.; Xing, L.; Xu, M.; Fan, W.; Li, W. Electrochim. Acta 2020, 354, 136722. doi: 10.1016/j.electacta.2020.136722

    58. [58]

      (58) Qian, Y.; Kang, Y.; Hu, S.; Shi, Q.; Chen, Q.; Tang, X.; Xiao, Y.; Zhao, H.; Luo, G.; Xu, K.; et al. ACS Appl. Mater. Interfaces 2020, 12 (9), 10443. doi: 10.1021/acsami.9b21605

    59. [59]

      (59) Croce, F.; Sacchetti, S.; Scrosati, B. J. Power Sources 2006, 162 (1), 685. doi: 10.1016/j.jpowsour.2006.07.038

    60. [60]

      (60) Rodrigues, M.-T. F.; Kalaga, K.; Gullapalli, H.; Babu, G.; Reddy, A. L. M.; Ajayan, P. M. Adv. Energy Mater. 2016, 6 (12), 1600218. doi: 10.1002/aenm.201600218

    61. [61]

      (61) Yim, T.; Kang, K. S.; Mun, J.; Lim, S. H.; Woo, S.-G.; Kim, K. J.; Park, M.-S.; Cho, W.; Song, J. H.; Han, Y.-K.; et al. J. Power Sources 2016, 302, 431. doi: 10.1016/j.jpowsour.2015.10.051

    62. [62]

      (62) Chen, J.; Zhang, H.; Wang, M.; Liu, J.; Li, C.; Zhang, P. J. Power Sources 2016, 303, 41. doi: 10.1016/j.jpowsour.2015.10.088

    63. [63]

      (63) Kang, K. S.; Choi, S.; Song, J.; Woo, S.-G.; Jo, Y. N.; Choi, J.; Yim, T.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2014, 253, 48. doi: 10.1016/j.jpowsour.2013.12.024

    64. [64]

      (64) Pham, H. Q.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Power Sources 2016, 323, 220. doi: 10.1016/j.jpowsour.2016.05.038

    65. [65]

      (65) Deng, B.; Wang, H.; Ge, W.; Li, X.; Yan, X.; Chen, T.; Qu, M.; Peng, G. Electrochim. Acta 2017, 236, 61. doi: 10.1016/j.electacta.2017.03.155

    66. [66]

      (66) Luo, D.; Li, M.; Zheng, Y.; Ma, Q.; Gao, R.; Zhang, Z.; Dou, H.; Wen, G.; Shui, L.; Yu, A.; et al. Adv. Sci. 2021, 8 (18), e2101051. doi: 10.1002/advs.202101051

    67. [67]

      (67) Li, Q.; Lu, D.; Zheng, J.; Jiao, S.; Luo, L.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. ACS Appl. Mater. Interfaces 2017, 9 (49), 42761. doi: 10.1021/acsami.7b13887

    68. [68]

      (68) Liu, B.; Li, Q.; Engelhard, M. H.; He, Y.; Zhang, X.; Mei, D.; Wang, C.; Zhang, J. G.; Xu, W. ACS Appl. Mater. Interfaces 2019, 11 (24), 21496. doi: 10.1021/acsami.9b03821

    69. [69]

      (69) Chandrasekaran, R. K., M.; Ozhawa, Y.; Aoyoma, H.; Nakajima, T. J. Chem. Sci. 2009, 121, 339 doi: 10.1007/s12039-009-0039-2

    70. [70]

      (70) Yang, B.; Zhang, H.; Yu, L.; Fan, W.; Huang, D. Electrochim. Acta 2016, 221, 107. doi: 10.1016/j.electacta.2016.10.037

    71. [71]

      (71) Liao, L.; Cheng, X.; Ma, Y.; Zuo, P.; Fang, W.; Yin, G.; Gao, Y. Electrochim. Acta 2013, 87, 466. doi: 10.1016/j.electacta.2012.09.083

    72. [72]

      (72) Liao, L.; Fang, T.; Zhou, X.; Gao, Y.; Cheng, X.; Zhang, L.; Yin, G. Solid State Ion. 2014, 254, 27. doi: 10.1016/j.ssi.2013.10.047

