Citation: Zhuo Han, Danfeng Zhang, Haixian Wang, Guorui Zheng, Ming Liu, Yanbing He. Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230703. doi: 10.3866/PKU.WHXB202307034
-
One of the crucial directions in the pursuit of high-energy-density lithium batteries involves pairing Ni-rich cathodes with lithium metal anodes (LMAs). However, battery systems with high energy density often suffer from issues such as poor phase structure stability and inadequate interface compatibility. These problems are exacerbated under the actual operating conditions with high cut-off voltages and wide temperature ranges. Interface degradation, in such cases, accelerates the destruction of phase structure, leading to rapid performance deterioration of electrode materials. Compared to methods like ion doping and surface coating, an approach centered around electrolyte-induced interface reconstruction modification through solvent-lithium salt optimization or functional additives shows promise. This approach allows for simultaneous electrochemical cyclic modification of both high-energy-density cathode and anode materials, and it can be easily integrated into large-scale industrial production. Ester-based electrolytes, while possessing greater voltage stability compared to ether-based electrolytes, still exhibit side reactions at the interface between high Ni-content cathodes and the electrolyte, as well as between Li metal anodes and the electrolyte. In the absence of effective cathode-electrolyte interface (CEI) and solid-electrolyte interface (SEI) protection, persistent side reactions occur, ultimately leading to electrode failure. To address these challenges and simultaneously enhance electrode/electrolyte interface compatibility while regulating electrolyte solvation structure, functional additives are employed to modify the electrochemical behavior of the high-energy-density battery interface. Traditional ether electrolytes often employ lithium hexafluorophosphate (LiPF6) as the primary salt. However, LiPF6 suffers from poor thermal stability. Its decomposition or hydrolysis generates hydrogen fluoride (HF), which corrodes the cathode. Moreover, LiPF6 decomposition releases phosphorus pentafluoride (PF5), triggering the ring-opening of ethylene carbonate (EC), leading to electrolyte failure. PF5 can also react with water to produce acidic compounds, further deteriorating battery performance. The extraction of Li+ ions in the cathode reduces oxygen binding energy, facilitating the release of lattice oxygen. This can lead to side reactions between reactive oxygen species and the electrolyte, increasing interface impedance. To tackle these issues, choosing electrolyte additives with diverse functions can expand the potential of electrolytes. By leveraging various functional electrolyte additives, it becomes possible to inhibit irreversible structural transformations in the cathode, prevent O2/CO2 precipitation, suppress interface side reactions, and facilitate the removal of acid-water impurities. This comprehensive study delves into the impact of different functional electrolyte additives on interface film reconstruction, interfacial adsorption stability, synergy on high-energy-density anode interface, and acid-water impurity removal in Ni-rich cathode and anode materials. The research opens up new avenues for the identification and design of specific functionalized additives, paving the way for achieving stable cycling in high-energy-density Ni-rich lithium batteries.
-
-
[1]
(1) Yan, C.; Xu, Y.; Xia, J.; Gong, C.; Chen, K. J. Energy Chem. 2016, 25 (4), 659. doi: 10.1016/j.jechem.2016.04.010
-
[2]
(2) Park, G.-T.; Yoon, D. R.; Kim, U.-H.; Namkoong, B.; Lee, J.; Wang, M. M.; Lee, A. C.; Gu, X. W.; Chueh, W. C.; Yoon, C. S.; et al. Energy Environ. Sci. 2021, 14 (12), 6616. doi: 10.1039/d1ee02898g
-
[3]
