Citation: Da Wang,  Xiaobin Yin,  Jianfang Wu,  Yaqiao Luo,  Siqi Shi. All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230702. doi: 10.3866/PKU.WHXB202307029 shu

All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation

  • Corresponding author: Siqi Shi, sqshi@shu.edu.cn
  • Received Date: 15 July 2023
    Revised Date: 21 August 2023
    Accepted Date: 28 August 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2021YFB3802104), the National Natural Science Foundation of China (52372208, U2030206, 11874254), and Innovation Laboratory, Contemporary Amperex Technology Ltd. (21C-OP-202205).

  • All-solid-state batteries (ASSBs) using inorganic solid electrolytes (SEs) have emerged as crucial components in energy storage applications due to their superior safety and cycle life. In recent years, due to the extensive developments of SEs with high room temperature ionic conductivity (> 10-3 S·cm-1), the sluggish diffusion kinetics of lithium ions in SEs are no longer the primary bottleneck impeding the enhancement of ASSBs. On the contrary, the notable resistance at the cathode/SE interface has emerged as a pressing issue demanding immediate resolution. The interfacial resistances arising from various factors, including the formation of the space-charge layer, interfacial chemical reactions, and lack of intimate contact, stand as fundamental reasons for a range of performance deteriorations, such as short cycling life, low coulombic efficiency, and poor power performance. These interconnected aspects further result in differences in the orders of magnitude of the reported interfacial resistances at different fabrication temperatures and/or routes, even within the same material system. Among these factors, the solid-solid contact or chemical reaction degree is closely related to the structural and electronic properties of the selected cathode and SE materials. The observed space-charge layer effect is universal and independent of the specific components or types of ion-conductive materials. Thus, obtaining a comprehensive understanding of the physics governing the space-charge layer at the interfaces of ASSBs is pivotal for researchers to fundamentally address the high interfacial resistance stemming from it. This forms the foundation for incorporating other mechanisms (such as interfacial reactions) to more accurately quantify interfacial resistance and expedite interface research in ASSBs. In this review, we strictly derive the theoretical model of the formation of the space-charge layer caused by the inherent chemical potential difference between the cathode and SE from fundamental concepts of (electro)chemical potential and electric potential, and reveal the physical picture of its influence on interfacial resistance. Subsequently, the most recent experimental characterizations and theoretical calculations of the space-charge layer at the cathode/SE interface are comprehensively discussed. While the existence of the space-charge layer is observable through experimentation, its characterization is complicated by factors like loss of interfacial contact and interfacial reactions. Therefore, it becomes imperative to further quantify the concentration of lithium ions in the space-charge layer and its impact on interfacial resistance through theoretical calculations. However, when combining the space-charge layer model with numerical and first-principles calculations to quantitatively study interfacial resistance, accurately determining the interfacial electric potential difference at the cathode/SE interface remains challenging, resulting in several orders of magnitude difference between predicted results and experimental measurements. Consequently, grounded in the foundational physical framework of the interfacial electric potential difference, the intricate connections between this potential difference and the electronic structure of the cathode/SE interface are explored. As a result, a strategy is proposed to ascertain the interfacial electric potential difference by directly calculating the Fermi level of the cathode and SE under real bonding conditions. This endeavor is anticipated to broaden the utility of the space-charge layer model in quantitatively calculating cathode/SE interfacial resistance, offering valuable insights for optimizing the cathode/SE interface and enhancing the overall performance of ASSBs.
  • 加载中
    1. [1]

      (1) Zhang, S.; Ma, J.; Dong, S.; Cui, G. Electrochem. Energy Rev. 2023, 6 (1), 4. doi:10.1007/s41918-022-00143-9

    2. [2]

      (2) Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M.; He, X. Adv. Energy Mater. 2023, 13 (15), 2204343. doi:10.1002/aenm.202204343

    3. [3]

      (3) Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi:10.1038/s41560-023-01208-9

    4. [4]

      (4) Bates, A. M.; Preger, Y.; Torres-Castro, L.; Harrison, K. L.; Harris, S. J.; Hewson, J. Joule 2022, 6 (4), 742. doi:10.1016/j.joule.2022.02.007

    5. [5]

      (5) Rettenwander, D.; Redhammer, G.; Preishuber-Pflügl, F.; Cheng, L.; Miara, L.; Wagner, R.; Welzl, A.; Suard, E.; Doeff, M. M.; Wilkening, M.; et al. Chem. Mater. 2016, 28 (7), 2384. doi:10.1021/acs.chemmater.6b00579

    6. [6]