    73. [73]

      (73) Zhang, S. S.; Xu, K.; Jow, T. R. Electrochem. Commun. 2002, 4 (11), 928. doi: 10.1016/S1388-2481(02)00490-3

    74. [74]

      (74) Lv, W.; Zhu, C.; Chen, J.; Ou, C.; Zhang, Q.; Zhong, S. Chem. Eng. J. 2021, 418, 129400. doi: 10.1016/j.cej.2021.129400

    75. [75]

      (75) Liao, B.; Li, H.; Xu, M.; Xing, L.; Liao, Y.; Ren, X.; Fan, W.; Yu, L.; Xu, K.; Li, W. Adv. Energy Mater. 2018, 8 (22), 1800802. doi: 10.1002/aenm.201800802

    76. [76]

      (76) Chen, J.; Xing, L.; Yang, X.; Liu, X.; Li, T.; Li, W. Electrochim. Acta 2018, 290, 568. doi: 10.1016/j.electacta.2018.09.077

    77. [77]

      (77) Guo, R.; Che, Y.; Lan, G.; Lan, J.; Li, J.; Xing, L.; Xu, K.; Fan, W.; Yu, L.; Li, W. ACS Appl. Mater. Interfaces 2019, 11 (41), 38285. doi: 10.1021/acsami.9b12020

    78. [78]

      (78) Lin, Y.; Yue, X.; Zhang, H.; Yu, L.; Fan, W.; Xie, T. Electrochim. Acta 2019, 300, 202. doi: 10.1016/j.electacta.2019.01.120

    79. [79]

      (79) Duan, K.; Ning, J.; Zhou, L.; Wang, S.; Wang, Q.; Liu, J.; Guo, Z. ACS Appl. Mater. Interfaces 2022, 14 (8), 10447. doi: 10.1021/acsami.1c24808

    80. [80]

      (80) Han, J.-G.; Jeong, M.-Y.; Kim, K.; Park, C.; Sung, C. H.; Bak, D. W.; Kim, K. H.; Jeong, K.-M.; Choi, N.-S. J. Power Sources 2020, 446, 227366. doi: 10.1016/j.jpowsour.2019.227366

    81. [81]

      (81) Park, S.; Jeong, S. Y.; Lee, T. K.; Park, M. W.; Lim, H. Y.; Sung, J.; Cho, J.; Kwak, S. K.; Hong, S. Y.; Choi, N. S. Nat. Commun. 2021, 12 (1), 838. doi: 10.1038/s41467-021-21106-6

    82. [82]

      (82) Jiang, G.; Liu, J.; He, J.; Wang, H.; Qi, S.; Huang, J.; Wu, D.; Ma, J. Adv. Funct. Mater. 2023, 33, 2214422. doi: 10.1002/adfm.202214422

    83. [83]

      (83) Song, Y.-M.; Kim, C.-K.; Kim, K.-E.; Hong, S. Y.; Choi, N.-S. J. Power Sources 2016, 302, 22. doi: 10.1016/j.jpowsour.2015.10.043

    84. [84]

      (84) Han, J.-G.; Lee, S. J.; Lee, J.; Kim, J.-S.; Lee, K. T.; Choi, N.-S. ACS Appl. Mater. Interfaces 2015, 7 (15), 8319. doi: 10.1021/acsami.5b01770

    85. [85]

      (85) Ma, Q.; Zhang, X.; Wang, A.; Xia, Y.; Liu, X.; Luo, J. Adv. Funct. Mater. 2020, 30 (32), 2002824. doi: 10.1002/adfm.202002824

    86. [86]

      (86) Lyu, H.; Li, Y.; Jafta, C. J.; Bridges, C. A.; Meyer, H. M.; Borisevich, A.; Paranthaman, M. P.; Dai, S.; Sun, X.-G. J. Power Sources 2019, 412, 527. doi: 10.1016/j.jpowsour.2018.11.083

    87. [87]

      (87) Liu, Y.; Tan, L.; Li, L. J. Power Sources 2013, 221, 90. doi: 10.1016/j.jpowsour.2012.08.028

    88. [88]