(3) Jin, D.; Song, D.; Friesen, A.; Lee, Y. M.; Ryou, M.-H. Electrochim. Acta 2018, 259, 578. doi: 10.1016/j.electacta.2017.11.029
-
[4]
(4) Ryu, H.-H.; Namkoong, B.; Kim, J.-H.; Belharouak, I.; Yoon, C. S.; Sun, Y.-K. ACS Energy Lett. 2021, 6 (8), 2726. doi: 10.1021/acsenergylett.1c01089
-
[5]
(5) Park, J. Y.; Jo, M.; Hong, S.; Park, S.; Park, J. H.; Kim, Y. I.; Kim, S. O.; Chung, K. Y.; Byun, D.; Kim, S. M.; et al. Adv. Energy Mater. 2022, 12 (29), 2201151. doi: 10.1002/aenm.202201151
-
[6]
(6) Kim, K.; Ma, H.; Park, S.; Choi, N.-S. ACS Energy Lett. 2020, 5 (5), 1537. doi: 10.1021/acsenergylett.0c00468
-
[7]
(7) Guo, H. J.; Wang, H. X.; Guo, Y. J.; Liu, G. X.; Wan, J.; Song, Y. X.; Yang, X. A.; Jia, F. F.; Wang, F. Y.; Guo, Y. G.; et al. J. Am. Chem. Soc. 2020, 142 (49), 20752. doi: 10.1021/jacs.0c09602
-
[8]
(8) Zhao, H.; Wang, J.; Shao, H.; Xu, K.; Deng, Y. Energy Environ. Mater. 2021, 5 (1), 327. doi: 10.1002/eem2.12180
-
[9]
(9) Tan, S.; Shadike, Z.; Li, J.; Wang, X.; Yang, Y.; Lin, R.; Cresce, A.; Hu, J.; Hunt, A.; Waluyo, I.; et al. Nat. Energy 2022, 7 (6), 484. doi: 10.1038/s41560-022-01020-x
-
[10]
(10) Campion, C. L.; Li, W. T.; Lucht, B. J. Electrochem. Soc. 2005, 152 (12), A2327. doi: 10.1149/1.2083267
-
[11]
(11) Tebbe, J. L.; Fuerst, T. F.; Musgrave, C. B. ACS Appl. Mater. Interfaces 2016, 8 (40), 26664. doi: 10.1021/acsami.6b06157
-
[12]
(12) Zhang, Y.; Katayama, Y.; Tatara, R.; Giordano, L.; Yu, Y.; Fraggedakis, D.; Sun, J. G.; Maglia, F.; Jung, R.; Bazant, M. Z.; et al. Energy Environ. Sci. 2020, 13 (1), 183. doi: 10.1039/c9ee02543j
-
[13]
(13) Negi, R. S.; Culver, S. P.; Wiche, M.; Ahmed, S.; Volz, K.; Elm, M. T. Phys. Chem. Chem. Phys. 2021, 23 (11), 6725. doi: 10.1039/d0cp06422j
-
[14]
(14) Liu, W.; Li, X.; Xiong, D.; Hao, Y.; Li, J.; Kou, H.; Yan, B.; Li, D.; Lu, S.; Koo, A.; et al. Nano Energy 2018, 44, 111. doi: 10.1016/j.nanoen.2017.11.010
-
[15]
(15) Yan, P.; Zheng, J.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Nat. Commun. 2017, 8, 14101. doi: 10.1038/ncomms14101
-
[16]
-
[17]
(17) Ding, Y.; Deng, B.; Wang, H.; Li, X.; Chen, T.; Yan, X.; Wan, Q.; Qu, M.; Peng, G. J. Alloys Compd. 2019, 774, 451. doi: 10.1016/j.jallcom.2018.09.286
-
[18]
(18) Zhao, J.; Zhang, X.; Liang, Y.; Han, Z.; Liu, S.; Chu, W.; Yu, H. ACS Energy Lett. 2021, 6 (7), 2552. doi: 10.1021/acsenergylett.1c00750
-
[19]
(19) Jiao, T.; Liu, G.; Zou, Y.; Yang, X.; Zhang, X.; Fu, A.; Zheng, J.; Yang, Y. J. Power Sources 2021, 515, 230618. doi: 10.1016/j.jpowsour.2021.230618
-
[20]
(20) Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L. Energy Environ. Sci. 2018, 11 (9), 2600. doi: 10.1039/c8ee00364e
-
[21]
(21) Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6 (6), 1806. doi: 10.1039/c3ee24414h
-
[22]
(22) Zhang, Q.; Pan, J.; Lu, P.; Liu, Z.; Verbrugge, M. W.; Sheldon, B. W.; Cheng, Y.-T.; Qi, Y.; Xiao, X. Nano Lett. 2016, 16 (3), 2011. doi: 10.1021/acs.nanolett.5b05283
-
[23]
(23) Park, J. W.; Park, D. H.; Go, S.; Nam, D.-H.; Oh, J.; Han, Y.-K.; Lee, H. Energy Stor. Mater. 2022, 50, 75. doi: 10.1016/j.ensm.2022.05.009
-
[24]
(24) von Aspern, N.; Diddens, D.; Kobayashi, T.; Börner, M.; Stubbmann-Kazakova, O.; Kozel, V.; Röschenthaler, G.-V.; Smiatek, J.; Winter, M.; Cekic-Laskovic, I. ACS Appl. Mater. Interfaces 2019, 11 (18), 16605. doi: 10.1021/acsami.9b03359
-
[25]
(25) Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60 (38), 20717. doi: 10.1002/anie.202107957
-
[26]
(26) Jiang, G.; Liu, J.; Wang, Z.; Ma, J. Adv. Funct. Mater. 2023, 33 (30), 2300629. doi: 10.1002/adfm.202300629
-
[27]
(27) Ma, Y.; Zhou, Y.; Du, C.; Zuo, P.; Cheng, X.; Han, L.; Nordlund, D.; Gao, Y.; Yin, G.; Xin, H. L.; et al. Chem. Mater. 2017, 29 (5), 2141. doi: 10.1021/acs.chemmater.6b04784
-
[28]
(28) Piao, Z.; Xiao, P.; Luo, R.; Ma, J.; Gao, R.; Li, C.; Tan, J.; Yu, K.; Zhou, G.; Cheng, H. M. Adv. Mater. 2022, 34 (8), e2108400. doi: 10.1002/adma.202108400