      (6) Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K. R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al. Chem. Mater. 2020, 32 (6), 2664. doi:10.1021/acs.chemmater.9b04764

    7. [7]

      (7) Xu, G.; Luo, L.; Liang, J.; Zhao, S.; Yang, R.; Wang, C.; Yu, T.; Wang, L.; Xiao, W.; Wang, J.; et al. Nano Energy 2022, 92, 106674. doi:10.1016/j.nanoen.2021.106674

    8. [8]

      (8) Zou, Z.; Li, Y.; Lu, Z.; Wang, D.; Cui, Y.; Guo, B.; Li, Y.; Liang, X.; Feng, J.; Li, H.; et al. Chem. Rev. 2020, 120 (9), 4169. doi:10.1021/acs.chemrev.9b00760

    9. [9]

      (9) Jiang, Y.; Lai, A.; Ma, J.; Yu, K.; Zeng, H.; Zhang, G.; Huang, W.; Wang, C.; Chi, S.; Wang, J.; et al. ChemSusChem 2023, 16 (9), e202202156. doi:10.1002/cssc.202202156

    10. [10]

      (10) Gandi, S.; Chidambara Swamy Vaddadi, V. S.; Sripada Panda, S. S.; Goona, N. K.; Parne, S. R.; Lakavat, M.; Bhaumik, A. J. Power Sources 2022, 521, 230930. doi:10.1016/j.jpowsour.2021.230930

    11. [11]

      (11) Deng, Z.; Kumar, V.; Bölle, F. T.; Caro, F.; Franco, A. A.; Castelli, I. E.; Canepa, P.; Seh, Z. W. Energy Environ. Sci. 2022, 15 (2), 579. doi:10.1039/D1EE02324A

    12. [12]

      (12) Wang, L.; Xie, R.; Chen, B.; Yu, X.; Ma, J.; Li, C.; Hu, Z.; Sun, X.; Xu, C.; Dong, S.; et al. Nat. Commun. 2020, 11 (1), 5889. doi:10.1038/s41467-020-19726-5

    13. [13]

      (13) Yi, J.; He, P.; Liu, H.; Ni, H.; Bai, Z.; Fan, L.-Z. J. Energy Chem. 2021, 52, 202. doi:10.1016/j.jechem.2020.03.057

    14. [14]

      (14) Park, B. K.; Kim, H.; Kim, K. S.; Kim, H.; Han, S. H.; Yu, J.; Hah, H. J.; Moon, J.; Cho, W.; Kim, K. J. Adv. Energy Mater. 2022, 12 (37), 2201208. doi:10.1002/aenm.202201208

    15. [15]

      (15) Tian, H.-K.; Qi, Y. J. Electrochem. Soc. 2017, 164 (11), E3512. doi:10.1149/2.0481711jes

    16. [16]

      (16) Lewis, J. A.; Tippens, J.; Cortes, F. J. Q.; McDowell, M. T. Trends Chem. 2019, 1 (9), 845. doi:10.1016/j.trechm.2019.06.013

    17. [17]

      (17) Kim, J.; Kim, M. J.; Kim, J.; Lee, J. W.; Park, J.; Wang, S. E.; Lee, S.; Kang, Y. C.; Paik, U.; Jung, D. S.; et al. Adv. Funct. Mater. 2023, 33 (12), 2211355. doi:10.1002/adfm.202211355

    18. [18]

      (18) Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D. J. Mater. Chem. A 2019, 7 (40), 22967. doi:10.1039/C9TA08517C

    19. [19]

      (19) Gao, B.; Jalem, R.; Tateyama, Y. ACS Appl. Mater. Interfaces 2021, 13 (10), 11765. doi:10.1021/acsami.0c19091

    20. [20]

      (20) Ren, F.; Liang, Z.; Zhao, W.; Zuo, W.; Lin, M.; Wu, Y.; Yang, X.; Gong, Z.; Yang, Y. Energy Environ. Sci. 2023, 16 (6), 2579. doi:10.1039/D3EE00870C

    21. [21]

      (21) Swift, M. W.; Jagad, H.; Park, J.; Qie, Y.; Wu, Y.; Qi, Y. Curr. Opin. Solid State Mater. Sci. 2022, 26 (3), 100990. doi:10.1016/j.cossms.2022.100990

    22. [22]

      (22) Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1984, 88 (11), 1057. doi:10.1002/bbpc.198400007

    23. [23]

      (23) Maier, J. Prog. Solid State Chem. 1995, 23 (3), 171. doi:10.1016/0079-6786(95)00004-E

    24. [24]

      (24) Wu, J.-F.; Guo, X. Phys. Chem. Chem. Phys. 2017, 19 (8), 5880. doi:10.1039/C6CP07757A

    25. [25]

      (25) Frenkel, J. Kinetic Theory of Liquids; Oxford University Press:Oxford, UK, 1946.