      (88) Zou, F.; Wang, J.; Zheng, X.; Hu, X.; Wang, J.; Wang, M. Electrochim. Acta 2022, 428, 140958. doi: 10.1016/j.electacta.2022.140958

    89. [89]

      (89) Meng, Y.; Chen, G.; Shi, L.; Liu, H.; Zhang, D. ACS Appl. Mater. Interfaces 2019, 11 (48), 45108. doi: 10.1021/acsami.9b17438

    90. [90]

      (90) Chen, J.; Chen, H.; Mei, Y.; Zhang, S.; Ni, L.; Gao, X.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Chem. Eng. J. 2022, 450, 138318. doi: 10.1016/j.cej.2022.138318

    91. [91]

      (91) Li, J.; Zhang, L.; Yu, L.; Fan, W.; Wang, Z.; Yang, X.; Lin, Y.; Xing, L.; Xu, M.; Li, W. J. Phys. Chem. C 2016, 120 (47), 26899. doi: 10.1021/acs.jpcc.6b09097

    92. [92]

      (92) Yan, Y.; Weng, S.; Fu, A.; Zhang, H.; Chen, J.; Zheng, Q.; Zhang, B.; Zhou, S.; Yan, H.; Wang, C.-W.; et al. ACS Energy Lett. 2022, 7 (8), 2677. doi: 10.1021/acsenergylett.2c01433

    93. [93]

      (93) Li, J.; Li, W.; You, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8 (29), 1801957. doi: 10.1002/aenm.201801957

    94. [94]

      (94) Jia, H.; Billmann, B.; Onishi, H.; Smiatek, J.; Roeser, S.; Wiemers-Meyer, S.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. Chem. Mater. 2019, 31 (11), 4025. doi: 10.1021/acs.chemmater.9b00555

    95. [95]

      (95) Zhan, C.; Wu, T.; Lu, J.; Amine, K. Energy Environ. Sci. 2018, 11 (2), 243. doi: 10.1039/c7ee03122j

    96. [96]

      (96) Luo, X.; Xing, L.; Vatamanu, J.; Chen, J.; Chen, J.; Liu, M.; Wang, C.; Xu, K.; Li, W. J. Energy Chem. 2022, 65, 1. doi: 10.1016/j.jechem.2021.05.022

    97. [97]

      (97) Zhuang, Y.; Lei, Y.; Guan, M.; Du, F.; Cao, H.; Dai, H.; Zhou, Q.; Adkins, J.; Zheng, J. Electrochim. Acta 2020, 331, 135465. doi: 10.1016/j.electacta.2019.135465

    98. [98]

      (98) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9 (4), 1308. doi: 10.1039/c5ee03360h

    99. [99]

      (99) Qiu, Y.; Lu, D.; Gai, Y.; Cai, Y. ACS Appl. Mater. Interfaces 2022, 14 (9), 11398. doi: 10.1021/acsami.1c23335

    100. [100]

      (100) Aupperle, F.; Eshetu, G. G.; Eberman, K. W.; Xioa, A.; Bridel, J.-S.; Figgemeier, E. J. Mater. Chem. A 2020, 8 (37), 19573. doi: 10.1039/d0ta05827k

    101. [101]

      (101) Li, X.; Han, X.; Li, G.; Du, J.; Cao, Y.; Gong, H.; Wang, H.; Zhang, Y.; Liu, S.; Zhang, B.;et al. Small 2022, 18 (30), e2202989. doi: 10.1002/smll.202202989

    102. [102]

      (102) Lee, S. H.; Hwang, J. Y.; Park, S. J.; Park, G. T.; Sun, Y. K. Adv. Funct. Mater. 2019, 29 (30), 1902496. doi: 10.1002/adfm.201902496

    103. [103]

      (103) Zhang, Z.; Liu, F.; Huang, Z.; Yi, M.; Fan, X.; Bai, M.; Hong, B.; Zhang, Z.; Li, J.; Lai, Y. J. Colloid Interface Sci. 2022, 608 (Pt 2), 1471. doi: 10.1016/j.jcis.2021.10.061

    104. [104]