-
[29]
(29) Deng, T.; Fan, X.; Cao, L.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X.; Hu, E.; et al. Joule 2019, 3 (10), 2550. doi: 10.1016/j.joule.2019.08.004
-
[30]
(30) Zou, Y.; Liu, G.; Zhou, K.; Zhang, J.; Jiao, T.; Zhang, X.; Yang, Y.; Zheng, J. ACS Appl. Energy Mater. 2021, 4 (10), 11051. doi: 10.1021/acsaem.1c01977
-
[31]
(31) Zhu, H.; Zhang, Y.; Li, M.; Luo, J.; Wei, W.; Zhang, S. J. Electroanal. Chem. 2021, 899, 115682. doi: 10.1016/j.jelechem.2021.115682
-
[32]
(32) Gu, W.; Xue, G.; Dong, Q.; Yi, R.; Mao, Y.; Zheng, L.; Zhang, H.; Fan, X.; Shen, Y.; Chen, L. eScience 2022, 2 (5), 486. doi: 10.1016/j.esci.2022.05.003
-
[33]
(33) Li, G.; Liao, Y.; Li, Z.; Xu, N.; Lu, Y.; Lan, G.; Sun, G.; Li, W. ACS Appl. Mater. Interfaces 2020, 12 (33), 37013. doi: 10.1021/acsami.0c05623
-
[34]
(34) Parida, R.; Reddy, G. N.; Chakraborty, A.; Giri, S.; Jana, M. J. Chem. Inf. Model 2019, 59 (5), 2159. doi: 10.1021/acs.jcim.9b00035
-
[35]
(35) Cheng, F.; Zhang, X.; Qiu, Y.; Zhang, J.; Liu, Y.; Wei, P.; Ou, M.; Sun, S.; Xu, Y.; Li, Q.; et al. Nano Energy 2021, 88, 106301. doi: 10.1016/j.nanoen.2021.106301
-
[36]
(36) Lu, Z.; Liu, D.; Dai, K.; Liu, K.; Jing, C.; He, W.; Wang, W.; Zhang, C.; Wei, W. Energy Stor. Mater. 2023, 57, 316. doi: 10.1016/j.ensm.2023.02.029
-
[37]
(37) Wang, X.; Ren, D.; Liang, H.; Song, Y.; Huo, H.; Wang, A.; Gao, Y.; Liu, J.; Gao, Y.; Wang, L.; et al. Energy Environ. Sci. 2023, 16, 1200. doi: 10.1039/d2ee04109j
-
[38]
(38) Chen, Y.; Zhao, W.; Zhang, Q.; Yang, G.; Zheng, J.; Tang, W.; Xu, Q.; Lai, C.; Yang, J.; Peng, C. Adv. Funct. Mater. 2020, 30 (19), 2000396. doi: 10.1002/adfm.202000396
-
[39]
(39) Liu, Q.; Chen, Z.; Liu, Y.; Hong, Y.; Wang, W.; Wang, J.; Zhao, B.; Xu, Y.; Wang, J.; Fan, X.; et al. Energy Stor. Mater. 2021, 37, 521. doi: 10.1016/j.ensm.2021.02.039
-
[40]
(40) Lin, J.; Yang, Y.; Lin, X.; Li, G.; Zhang, W.; Li, W. ACS Appl. Energy Mater. 2022, 5 (9), 11684. doi: 10.1021/acsaem.2c02160
-
[41]
(41) Zhang, D.; Liu, M.; Ma, J.; Yang, K.; Chen, Z.; Li, K.; Zhang, C.; Wei, Y.; Zhou, M.; Wang, P.; et al. Nat. Commun. 2022, 13 (1), 6966. doi: 10.1038/s41467-022-34717-4
-
[42]
(42) Xu, N.; Sun, Y.; Shi, J.; Chen, J.; Liu, G.; Zhou, K.; He, H.; Zhu, J.; Zhang, Z.; Yang, Y. J. Power Sources 2021, 511, 230437. doi: 10.1016/j.jpowsour.2021.230437
-
[43]
(43) Zheng, Q.; Xing, L.; Yang, X.; Li, X.; Ye, C.; Wang, K.; Huang, Q.; Li, W. ACS Appl. Mater. Interfaces 2018, 10 (19), 16843. doi: 10.1021/acsami.8b00913
-
[44]
(44) Ko, D.-S.; Park, J.-H.; Park, S.; Ham, Y. N.; Ahn, S. J.; Park, J.-H.; Han, H. N.; Lee, E.; Jeon, W. S.; Jung, C. Nano Energy 2019, 56, 434. doi: 10.1016/j.nanoen.2018.11.046
-
[45]
(45) He, K.; Cheng, S. H. S.; Hu, J.; Zhang, Y.; Yang, H.; Liu, Y.; Liao, W.; Chen, D.; Liao, C.; Cheng, X.; et al. Angew. Chem. Int. Ed. 2021, 60 (21), 12116. doi: 10.1002/anie.202103403
-
[46]
(46) Chen, Y.; He, Q.; Mo, Y.; Zhou, W.; Zhao, Y.; Piao, N.; Liu, C.; Xiao, P.; Liu, H.; Li, B.; et al. Adv. Energy Mater. 2022, 12 (33), 2201631. doi: 10.1002/aenm.202201631
-
[47]
(47) Jiang, S.; Xu, X.; Yin, J.; Lei, Y.; Wu, X.; Gao, Y. ACS Appl. Energy Mater. 2022, 5 (11), 13501. doi: 10.1021/acsaem.2c02179
-
[48]
(48) Cha, J.; Han, J.-G.; Hwang, J.; Cho, J.; Choi, N.-S. J. Power Sources 2017, 357, 97. doi: 10.1016/j.jpowsour.2017.04.094
-
[49]
(49) Wan, G.; Guo, F.; Li, H.; Cao, Y.; Ai, X.; Qian, J.; Li, Y.; Yang, H. ACS Appl. Mater. Interfaces 2018, 10 (1), 593. doi: 10.1021/acsami.7b14662
-
[50]
(50) Yang, J.; Liu, X.; Wang, Y.; Zhou, X.; Weng, L.; Liu, Y.; Ren, Y.; Zhao, C.; Dahbi, M.; Alami, J.; et al. Adv. Energy Mater. 2021, 11 (39), 2101956. doi: 10.1002/aenm.202101956
-
[51]
(51) Tian, M.; Ben, L.; Yu, H.; Song, Z.; Yan, Y.; Zhao, W.; Armand, M.; Zhang, H.; Zhou, Z. B.; Huang, X. J. Am. Chem. Soc. 2022, 144 (33), 15100. doi: 10.1021/jacs.2c04124
-
[52]