    26. [26]

      (26) Lehovec, K. J. Chem. Phys. 1953, 21 (7), 1123. doi:10.1063/1.1699148

    27. [27]

      (27) Kliewer, K. L.; Koehler, J. S. Phys. Rev. 1965, 140 (4A), A1226. doi:10.1103/PhysRev.140.A1226

    28. [28]

      (28) Liang, C. C. J. Electrochem. Soc. 1973, 120 (10), 1289. doi:10.1149/1.2403248

    29. [29]

      (29) Dudney, N. J. J. Am. Ceram. Soc. 1985, 68 (10), 538. doi:10.1111/j.1151-2916.1985.tb11520.x

    30. [30]

      (30) Maier, J. J. Phys. Chem. Solids 1985, 46 (3), 309. doi:10.1016/0022-3697(85)90172-6

    31. [31]

      (31) Jow, T.; Wagner, J. B. J. Electrochem. Soc. 1979, 126 (11), 1963. doi:10.1149/1.2128835

    32. [32]

      (32) Nakamura, O.; Goodenough, J. B. Solid State Ion. 1982, 7 (2), 119. doi:10.1016/0167-2738(82)90004-2

    33. [33]

      (33) Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1985, 89 (4), 355. doi:10.1002/bbpc.19850890402

    34. [34]

      (34) Modine, F. A.; Lubben, D.; Bates, J. B. J. Appl. Phys. 1993, 74 (4), 2658. doi:10.1063/1.354657

    35. [35]

      (35) Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1986, 90 (1), 26. doi:10.1002/bbpc.19860900105

    36. [36]

      (36) Maier, J.; Lauer, U. Ber. Bunsen-Ges. Phys. Chem. 1990, 94 (9), 973. doi:10.1002/bbpc.19900940918

    37. [37]

      (37) Guo, X.; Vasco, E.; Mi, S.; Szot, K.; Wachsman, E.; Waser, R. Acta Mater. 2005, 53 (19), 5161. doi:10.1016/j.actamat.2005.07.033

    38. [38]

      (38) Guo, X.; Maier, J. Adv. Funct. Mater. 2009, 19 (1), 96. doi:10.1002/adfm.200800805

    39. [39]

      (39) Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi:10.1038/35050047

    40. [40]

      (40) Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Adv. Mater. 2006, 18 (17), 2226. doi:10.1002/adma.200502604

    41. [41]

      (41) Balaya, P.; Li, H.; Kienle, L.; Maier, J. Adv. Funct. Mater. 2003, 13 (8), 621. doi:10.1002/adfm.200304406

    42. [42]

      (42) Maier, J. Angew. Chem. Int. Ed. 2013, 52 (19), 4998. doi:10.1002/anie.201205569

    43. [43]

      (43) Maier, J. Nat. Mater. 2005, 4 (11), 805. doi:10.1038/nmat1513

    44. [44]

      (44) Li, C.; Gu, L.; Guo, X.; Samuelis, D.; Tang, K.; Maier, J. Nano Lett. 2012, 12 (3), 1241. doi:10.1021/nl203623h

    45. [45]

      (45) Li, C.; Maier, J. Solid State Ion. 2012, 225, 408. doi:10.1016/j.ssi.2012.02.036

    46. [46]

      (46) de Klerk, N. J. J.; Wagemaker, M. ACS Appl. Energy Mater. 2018, 10 (1), 5609. doi:10.1021/acsaem.8b01141

    47. [47]

      (47) Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z.; Zhang, X.; He, P.; Zhou, H.; Wagemaker, M. Joule 2020, 4 (6), 1311. doi:10.1016/j.joule.2020.04.002

    48. [48]

      (48) Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ion. 2012, 225, 594. doi:10.1016/j.ssi.2012.01.009

    49. [49]

      (49) Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Chem. Mater. 2014, 26 (14), 4248. doi:10.1021/cm5016959

    50. [50]

      (50) Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L. J. Power Sources 2020, 456, 227997. doi:10.1016/j.jpowsour.2020.227997

    51. [51]

    52. [52]

    53. [53]

      (53) Seino, Y.; Ota, T.; Takada, K. J. Power Sources 2011, 196 (15), 6488. doi:10.1016/j.jpowsour.2011.03.090