      (104) Tan, S. J.; Yue, J.; Hu, X. C.; Shen, Z. Z.; Wang, W. P.; Li, J. Y.; Zuo, T. T.; Duan, H.; Xiao, Y.; Yin, Y. X.; et al. Angew. Chem. Int. Ed. 2019, 58 (23), 7802. doi: 10.1002/anie.201903466

    105. [105]

    106. [106]

      (106) Chae, O. B.; Adiraju, V. A. K.; Lucht, B. L. ACS Energy Lett. 2021, 6 (11), 3851. doi: 10.1021/acsenergylett.1c01999

    107. [107]

      (107) Zhang, X.; Wu, Q.; Guan, X.; Cao, F.; Li, C.; Xu, J. J. Power Sources 2020, 452, 227833. doi: 10.1016/j.jpowsour.2020.227833

    108. [108]

      (108) Jiang, S.; Xu, X.; Yin, J.; Wu, H.; Zhu, X.; Guan, H.; Wei, L.; Xi, K.; Lan, Y.; Zhang, L.; et al. Chem. Eng. J. 2023, 451, 138359. doi: 10.1016/j.cej.2022.138359

    109. [109]

      (109) Zhang, S.; Zhuang, X.; Du, X.; Zhang, X.; Li, J.; Xu, G.; Ren, Z.; Cui, Z.; Huang, L.; Wang, S.; et al. Adv. Mater. 2023, 35, 2301312. doi: 10.1002/adma.202301312

    110. [110]

      (110) Xu, R.; Shen, X.; Ma, X. X.; Yan, C.; Zhang, X. Q.; Chen, X.; Ding, J. F.; Huang, J. Q. Angew. Chem. Int. Ed. 2021, 60 (8), 4215. doi: 10.1002/anie.202013271

    111. [111]

      (111) Wu, J.; Gao, Z.; Tian, Y.; Zhao, Y.; Lin, Y.; Wang, K.; Guo, H.; Pan, Y.; Wang, X.; Kang, F.; et al. Adv. Mater. 2023, 2303347. doi: 10.1002/adma.202303347

    112. [112]

      (112) Zhang, W.; Lu, Y.; Wan, L.; Zhou, P.; Xia, Y.; Yan, S.; Chen, X.; Zhou, H.; Dong, H.; Liu, K. Nat. Commun. 2022, 13 (1), 2029. doi: 10.1038/s41467-022-29761-z

    113. [113]

      (113) Wang, H.; Zhang, J.; Zhang, H.; Li, W.; Chen, M.; Guo, Q.; Lau, K. C.; Zeng, L.; Feng, G.; Zhai, D.; et al. Cell Rep. Phys. Sci. 2022, 3 (6), 100919. doi: 10.1016/j.xcrp.2022.100919

    114. [114]

      (114) Li, S.; Zhang, W.; Wu, Q.; Fan, L.; Wang, X.; Wang, X.; Shen, Z.; He, Y.; Lu, Y. Angew. Chem. Int. Ed. 2020, 59 (35), 14935. doi: 10.1002/anie.202004853

    115. [115]

      (115) Wang, X.; Li, S.; Zhang, W.; Wang, D.; Shen, Z.; Zheng, J.; Zhuang, H. L.; He, Y.; Lu, Y. Nano Energy 2021, 89, 106353. doi: 10.1016/j.nanoen.2021.106353

    116. [116]

      (116) Xia, Y.; Zhou, P.; Kong, X.; Tian, J.; Zhang, W.; Yan, S.; Hou, W.-h.; Zhou, H.-Y.; Dong, H.; Chen, X.; et al. Nat. Energy 2023. doi: 10.1038/s41560-023-01282-z

    117. [117]

      (117) Wang, Z.; Hou, L. P.; Li, Z.; Liang, J. L.; Zhou, M. Y.; Zhao, C. Z.; Zeng, X.; Li, B. Q.; Chen, A.; Zhang, X. Q.; et al. Carbon Energy 2022, 5 (1), e283. doi: 10.1002/cey2.283

    118. [118]

      (118) Zhang, W.; Shen, Z.; Li, S.; Fan, L.; Wang, X.; Chen, F.; Zang, X.; Wu, T.; Ma, F.; Lu, Y. Adv. Funct. Mater. 2020, 30 (39), 2003800. doi: 10.1002/adfm.202003800