(52) Chung, G. J.; Tran, Y. H. T.; Han, J.; Kim, K.; Lee, Y. S.; Song, S.-W. Chem. Eng. J. 2022, 446, 137288. doi: 10.1016/j.cej.2022.137288
-
[53]
(53) Cho, D.-H.; Jo, C.-H.; Cho, W.; Kim, Y.-J.; Yashiro, H.; Sun, Y.-K.; Myung, S.-T. J. Electrochem. Soc. 2014, 161 (6), A920. doi: 10.1149/2.042406jes
-
[54]
(54) He, M.; Su, C.-C.; Peebles, C.; Feng, Z.; Connell, J. G.; Liao, C.; Wang, Y.; Shkrob, I. A.; Zhang, Z. ACS Appl. Mater. Interfaces 2016, 8 (18), 11450. doi: 10.1021/acsami.6b01544
-
[55]
(55) Wandt, J.; Freiberg, A. T. S.; Ogrodnik, A.; Gasteiger, H. A. Mater. Today 2018, 21 (8), 825. doi: 10.1016/j.mattod.2018.03.037
-
[56]
(56) Liu, H.; Naylor, A. J.; Menon, A. S.; Brant, W. R.; Edström, K.; Younesi, R. Adv. Mater. Interfaces 2020, 7 (15), 2000277. doi: 10.1002/admi.202000277
-
[57]
(57) Li, J.; Yang, X.; Guan, X.; Guo, R.; Che, Y.; Lan, J.; Xing, L.; Xu, M.; Fan, W.; Li, W. Electrochim. Acta 2020, 354, 136722. doi: 10.1016/j.electacta.2020.136722
-
[58]
(58) Qian, Y.; Kang, Y.; Hu, S.; Shi, Q.; Chen, Q.; Tang, X.; Xiao, Y.; Zhao, H.; Luo, G.; Xu, K.; et al. ACS Appl. Mater. Interfaces 2020, 12 (9), 10443. doi: 10.1021/acsami.9b21605
-
[59]
(59) Croce, F.; Sacchetti, S.; Scrosati, B. J. Power Sources 2006, 162 (1), 685. doi: 10.1016/j.jpowsour.2006.07.038
-
[60]
(60) Rodrigues, M.-T. F.; Kalaga, K.; Gullapalli, H.; Babu, G.; Reddy, A. L. M.; Ajayan, P. M. Adv. Energy Mater. 2016, 6 (12), 1600218. doi: 10.1002/aenm.201600218
-
[61]
(61) Yim, T.; Kang, K. S.; Mun, J.; Lim, S. H.; Woo, S.-G.; Kim, K. J.; Park, M.-S.; Cho, W.; Song, J. H.; Han, Y.-K.; et al. J. Power Sources 2016, 302, 431. doi: 10.1016/j.jpowsour.2015.10.051
-
[62]
(62) Chen, J.; Zhang, H.; Wang, M.; Liu, J.; Li, C.; Zhang, P. J. Power Sources 2016, 303, 41. doi: 10.1016/j.jpowsour.2015.10.088
-
[63]
(63) Kang, K. S.; Choi, S.; Song, J.; Woo, S.-G.; Jo, Y. N.; Choi, J.; Yim, T.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2014, 253, 48. doi: 10.1016/j.jpowsour.2013.12.024
-
[64]
(64) Pham, H. Q.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Power Sources 2016, 323, 220. doi: 10.1016/j.jpowsour.2016.05.038
-
[65]
(65) Deng, B.; Wang, H.; Ge, W.; Li, X.; Yan, X.; Chen, T.; Qu, M.; Peng, G. Electrochim. Acta 2017, 236, 61. doi: 10.1016/j.electacta.2017.03.155
-
[66]
(66) Luo, D.; Li, M.; Zheng, Y.; Ma, Q.; Gao, R.; Zhang, Z.; Dou, H.; Wen, G.; Shui, L.; Yu, A.; et al. Adv. Sci. 2021, 8 (18), e2101051. doi: 10.1002/advs.202101051
-
[67]
(67) Li, Q.; Lu, D.; Zheng, J.; Jiao, S.; Luo, L.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. ACS Appl. Mater. Interfaces 2017, 9 (49), 42761. doi: 10.1021/acsami.7b13887
-
[68]
(68) Liu, B.; Li, Q.; Engelhard, M. H.; He, Y.; Zhang, X.; Mei, D.; Wang, C.; Zhang, J. G.; Xu, W. ACS Appl. Mater. Interfaces 2019, 11 (24), 21496. doi: 10.1021/acsami.9b03821
-
[69]
(69) Chandrasekaran, R. K., M.; Ozhawa, Y.; Aoyoma, H.; Nakajima, T. J. Chem. Sci. 2009, 121, 339 doi: 10.1007/s12039-009-0039-2
-
[70]
(70) Yang, B.; Zhang, H.; Yu, L.; Fan, W.; Huang, D. Electrochim. Acta 2016, 221, 107. doi: 10.1016/j.electacta.2016.10.037
-
[71]
(71) Liao, L.; Cheng, X.; Ma, Y.; Zuo, P.; Fang, W.; Yin, G.; Gao, Y. Electrochim. Acta 2013, 87, 466. doi: 10.1016/j.electacta.2012.09.083
-
[72]
(72) Liao, L.; Fang, T.; Zhou, X.; Gao, Y.; Cheng, X.; Zhang, L.; Yin, G. Solid State Ion. 2014, 254, 27. doi: 10.1016/j.ssi.2013.10.047
-
[73]
(73) Zhang, S. S.; Xu, K.; Jow, T. R. Electrochem. Commun. 2002, 4 (11), 928. doi: 10.1016/S1388-2481(02)00490-3
-
[74]
(74) Lv, W.; Zhu, C.; Chen, J.; Ou, C.; Zhang, Q.; Zhong, S. Chem. Eng. J. 2021, 418, 129400. doi: 10.1016/j.cej.2021.129400
-
[75]
(75) Liao, B.; Li, H.; Xu, M.; Xing, L.; Liao, Y.; Ren, X.; Fan, W.; Yu, L.; Xu, K.; Li, W. Adv. Energy Mater. 2018, 8 (22), 1800802. doi: 10.1002/aenm.201800802
-
[76]
(76) Chen, J.; Xing, L.; Yang, X.; Liu, X.; Li, T.; Li, W. Electrochim. Acta 2018, 290, 568. doi: 10.1016/j.electacta.2018.09.077
