All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation
- Corresponding author: Siqi Shi, sqshi@shu.edu.cn
Citation: Da Wang, Xiaobin Yin, Jianfang Wu, Yaqiao Luo, Siqi Shi. All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230702. doi: 10.3866/PKU.WHXB202307029
(1) Zhang, S.; Ma, J.; Dong, S.; Cui, G. Electrochem. Energy Rev. 2023, 6 (1), 4. doi:10.1007/s41918-022-00143-9
(2) Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M.; He, X. Adv. Energy Mater. 2023, 13 (15), 2204343. doi:10.1002/aenm.202204343
(3) Janek, J.; Zeier, W. G. Nat. Energy 2023, 8 (3), 230. doi:10.1038/s41560-023-01208-9
(4) Bates, A. M.; Preger, Y.; Torres-Castro, L.; Harrison, K. L.; Harris, S. J.; Hewson, J. Joule 2022, 6 (4), 742. doi:10.1016/j.joule.2022.02.007
(5) Rettenwander, D.; Redhammer, G.; Preishuber-Pflügl, F.; Cheng, L.; Miara, L.; Wagner, R.; Welzl, A.; Suard, E.; Doeff, M. M.; Wilkening, M.; et al. Chem. Mater. 2016, 28 (7), 2384. doi:10.1021/acs.chemmater.6b00579
(6) Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K. R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al. Chem. Mater. 2020, 32 (6), 2664. doi:10.1021/acs.chemmater.9b04764
(7) Xu, G.; Luo, L.; Liang, J.; Zhao, S.; Yang, R.; Wang, C.; Yu, T.; Wang, L.; Xiao, W.; Wang, J.; et al. Nano Energy 2022, 92, 106674. doi:10.1016/j.nanoen.2021.106674
(8) Zou, Z.; Li, Y.; Lu, Z.; Wang, D.; Cui, Y.; Guo, B.; Li, Y.; Liang, X.; Feng, J.; Li, H.; et al. Chem. Rev. 2020, 120 (9), 4169. doi:10.1021/acs.chemrev.9b00760
(9) Jiang, Y.; Lai, A.; Ma, J.; Yu, K.; Zeng, H.; Zhang, G.; Huang, W.; Wang, C.; Chi, S.; Wang, J.; et al. ChemSusChem 2023, 16 (9), e202202156. doi:10.1002/cssc.202202156
(10) Gandi, S.; Chidambara Swamy Vaddadi, V. S.; Sripada Panda, S. S.; Goona, N. K.; Parne, S. R.; Lakavat, M.; Bhaumik, A. J. Power Sources 2022, 521, 230930. doi:10.1016/j.jpowsour.2021.230930
(11) Deng, Z.; Kumar, V.; Bölle, F. T.; Caro, F.; Franco, A. A.; Castelli, I. E.; Canepa, P.; Seh, Z. W. Energy Environ. Sci. 2022, 15 (2), 579. doi:10.1039/D1EE02324A
(12) Wang, L.; Xie, R.; Chen, B.; Yu, X.; Ma, J.; Li, C.; Hu, Z.; Sun, X.; Xu, C.; Dong, S.; et al. Nat. Commun. 2020, 11 (1), 5889. doi:10.1038/s41467-020-19726-5
(13) Yi, J.; He, P.; Liu, H.; Ni, H.; Bai, Z.; Fan, L.-Z. J. Energy Chem. 2021, 52, 202. doi:10.1016/j.jechem.2020.03.057
(14) Park, B. K.; Kim, H.; Kim, K. S.; Kim, H.; Han, S. H.; Yu, J.; Hah, H. J.; Moon, J.; Cho, W.; Kim, K. J. Adv. Energy Mater. 2022, 12 (37), 2201208. doi:10.1002/aenm.202201208
(15) Tian, H.-K.; Qi, Y. J. Electrochem. Soc. 2017, 164 (11), E3512. doi:10.1149/2.0481711jes
(16) Lewis, J. A.; Tippens, J.; Cortes, F. J. Q.; McDowell, M. T. Trends Chem. 2019, 1 (9), 845. doi:10.1016/j.trechm.2019.06.013
(17) Kim, J.; Kim, M. J.; Kim, J.; Lee, J. W.; Park, J.; Wang, S. E.; Lee, S.; Kang, Y. C.; Paik, U.; Jung, D. S.; et al. Adv. Funct. Mater. 2023, 33 (12), 2211355. doi:10.1002/adfm.202211355