    119. [119]

      (119) Zhang, Y.; Wu, Y.; Li, H.; Chen, J.; Lei, D.; Wang, C. Nat. Commun. 2022, 13 (1), 1297. doi: 10.1038/s41467-022-28959-5

    120. [120]

      (120) Palacin, M. R.; de Guibert, A. Science 2016, 351 (6273), 1253292. doi: 10.1126/science.1253292

    121. [121]

      (121) Han, J. G.; Hwang, E.; Kim, Y.; Park, S.; Kim, K.; Roh, D. H.; Gu, M.; Lee, S. H.; Kwon, T. H.; Kim, Y.; et al. ACS Appl. Mater. Interfaces 2020, 12 (21), 24479. doi: 10.1021/acsami.0c04372

    122. [122]

      (122) Aurbach, D.; Markevich, E.; Salitra, G. J. Am. Chem. Soc. 2021, 143 (50), 21161. doi: 10.1021/jacs.1c11315

    123. [123]

      (123) Ma, X.; Yu, J.; Dong, Q.; Zou, X.; Zheng, L.; Hu, Y.; Shen, Y.; Chen, L.; Yan, F. ACS Appl. Mater. Interfaces 2022, 14 (36), 41103. doi: 10.1021/acsami.2c12497

    124. [124]

      (124) Park, S. Y.; Park, S.; Lim, H. Y.; Yoon, M.; Choi, J. H.; Kwak, S. K.; Hong, S. Y.; Choi, N. S. Adv. Sci. 2022, 10 (5), 2205918. doi: 10.1002/advs.202205918

    125. [125]

      (125) Dong, Z.; Wei, J.; Yue, H.; Zhang, K.; Wang, L.; Li, X.; Zhang, Z.; Yang, W.; Yang, S. J. Colloid Interface Sci. 2021, 595, 35. doi: 10.1016/j.jcis.2021.03.058

    126. [126]

      (126) Wu, F.; Dong, J.; Chen, L.; Bao, L.; Li, N.; Cao, D.; Lu, Y.; Xue, R.; Liu, N.; Wei, L.; et al. Energy Stor. Mater. 2021, 41, 495. doi: 10.1016/j.ensm.2021.06.018

    127. [127]

      (127) Liu, Y.; Hong, L.; Jiang, R.; Wang, Y.; Patel, S. V.; Feng, X.; Xiang, H. ACS Appl. Mater. Interfaces 2021, 13 (48), 57430. doi: 10.1021/acsami.1c18783

    128. [128]

      (128) Lee, T. J.; Soon, J.; Chae, S.; Ryu, J. H.; Oh, S. M. ACS Appl. Mater. Interfaces 2019, 11 (12), 11306. doi: 10.1021/acsami.8b19009

    129. [129]

      (129) Kim, K.; Hwang, D.; Kim, S.; Park, S. O.; Cha, H.; Lee, Y. S.; Cho, J.; Kwak, S. K.; Choi, N. S. Adv. Energy Mater. 2020, 10 (15), 2000012. doi: 10.1002/aenm.202000012

    130. [130]

      (130) Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27 (10), 1605989. doi: 10.1002/adfm.201605989

    131. [131]

      (131) Wang, W.; Yang, T.; Li, S.; Lu, J.; Zhao, X.; Fan, W.; Fan, C.; Zuo, X.; Tie, S.; Nan, J. J. Power Sources 2021, 483, 229172. doi: 10.1016/j.jpowsour.2020.229172

    132. [132]

      (132) Lu, J.; Li, S.; Jiang, L.; Yang, T.; Fan, W.; Wang, W.; Zhao, X.; Zuo, X.; Nan, J. ChemElectroChem 2021, 8 (19), 3716. doi: 10.1002/celc.202101067

    133. [133]

      (133) Li, F.; Liu, J.; He, J.; Hou, Y.; Wang, H.; Wu, D.; Huang, J.; Ma, J. Angew. Chem. Int. Ed. 2022, 61 (27), e202205091. doi: 10.1002/anie.202205091