-
[77]
(77) Guo, R.; Che, Y.; Lan, G.; Lan, J.; Li, J.; Xing, L.; Xu, K.; Fan, W.; Yu, L.; Li, W. ACS Appl. Mater. Interfaces 2019, 11 (41), 38285. doi: 10.1021/acsami.9b12020
-
[78]
(78) Lin, Y.; Yue, X.; Zhang, H.; Yu, L.; Fan, W.; Xie, T. Electrochim. Acta 2019, 300, 202. doi: 10.1016/j.electacta.2019.01.120
-
[79]
(79) Duan, K.; Ning, J.; Zhou, L.; Wang, S.; Wang, Q.; Liu, J.; Guo, Z. ACS Appl. Mater. Interfaces 2022, 14 (8), 10447. doi: 10.1021/acsami.1c24808
-
[80]
(80) Han, J.-G.; Jeong, M.-Y.; Kim, K.; Park, C.; Sung, C. H.; Bak, D. W.; Kim, K. H.; Jeong, K.-M.; Choi, N.-S. J. Power Sources 2020, 446, 227366. doi: 10.1016/j.jpowsour.2019.227366
-
[81]
(81) Park, S.; Jeong, S. Y.; Lee, T. K.; Park, M. W.; Lim, H. Y.; Sung, J.; Cho, J.; Kwak, S. K.; Hong, S. Y.; Choi, N. S. Nat. Commun. 2021, 12 (1), 838. doi: 10.1038/s41467-021-21106-6
-
[82]
(82) Jiang, G.; Liu, J.; He, J.; Wang, H.; Qi, S.; Huang, J.; Wu, D.; Ma, J. Adv. Funct. Mater. 2023, 33, 2214422. doi: 10.1002/adfm.202214422
-
[83]
(83) Song, Y.-M.; Kim, C.-K.; Kim, K.-E.; Hong, S. Y.; Choi, N.-S. J. Power Sources 2016, 302, 22. doi: 10.1016/j.jpowsour.2015.10.043
-
[84]
(84) Han, J.-G.; Lee, S. J.; Lee, J.; Kim, J.-S.; Lee, K. T.; Choi, N.-S. ACS Appl. Mater. Interfaces 2015, 7 (15), 8319. doi: 10.1021/acsami.5b01770
-
[85]
(85) Ma, Q.; Zhang, X.; Wang, A.; Xia, Y.; Liu, X.; Luo, J. Adv. Funct. Mater. 2020, 30 (32), 2002824. doi: 10.1002/adfm.202002824
-
[86]
(86) Lyu, H.; Li, Y.; Jafta, C. J.; Bridges, C. A.; Meyer, H. M.; Borisevich, A.; Paranthaman, M. P.; Dai, S.; Sun, X.-G. J. Power Sources 2019, 412, 527. doi: 10.1016/j.jpowsour.2018.11.083
-
[87]
(87) Liu, Y.; Tan, L.; Li, L. J. Power Sources 2013, 221, 90. doi: 10.1016/j.jpowsour.2012.08.028
-
[88]
(88) Zou, F.; Wang, J.; Zheng, X.; Hu, X.; Wang, J.; Wang, M. Electrochim. Acta 2022, 428, 140958. doi: 10.1016/j.electacta.2022.140958
-
[89]
(89) Meng, Y.; Chen, G.; Shi, L.; Liu, H.; Zhang, D. ACS Appl. Mater. Interfaces 2019, 11 (48), 45108. doi: 10.1021/acsami.9b17438
-
[90]
(90) Chen, J.; Chen, H.; Mei, Y.; Zhang, S.; Ni, L.; Gao, X.; Deng, W.; Zou, G.; Hou, H.; Ji, X. Chem. Eng. J. 2022, 450, 138318. doi: 10.1016/j.cej.2022.138318
-
[91]
(91) Li, J.; Zhang, L.; Yu, L.; Fan, W.; Wang, Z.; Yang, X.; Lin, Y.; Xing, L.; Xu, M.; Li, W. J. Phys. Chem. C 2016, 120 (47), 26899. doi: 10.1021/acs.jpcc.6b09097
-
[92]
(92) Yan, Y.; Weng, S.; Fu, A.; Zhang, H.; Chen, J.; Zheng, Q.; Zhang, B.; Zhou, S.; Yan, H.; Wang, C.-W.; et al. ACS Energy Lett. 2022, 7 (8), 2677. doi: 10.1021/acsenergylett.2c01433
-
[93]
(93) Li, J.; Li, W.; You, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8 (29), 1801957. doi: 10.1002/aenm.201801957
-
[94]
(94) Jia, H.; Billmann, B.; Onishi, H.; Smiatek, J.; Roeser, S.; Wiemers-Meyer, S.; Wagner, R.; Winter, M.; Cekic-Laskovic, I. Chem. Mater. 2019, 31 (11), 4025. doi: 10.1021/acs.chemmater.9b00555
-
[95]
(95) Zhan, C.; Wu, T.; Lu, J.; Amine, K. Energy Environ. Sci. 2018, 11 (2), 243. doi: 10.1039/c7ee03122j
-
[96]
(96) Luo, X.; Xing, L.; Vatamanu, J.; Chen, J.; Chen, J.; Liu, M.; Wang, C.; Xu, K.; Li, W. J. Energy Chem. 2022, 65, 1. doi: 10.1016/j.jechem.2021.05.022
-
[97]
(97) Zhuang, Y.; Lei, Y.; Guan, M.; Du, F.; Cao, H.; Dai, H.; Zhou, Q.; Adkins, J.; Zheng, J. Electrochim. Acta 2020, 331, 135465. doi: 10.1016/j.electacta.2019.135465
-
[98]
(98) Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9 (4), 1308. doi: 10.1039/c5ee03360h
-
[99]
(99) Qiu, Y.; Lu, D.; Gai, Y.; Cai, Y. ACS Appl. Mater. Interfaces 2022, 14 (9), 11398. doi: 10.1021/acsami.1c23335
-
[100]
(100) Aupperle, F.; Eshetu, G. G.; Eberman, K. W.; Xioa, A.; Bridel, J.-S.; Figgemeier, E. J. Mater. Chem. A 2020, 8 (37), 19573. doi: 10.1039/d0ta05827k
-
[101]
(101) Li, X.; Han, X.; Li, G.; Du, J.; Cao, Y.; Gong, H.; Wang, H.; Zhang, Y.; Liu, S.; Zhang, B.;et al. Small 2022, 18 (30), e2202989. doi: 10.1002/smll.202202989