    54. [54]

      (54) Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Electrochem. Soc. 2009, 156 (1), A27. doi:10.1149/1.3005972

    55. [55]

      (55) Takada, K.; Ohta, N.; Zhang, L.; Fukuda, K.; Sakaguchi, I.; Ma, R.; Osada, M.; Sasaki, T. Solid State Ion. 2008, 179 (27-32), 1333. doi:10.1016/j.ssi.2008.02.017

    56. [56]

      (56) Machida, N.; Kashiwagi, J.; Naito, M.; Shigematsu, T. Solid State Ion. 2012, 225, 354. doi:10.1016/j.ssi.2011.11.026

    57. [57]

      (57) Woo, J. H.; Trevey, J. E.; Cavanagh, A. S.; Choi, Y. S.; Kim, S. C.; George, S. M.; Oh, K. H.; Lee, S.-H. J. Electrochem. Soc. 2012, 159 (7), A1120. doi:10.1149/2.085207jes

    58. [58]

      (58) Wang, C.-W.; Ren, F.-C.; Zhou, Y.; Yan, P.-F.; Zhou, X.-D.; Zhang, S.-J.; Liu, W.; Zhang, W.-D.; Zou, M.-H.; Zeng, L.-Y.; et al. Energy Environ. Sci. 2021, 14 (1), 437. doi:10.1039/D0EE03212C

    59. [59]

      (59) Xu, Z.-M.; Bo, S.-H.; Zhu, H. ACS Appl. Mater. Interfaces 2018, 10 (43), 36941. doi:10.1021/acsami.8b12026

    60. [60]

      (60) Nolan, A. M.; Liu, Y.; Mo, Y. ACS Energy Lett. 2019, 4 (10), 2444. doi:10.1021/acsenergylett.9b01703

    61. [61]

      (61) Zhang, H.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. Chem. Rev. 2022, 122 (6), 5641. doi:10.1021/acs.chemrev.1c00327

    62. [62]

      (62) Haruta, M.; Shiraki, S.; Suzuki, T.; Kumatani, A.; Ohsawa, T.; Takagi, Y.; Shimizu, R.; Hitosugi, T. Nano Lett. 2015, 15 (3), 1498. doi:10.1021/nl5035896

    63. [63]

      (63) Hart, F. X.; Bates, J. B. J. Appl. Phys. 1998, 83 (12), 7560. doi:10.1063/1.367521

    64. [64]

      (64) Lucovsky, G.; Liang, W. Y.; White, R. M.; Pisharody, K. R. Solid State Commun. 1976, 19 (4), 303. doi:10.1016/0038-1098(76)91337-5

    65. [65]

      (65) Trevey, J. E.; Stoldt, C. R.; Lee, S.-H. J. Electrochem. Soc. 2011, 158 (12), A1282. doi:10.1149/2.017112jes

    66. [66]

      (66) Cai, L.; Zhang, Q.; Mwizerwa, J. P.; Wan, H.; Yang, X.; Xu, X.; Yao, X. ACS Appl. Mater. Interfaces 2018, 10 (12), 10053. doi:10.1021/acsami.7b18798

    67. [67]

      (67) Chen, F.; Kong, L.; Song, W.; Jiang, C.; Tian, S.; Yu, F.; Qin, L.; Wang, C.; Zhao, X. J. Materiomics 2019, 5 (1), 73. doi:10.1016/j.jmat.2018.10.001

    68. [68]

      (68) Yada, C.; Ohmori, A.; Ide, K.; Yamasaki, H.; Kato, T.; Saito, T.; Sagane, F.; Iriyama, Y. Adv. Energy Mater. 2014, 4 (9), 1301416. doi:10.1002/aenm.201301416

    69. [69]

      (69) Kim, S.; Fleig, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5 (11), 2268. doi:10.1039/B300170A

    70. [70]

      (70) Gregori, G.; Merkle, R.; Maier, J. Prog. Mater. Sci. 2017, 89, 252. doi:10.1016/j.pmatsci.2017.04.009

    71. [71]

      (71) Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C. A. J.; Nonaka, K.; Sugita, Y.; Ogumi, Z. Angew. Chem. Int. Ed. 2010, 49 (26), 4414. doi:10.1002/anie.200907319

    72. [72]

      (72) Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D. Nanoscale 2017, 9 (2), 893. doi:10.1039/C6NR07971G

    73. [73]

      (73) Tsuchiya, B.; Ohnishi, J.; Sasaki, Y.; Yamamoto, T.; Yamamoto, Y.; Motoyama, M.; Iriyama, Y.; Morita, K. Adv. Mater. Interfaces 2019, 6 (14), 1900100. doi:10.1002/admi.201900100