    134. [134]

      (134) Sheng, L.; Yang, K.; Chen, J.; Zhu, D.; Wang, L.; Wang, J.; Tang, Y.; Xu, H.; He, X. Adv. Mater. 2023, e2212292. doi: 10.1002/adma.202212292

    135. [135]

      (135) Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. Energy Environ. Sci. 2020, 13 (4), 1197. doi: 10.1039/d0ee00060d

    136. [136]

      (136) Kong, F.; Liang, C.; Wang, L.; Zheng, Y.; Perananthan, S.; Longo, R. C.; Ferraris, J. P.; Kim, M.; Cho, K. Adv. Energy Mater. 2019, 9 (2), 1802586. doi: 10.1002/aenm.201802586

    137. [137]

      (137) Lee, E.; Persson, K. A. Adv. Energy Mater. 2014, 4 (15), 1400498. doi: 10.1002/aenm.201400498

    138. [138]

      (138) Yan, P.; Zheng, J.; Tang, Z. K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J. G.; Liu, L. M.; Wang, C. Nat. Nanotechnol. 2019, 14 (6), 602. doi: 10.1038/s41565-019-0428-8

    139. [139]

      (139) Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133 (20), 8040. doi: 10.1021/ja2021747

    140. [140]

      (140) Han, J. G.; Kim, K.; Lee, Y.; Choi, N. S. Adv. Mater. 2019, 31 (20), e1804822. doi: 10.1002/adma.201804822

    141. [141]

      (141) Xiao, Z.; Liu, J.; Fan, G.; Yu, M.; Liu, J.; Gou, X.; Yuan, M.; Cheng, F. Mater. Chem. Front. 2020, 4 (6), 1689. doi: 10.1039/d0qm00094a

    142. [142]

      (142) Chen, Q.; Pei, Y.; Chen, H.; Song, Y.; Zhen, L.; Xu, C. Y.; Xiao, P.; Henkelman, G. Nat. Commun. 2020, 11 (1), 3411. doi: 10.1038/s41467-020-17126-3

    143. [143]

      (143) Lee, S. Y.; Park, G. S.; Jung, C.; Ko, D. S.; Park, S. Y.; Kim, H. G.; Hong, S. H.; Zhu, Y.; Kim, M. Adv. Sci. 2019, 6 (6), 1800843. doi: 10.1002/advs.201800843

    144. [144]

      (144) Liu, X.; Xu, G.-L.; Kolluru, V. S. C.; Zhao, C.; Li, Q.; Zhou, X.; Liu, Y.; Yin, L.; Zhuo, Z.; Daali, A.; et al. Nat. Energy 2022, 7 (9), 808. doi: 10.1038/s41560-022-01036-3

    145. [145]

      (145) Zheng, J.; Xiao, J.; Gu, M.; Zuo, P.; Wang, C.; Zhang, J.-G. J. Power Sources 2014, 250, 313. doi: 10.1016/j.jpowsour.2013.10.071

    146. [146]

      (146) Tu, W.; Xia, P.; Zheng, X.; Ye, C.; Xu, M.; Li, W. J. Power Sources 2017, 341, 348. doi: 10.1016/j.jpowsour.2016.12.012

    147. [147]

      (147) Wen, S.; Han, Y.; Wang, P.; Zhao, D.; Cui, X.; Zhang, L.; Li, S. ACS Appl. Energy Mater. 2021, 4 (11), 12525. doi: 10.1021/acsaem.1c02331

    148. [148]

      (148) Mao, M.; Huang, B.; Li, Q.; Wang, C.; He, Y.-B.; Kang, F. Nano Energy 2020, 78, 105282. doi: 10.1016/j.nanoen.2020.105282

    149. [149]

      (149) Zhuang, Y.; Zhao, Y.; Bao, Y.; Zhang, W.; Guan, M. Electrochim. Acta 2023, 441, 141745. doi: 10.1016/j.electacta.2022.141745

    150. [150]

      (150) Pires, J.; Castets, A.; Timperman, L.; Santos-Peña, J.; Dumont, E.; Levasseur, S.; Tessier, C.; Dedryvère, R.; Anouti, M. J. Power Sources 2015, 296, 413. doi: 10.1016/j.jpowsour.2015.07.065