-
[102]
(102) Lee, S. H.; Hwang, J. Y.; Park, S. J.; Park, G. T.; Sun, Y. K. Adv. Funct. Mater. 2019, 29 (30), 1902496. doi: 10.1002/adfm.201902496
-
[103]
(103) Zhang, Z.; Liu, F.; Huang, Z.; Yi, M.; Fan, X.; Bai, M.; Hong, B.; Zhang, Z.; Li, J.; Lai, Y. J. Colloid Interface Sci. 2022, 608 (Pt 2), 1471. doi: 10.1016/j.jcis.2021.10.061
-
[104]
(104) Tan, S. J.; Yue, J.; Hu, X. C.; Shen, Z. Z.; Wang, W. P.; Li, J. Y.; Zuo, T. T.; Duan, H.; Xiao, Y.; Yin, Y. X.; et al. Angew. Chem. Int. Ed. 2019, 58 (23), 7802. doi: 10.1002/anie.201903466
-
[105]
-
[106]
(106) Chae, O. B.; Adiraju, V. A. K.; Lucht, B. L. ACS Energy Lett. 2021, 6 (11), 3851. doi: 10.1021/acsenergylett.1c01999
-
[107]
(107) Zhang, X.; Wu, Q.; Guan, X.; Cao, F.; Li, C.; Xu, J. J. Power Sources 2020, 452, 227833. doi: 10.1016/j.jpowsour.2020.227833
-
[108]
(108) Jiang, S.; Xu, X.; Yin, J.; Wu, H.; Zhu, X.; Guan, H.; Wei, L.; Xi, K.; Lan, Y.; Zhang, L.; et al. Chem. Eng. J. 2023, 451, 138359. doi: 10.1016/j.cej.2022.138359
-
[109]
(109) Zhang, S.; Zhuang, X.; Du, X.; Zhang, X.; Li, J.; Xu, G.; Ren, Z.; Cui, Z.; Huang, L.; Wang, S.; et al. Adv. Mater. 2023, 35, 2301312. doi: 10.1002/adma.202301312
-
[110]
(110) Xu, R.; Shen, X.; Ma, X. X.; Yan, C.; Zhang, X. Q.; Chen, X.; Ding, J. F.; Huang, J. Q. Angew. Chem. Int. Ed. 2021, 60 (8), 4215. doi: 10.1002/anie.202013271
-
[111]
(111) Wu, J.; Gao, Z.; Tian, Y.; Zhao, Y.; Lin, Y.; Wang, K.; Guo, H.; Pan, Y.; Wang, X.; Kang, F.; et al. Adv. Mater. 2023, 2303347. doi: 10.1002/adma.202303347
-
[112]
(112) Zhang, W.; Lu, Y.; Wan, L.; Zhou, P.; Xia, Y.; Yan, S.; Chen, X.; Zhou, H.; Dong, H.; Liu, K. Nat. Commun. 2022, 13 (1), 2029. doi: 10.1038/s41467-022-29761-z
-
[113]
(113) Wang, H.; Zhang, J.; Zhang, H.; Li, W.; Chen, M.; Guo, Q.; Lau, K. C.; Zeng, L.; Feng, G.; Zhai, D.; et al. Cell Rep. Phys. Sci. 2022, 3 (6), 100919. doi: 10.1016/j.xcrp.2022.100919
-
[114]
(114) Li, S.; Zhang, W.; Wu, Q.; Fan, L.; Wang, X.; Wang, X.; Shen, Z.; He, Y.; Lu, Y. Angew. Chem. Int. Ed. 2020, 59 (35), 14935. doi: 10.1002/anie.202004853
-
[115]
(115) Wang, X.; Li, S.; Zhang, W.; Wang, D.; Shen, Z.; Zheng, J.; Zhuang, H. L.; He, Y.; Lu, Y. Nano Energy 2021, 89, 106353. doi: 10.1016/j.nanoen.2021.106353
-
[116]
(116) Xia, Y.; Zhou, P.; Kong, X.; Tian, J.; Zhang, W.; Yan, S.; Hou, W.-h.; Zhou, H.-Y.; Dong, H.; Chen, X.; et al. Nat. Energy 2023. doi: 10.1038/s41560-023-01282-z
-
[117]
(117) Wang, Z.; Hou, L. P.; Li, Z.; Liang, J. L.; Zhou, M. Y.; Zhao, C. Z.; Zeng, X.; Li, B. Q.; Chen, A.; Zhang, X. Q.; et al. Carbon Energy 2022, 5 (1), e283. doi: 10.1002/cey2.283
-
[118]
(118) Zhang, W.; Shen, Z.; Li, S.; Fan, L.; Wang, X.; Chen, F.; Zang, X.; Wu, T.; Ma, F.; Lu, Y. Adv. Funct. Mater. 2020, 30 (39), 2003800. doi: 10.1002/adfm.202003800
-
[119]
(119) Zhang, Y.; Wu, Y.; Li, H.; Chen, J.; Lei, D.; Wang, C. Nat. Commun. 2022, 13 (1), 1297. doi: 10.1038/s41467-022-28959-5
-
[120]
(120) Palacin, M. R.; de Guibert, A. Science 2016, 351 (6273), 1253292. doi: 10.1126/science.1253292
-
[121]
(121) Han, J. G.; Hwang, E.; Kim, Y.; Park, S.; Kim, K.; Roh, D. H.; Gu, M.; Lee, S. H.; Kwon, T. H.; Kim, Y.; et al. ACS Appl. Mater. Interfaces 2020, 12 (21), 24479. doi: 10.1021/acsami.0c04372
-
[122]
(122) Aurbach, D.; Markevich, E.; Salitra, G. J. Am. Chem. Soc. 2021, 143 (50), 21161. doi: 10.1021/jacs.1c11315
-
[123]
(123) Ma, X.; Yu, J.; Dong, Q.; Zou, X.; Zheng, L.; Hu, Y.; Shen, Y.; Chen, L.; Yan, F. ACS Appl. Mater. Interfaces 2022, 14 (36), 41103. doi: 10.1021/acsami.2c12497
-
[124]
(124) Park, S. Y.; Park, S.; Lim, H. Y.; Yoon, M.; Choi, J. H.; Kwak, S. K.; Hong, S. Y.; Choi, N. S. Adv. Sci. 2022, 10 (5), 2205918. doi: 10.1002/advs.202205918
-
[125]
(125) Dong, Z.; Wei, J.; Yue, H.; Zhang, K.; Wang, L.; Li, X.; Zhang, Z.; Yang, W.; Yang, S. J. Colloid Interface Sci. 2021, 595, 35. doi: 10.1016/j.jcis.2021.03.058