    74. [74]

      (74) Katzenmeier, L.; Carstensen, L.; Schaper, S. J.; Müller-Buschbaum, P.; Bandarenka, A. S. Adv. Mater. 2021, 33 (24), 2100585. doi:10.1002/adma.202100585

    75. [75]

      (75) Katzenmeier, L.; Helmer, S.; Braxmeier, S.; Knobbe, E.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2021, 13 (4), 5853. doi:10.1021/acsami.0c21304

    76. [76]

      (76) Katzenmeier, L.; Carstensen, L.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2022, 14 (13), 15811. doi:10.1021/acsami.2c00650

    77. [77]

      (77) Swift, M. W.; Qi, Y. Phys. Rev. Lett. 2019, 122 (16), 167701. doi:10.1103/PhysRevLett.122.167701

    78. [78]

      (78) Liu, Y.; Bai, Y.; Jaegermann, W.; Hausbrand, R.; Xu, B.-X. ACS Appl. Mater. Interfaces 2021, 13 (4), 5895. doi:10.1021/acsami.0c22986

    79. [79]

      (79) Sinzig, S.; Hollweck, T.; Schmidt, C. P.; Wall, W. A. J. Electrochem. Soc. 2023, 170 (4), 040513. doi:10.1149/1945-7111/acc692

    80. [80]

      (80) Katzenmeier, L.; Gößwein, M.; Gagliardi, A.; Bandarenka, A. S. J. Phys. Chem. C 2022, 126 (26), 10900. doi:10.1021/acs.jpcc.2c02481

    81. [81]

      (81) Nomura, Y.; Yamamoto, K.; Hirayama, T.; Ouchi, S.; Igaki, E.; Saitoh, K. Angew. Chem. 2019, 131 (16), 5346. doi:10.1002/ange.201814669

    82. [82]

      (82) Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W. Adv. Energy Mater. 2020, 10 (4), 1903311. doi:10.1002/aenm.201903311

    83. [83]

      (83) Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14 (22), 25556. doi:10.1021/acsami.2c05239

    84. [84]

      (84) Fingerle, M.; Buchheit, R.; Sicolo, S.; Albe, K.; Hausbrand, R. Chem. Mater. 2017, 29 (18), 7675. doi:10.1021/acs.chemmater.7b00890

    85. [85]

      (85) Tian, H.-K.; Jalem, R.; Gao, B.; Yamamoto, Y.; Muto, S.; Sakakura, M.; Iriyama, Y.; Tateyama, Y. ACS Appl. Mater. Interfaces 2020, 12 (49), 54752. doi:10.1021/acsami.0c16463

    86. [86]

      (86) Wang, D.; Jiao, Y.; Shi, W.; Pu, B.; Ning, F.; Yi, J.; Ren, Y.; Yu, J.; Li, Y.; Wang, H.; et al. Prog. Mater. Sci. 2023, 133, 101055. doi:10.1016/j.pmatsci.2022.101055

    87. [87]

      (87) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22 (3), 587. doi:10.1021/cm901452z

    88. [88]

      (88) Cherkashinin, G.; Hausbrand, R.; Jaegermann, W. J. Electrochem. Soc. 2019, 166 (3), A5308. doi:10.1149/2.0441903jes

    89. [89]

      (89) Boettcher, S. W.; Oener, S. Z.; Lonergan, M. C.; Surendranath, Y.; Ardo, S.; Brozek, C.; Kempler, P. A. ACS Energy Lett. 2021, 6 (1), 261. doi:10.1021/acsenergylett.0c02443

    90. [90]

      (90) Yu, P.; Li, C.; Guo, X. J. Phys. Chem. C 2014, 118 (20), 10616. doi:10.1021/jp5010693

    91. [91]

      (91) Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Nat. Rev. Mater. 2021, 6 (11), 1020. doi:10.1038/s41578-021-00324-w

    92. [92]

      (92) Li, X.; Su, J.; Li, Z.; Zhao, Z.; Zhang, F.; Zhang, L.; Ye, W.; Li, Q.; Wang, K.; Wang, X.; et al. Sci. Bull. 2022, 67 (11), 1145. doi:10.1016/j.scib.2022.04.001

  • 加载中
    1. [1]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    4. [4]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    12. [12]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    17. [17]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    18. [18]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    19. [19]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    20. [20]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

Metrics
  • PDF Downloads(2)
  • Abstract views(94)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return