    151. [151]

      (151) Han, J. G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J.; et al. Adv. Energy Mater. 2020, 10 (20), 2000563. doi: 10.1002/aenm.202000563

    152. [152]

      (152) Lee, J.; Jeon, A. R.; Lee, H. J.; Shin, U.; Yoo, Y.; Lim, H.-D.; Han, C.; Lee, H.; Kim, Y. J.; Baek, J.; et al. Energy Environ. Sci. 2023, 16, 2709. doi: 10.1039/d3ee00157a

    153. [153]

      (153) Nagasubramanian, G.; Fenton, K. Electrochim. Acta 2013, 101, 3. doi: 10.1016/j.electacta.2012.09.065

    154. [154]

      (154) Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Wang, G.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Energy Stor. Mater. 2020, 32, 425. doi: 10.1016/j.ensm.2020.07.018

    155. [155]

      (155) Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Richard Jow, T. J. Electrochem. Soc. 2003, 150, A161. doi: 10.1149/1.1533040

    156. [156]

      (156) Ota, H.; Kominato, A.; Chun, W.-J.; Yasukawa, E.; Kasuya, S. J. Power Sources 2003, 119121, 393. doi: 10.1016/S0378-7753(03)00259-3

    157. [157]

      (157) Xu, G.; Pang, C.; Chen, B.; Ma, J.; Wang, X.; Chai, J.; Wang, Q.; An, W.; Zhou, X.; Cui, G.; et al. Adv. Energy Mater. 2018, 8 (9), 1701398. doi: 10.1002/aenm.201701398

    158. [158]

      (158) Liu, J.; Song, X.; Zhou, L.; Wang, S.; Song, W.; Liu, W.; Long, H.; Zhou, L.; Wu, H.; Feng, C.; et al. Nano Energy 2018, 46, 404. doi: 10.1016/j.nanoen.2018.02.029

    159. [159]

      (159) Rollins, H. W.; Harrup, M. K.; Dufek, E. J.; Jamison, D. K.; Sazhin, S. V.; Gering, K. L.; Daubaras, D. L. J. Power Sources 2014, 263, 66. doi: 10.1016/j.jpowsour.2014.04.015

    160. [160]

      (160) Zhang, L.; Min, F.; Luo, Y.; Dang, G.; Gu, H.; Dong, Q.; Zhang, M.; Sheng, L.; Shen, Y.; Chen, L.; et al. Nano Energy 2022, 96, 107122. doi: 10.1016/j.nanoen.2022.107122

    161. [161]

      (161) Dagger, T.; Lürenbaum, C.; Schappacher, F. M.; Winter, M. J. Power Sources 2017, 342, 266. doi: 10.1016/j.jpowsour.2016.12.007

    162. [162]

      (162) Ji, Y.; Zhang, P.; Lin, M.; Zhao, W.; Zhang, Z.; Zhao, Y.; Yang, Y. J. Power Sources 2017, 359, 391. doi: 10.1016/j.jpowsour.2017.05.091

    163. [163]

      (163) Kim, K.; Ahn, S.; Kim, H.-S.; Liu, H. K. Electrochim. Acta 2009, 54 (8), 2259. doi: 10.1016/j.electacta.2008.10.043

    164. [164]

      (164) Tan, L.; Chen, S.; Chen, Y.; Fan, J.; Ruan, D.; Nian, Q.; Chen, L.; Jiao, S.; Ren, X. Angew. Chem. Int. Ed. 2022, 61 (32), e202203693. doi: 10.1002/anie.202203693

    165. [165]

      (165) Zhang, K.; Wu, F.; Zhang, K.; Weng, S.; Wang, X.; Gao, M.; Sun, Y.; Cao, D.; Bai, Y.; Xu, H.; et al. Energy Stor. Mater. 2021, 41, 485. doi: 10.1016/j.ensm.2021.06.023

  • 加载中
    1. [1]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    2. [2]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    3. [3]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    10. [10]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    11. [11]

      Yajun Jian Quanguo Zhai Quan Gu Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(0)
  • Abstract views(614)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return