-
[126]
(126) Wu, F.; Dong, J.; Chen, L.; Bao, L.; Li, N.; Cao, D.; Lu, Y.; Xue, R.; Liu, N.; Wei, L.; et al. Energy Stor. Mater. 2021, 41, 495. doi: 10.1016/j.ensm.2021.06.018
-
[127]
(127) Liu, Y.; Hong, L.; Jiang, R.; Wang, Y.; Patel, S. V.; Feng, X.; Xiang, H. ACS Appl. Mater. Interfaces 2021, 13 (48), 57430. doi: 10.1021/acsami.1c18783
-
[128]
(128) Lee, T. J.; Soon, J.; Chae, S.; Ryu, J. H.; Oh, S. M. ACS Appl. Mater. Interfaces 2019, 11 (12), 11306. doi: 10.1021/acsami.8b19009
-
[129]
(129) Kim, K.; Hwang, D.; Kim, S.; Park, S. O.; Cha, H.; Lee, Y. S.; Cho, J.; Kwak, S. K.; Choi, N. S. Adv. Energy Mater. 2020, 10 (15), 2000012. doi: 10.1002/aenm.202000012
-
[130]
(130) Zhang, X.-Q.; Cheng, X.-B.; Chen, X.; Yan, C.; Zhang, Q. Adv. Funct. Mater. 2017, 27 (10), 1605989. doi: 10.1002/adfm.201605989
-
[131]
(131) Wang, W.; Yang, T.; Li, S.; Lu, J.; Zhao, X.; Fan, W.; Fan, C.; Zuo, X.; Tie, S.; Nan, J. J. Power Sources 2021, 483, 229172. doi: 10.1016/j.jpowsour.2020.229172
-
[132]
(132) Lu, J.; Li, S.; Jiang, L.; Yang, T.; Fan, W.; Wang, W.; Zhao, X.; Zuo, X.; Nan, J. ChemElectroChem 2021, 8 (19), 3716. doi: 10.1002/celc.202101067
-
[133]
(133) Li, F.; Liu, J.; He, J.; Hou, Y.; Wang, H.; Wu, D.; Huang, J.; Ma, J. Angew. Chem. Int. Ed. 2022, 61 (27), e202205091. doi: 10.1002/anie.202205091
-
[134]
(134) Sheng, L.; Yang, K.; Chen, J.; Zhu, D.; Wang, L.; Wang, J.; Tang, Y.; Xu, H.; He, X. Adv. Mater. 2023, e2212292. doi: 10.1002/adma.202212292
-
[135]
(135) Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. Energy Environ. Sci. 2020, 13 (4), 1197. doi: 10.1039/d0ee00060d
-
[136]
(136) Kong, F.; Liang, C.; Wang, L.; Zheng, Y.; Perananthan, S.; Longo, R. C.; Ferraris, J. P.; Kim, M.; Cho, K. Adv. Energy Mater. 2019, 9 (2), 1802586. doi: 10.1002/aenm.201802586
-
[137]
(137) Lee, E.; Persson, K. A. Adv. Energy Mater. 2014, 4 (15), 1400498. doi: 10.1002/aenm.201400498
-
[138]
(138) Yan, P.; Zheng, J.; Tang, Z. K.; Devaraj, A.; Chen, G.; Amine, K.; Zhang, J. G.; Liu, L. M.; Wang, C. Nat. Nanotechnol. 2019, 14 (6), 602. doi: 10.1038/s41565-019-0428-8
-
[139]
(139) Freunberger, S. A.; Chen, Y.; Peng, Z.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133 (20), 8040. doi: 10.1021/ja2021747
-
[140]
(140) Han, J. G.; Kim, K.; Lee, Y.; Choi, N. S. Adv. Mater. 2019, 31 (20), e1804822. doi: 10.1002/adma.201804822
-
[141]
(141) Xiao, Z.; Liu, J.; Fan, G.; Yu, M.; Liu, J.; Gou, X.; Yuan, M.; Cheng, F. Mater. Chem. Front. 2020, 4 (6), 1689. doi: 10.1039/d0qm00094a
-
[142]
(142) Chen, Q.; Pei, Y.; Chen, H.; Song, Y.; Zhen, L.; Xu, C. Y.; Xiao, P.; Henkelman, G. Nat. Commun. 2020, 11 (1), 3411. doi: 10.1038/s41467-020-17126-3
-
[143]
(143) Lee, S. Y.; Park, G. S.; Jung, C.; Ko, D. S.; Park, S. Y.; Kim, H. G.; Hong, S. H.; Zhu, Y.; Kim, M. Adv. Sci. 2019, 6 (6), 1800843. doi: 10.1002/advs.201800843
-
[144]
(144) Liu, X.; Xu, G.-L.; Kolluru, V. S. C.; Zhao, C.; Li, Q.; Zhou, X.; Liu, Y.; Yin, L.; Zhuo, Z.; Daali, A.; et al. Nat. Energy 2022, 7 (9), 808. doi: 10.1038/s41560-022-01036-3
-
[145]
(145) Zheng, J.; Xiao, J.; Gu, M.; Zuo, P.; Wang, C.; Zhang, J.-G. J. Power Sources 2014, 250, 313. doi: 10.1016/j.jpowsour.2013.10.071
-
[146]
(146) Tu, W.; Xia, P.; Zheng, X.; Ye, C.; Xu, M.; Li, W. J. Power Sources 2017, 341, 348. doi: 10.1016/j.jpowsour.2016.12.012
-
[147]
(147) Wen, S.; Han, Y.; Wang, P.; Zhao, D.; Cui, X.; Zhang, L.; Li, S. ACS Appl. Energy Mater. 2021, 4 (11), 12525. doi: 10.1021/acsaem.1c02331
-
[148]
(148) Mao, M.; Huang, B.; Li, Q.; Wang, C.; He, Y.-B.; Kang, F. Nano Energy 2020, 78, 105282. doi: 10.1016/j.nanoen.2020.105282
-
[149]
(149) Zhuang, Y.; Zhao, Y.; Bao, Y.; Zhang, W.; Guan, M. Electrochim. Acta 2023, 441, 141745. doi: 10.1016/j.electacta.2022.141745
-
[150]
(150) Pires, J.; Castets, A.; Timperman, L.; Santos-Peña, J.; Dumont, E.; Levasseur, S.; Tessier, C.; Dedryvère, R.; Anouti, M. J. Power Sources 2015, 296, 413. doi: 10.1016/j.jpowsour.2015.07.065
-
[151]
(151) Han, J. G.; Hwang, C.; Kim, S. H.; Park, C.; Kim, J.; Jung, G. Y.; Baek, K.; Chae, S.; Kang, S. J.; Cho, J.; et al. Adv. Energy Mater. 2020, 10 (20), 2000563. doi: 10.1002/aenm.202000563
-
[152]
(152) Lee, J.; Jeon, A. R.; Lee, H. J.; Shin, U.; Yoo, Y.; Lim, H.-D.; Han, C.; Lee, H.; Kim, Y. J.; Baek, J.; et al. Energy Environ. Sci. 2023, 16, 2709. doi: 10.1039/d3ee00157a
-
[153]
(153) Nagasubramanian, G.; Fenton, K. Electrochim. Acta 2013, 101, 3. doi: 10.1016/j.electacta.2012.09.065
-
[154]
(154) Deng, K.; Zeng, Q.; Wang, D.; Liu, Z.; Wang, G.; Qiu, Z.; Zhang, Y.; Xiao, M.; Meng, Y. Energy Stor. Mater. 2020, 32, 425. doi: 10.1016/j.ensm.2020.07.018
-
[155]
(155) Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Richard Jow, T. J. Electrochem. Soc. 2003, 150, A161. doi: 10.1149/1.1533040
-
[156]
(156) Ota, H.; Kominato, A.; Chun, W.-J.; Yasukawa, E.; Kasuya, S. J. Power Sources 2003, 119–121, 393. doi: 10.1016/S0378-7753(03)00259-3
-
[157]
(157) Xu, G.; Pang, C.; Chen, B.; Ma, J.; Wang, X.; Chai, J.; Wang, Q.; An, W.; Zhou, X.; Cui, G.; et al. Adv. Energy Mater. 2018, 8 (9), 1701398. doi: 10.1002/aenm.201701398
-
[158]
(158) Liu, J.; Song, X.; Zhou, L.; Wang, S.; Song, W.; Liu, W.; Long, H.; Zhou, L.; Wu, H.; Feng, C.; et al. Nano Energy 2018, 46, 404. doi: 10.1016/j.nanoen.2018.02.029
-
[159]
(159) Rollins, H. W.; Harrup, M. K.; Dufek, E. J.; Jamison, D. K.; Sazhin, S. V.; Gering, K. L.; Daubaras, D. L. J. Power Sources 2014, 263, 66. doi: 10.1016/j.jpowsour.2014.04.015
-
[160]
(160) Zhang, L.; Min, F.; Luo, Y.; Dang, G.; Gu, H.; Dong, Q.; Zhang, M.; Sheng, L.; Shen, Y.; Chen, L.; et al. Nano Energy 2022, 96, 107122. doi: 10.1016/j.nanoen.2022.107122
-
[161]
(161) Dagger, T.; Lürenbaum, C.; Schappacher, F. M.; Winter, M. J. Power Sources 2017, 342, 266. doi: 10.1016/j.jpowsour.2016.12.007
-
[162]
(162) Ji, Y.; Zhang, P.; Lin, M.; Zhao, W.; Zhang, Z.; Zhao, Y.; Yang, Y. J. Power Sources 2017, 359, 391. doi: 10.1016/j.jpowsour.2017.05.091
-
[163]
(163) Kim, K.; Ahn, S.; Kim, H.-S.; Liu, H. K. Electrochim. Acta 2009, 54 (8), 2259. doi: 10.1016/j.electacta.2008.10.043
-
[164]
(164) Tan, L.; Chen, S.; Chen, Y.; Fan, J.; Ruan, D.; Nian, Q.; Chen, L.; Jiao, S.; Ren, X. Angew. Chem. Int. Ed. 2022, 61 (32), e202203693. doi: 10.1002/anie.202203693
-
[165]
(165) Zhang, K.; Wu, F.; Zhang, K.; Weng, S.; Wang, X.; Gao, M.; Sun, Y.; Cao, D.; Bai, Y.; Xu, H.; et al. Energy Stor. Mater. 2021, 41, 485. doi: 10.1016/j.ensm.2021.06.023
-
[1]
-
-
[1]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[2]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[3]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[4]
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
-
[5]
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
-
[6]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[7]
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
-
[8]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[9]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[10]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[11]
Yajun Jian , Quanguo Zhai , Quan Gu , Shengli Gao . Reconstruction and Practice of the Teaching Content of “Carbon Group Elements” in Inorganic Chemistry to Reflect Comprehensive Education Function. University Chemistry, 2024, 39(11): 96-107. doi: 10.12461/PKU.DXHX202403006
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[14]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[15]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[16]
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
-
[17]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[18]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[19]
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
-
[20]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(613)
- HTML views(52)