(18) Jung, S.-K.; Gwon, H.; Lee, S.-S.; Kim, H.; Lee, J. C.; Chung, J. G.; Park, S. Y.; Aihara, Y.; Im, D. J. Mater. Chem. A 2019, 7 (40), 22967. doi:10.1039/C9TA08517C
(19) Gao, B.; Jalem, R.; Tateyama, Y. ACS Appl. Mater. Interfaces 2021, 13 (10), 11765. doi:10.1021/acsami.0c19091
(20) Ren, F.; Liang, Z.; Zhao, W.; Zuo, W.; Lin, M.; Wu, Y.; Yang, X.; Gong, Z.; Yang, Y. Energy Environ. Sci. 2023, 16 (6), 2579. doi:10.1039/D3EE00870C
(21) Swift, M. W.; Jagad, H.; Park, J.; Qie, Y.; Wu, Y.; Qi, Y. Curr. Opin. Solid State Mater. Sci. 2022, 26 (3), 100990. doi:10.1016/j.cossms.2022.100990
(22) Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1984, 88 (11), 1057. doi:10.1002/bbpc.198400007
(23) Maier, J. Prog. Solid State Chem. 1995, 23 (3), 171. doi:10.1016/0079-6786(95)00004-E
(24) Wu, J.-F.; Guo, X. Phys. Chem. Chem. Phys. 2017, 19 (8), 5880. doi:10.1039/C6CP07757A
(25) Frenkel, J. Kinetic Theory of Liquids; Oxford University Press:Oxford, UK, 1946.
(26) Lehovec, K. J. Chem. Phys. 1953, 21 (7), 1123. doi:10.1063/1.1699148
(27) Kliewer, K. L.; Koehler, J. S. Phys. Rev. 1965, 140 (4A), A1226. doi:10.1103/PhysRev.140.A1226
(28) Liang, C. C. J. Electrochem. Soc. 1973, 120 (10), 1289. doi:10.1149/1.2403248
(29) Dudney, N. J. J. Am. Ceram. Soc. 1985, 68 (10), 538. doi:10.1111/j.1151-2916.1985.tb11520.x
(30) Maier, J. J. Phys. Chem. Solids 1985, 46 (3), 309. doi:10.1016/0022-3697(85)90172-6
(31) Jow, T.; Wagner, J. B. J. Electrochem. Soc. 1979, 126 (11), 1963. doi:10.1149/1.2128835
(32) Nakamura, O.; Goodenough, J. B. Solid State Ion. 1982, 7 (2), 119. doi:10.1016/0167-2738(82)90004-2
(33) Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1985, 89 (4), 355. doi:10.1002/bbpc.19850890402
(34) Modine, F. A.; Lubben, D.; Bates, J. B. J. Appl. Phys. 1993, 74 (4), 2658. doi:10.1063/1.354657
(35) Maier, J. Ber. Bunsen-Ges. Phys. Chem. 1986, 90 (1), 26. doi:10.1002/bbpc.19860900105
(36) Maier, J.; Lauer, U. Ber. Bunsen-Ges. Phys. Chem. 1990, 94 (9), 973. doi:10.1002/bbpc.19900940918
(37) Guo, X.; Vasco, E.; Mi, S.; Szot, K.; Wachsman, E.; Waser, R. Acta Mater. 2005, 53 (19), 5161. doi:10.1016/j.actamat.2005.07.033
(38) Guo, X.; Maier, J. Adv. Funct. Mater. 2009, 19 (1), 96. doi:10.1002/adfm.200800805
(39) Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Nature 2000, 408 (6815), 946. doi:10.1038/35050047
(40) Ohta, N.; Takada, K.; Zhang, L.; Ma, R.; Osada, M.; Sasaki, T. Adv. Mater. 2006, 18 (17), 2226. doi:10.1002/adma.200502604
(41) Balaya, P.; Li, H.; Kienle, L.; Maier, J. Adv. Funct. Mater. 2003, 13 (8), 621. doi:10.1002/adfm.200304406
(42) Maier, J. Angew. Chem. Int. Ed. 2013, 52 (19), 4998. doi:10.1002/anie.201205569
(43) Maier, J. Nat. Mater. 2005, 4 (11), 805. doi:10.1038/nmat1513
(44) Li, C.; Gu, L.; Guo, X.; Samuelis, D.; Tang, K.; Maier, J. Nano Lett. 2012, 12 (3), 1241. doi:10.1021/nl203623h
(45) Li, C.; Maier, J. Solid State Ion. 2012, 225, 408. doi:10.1016/j.ssi.2012.02.036
(46) de Klerk, N. J. J.; Wagemaker, M. ACS Appl. Energy Mater. 2018, 10 (1), 5609. doi:10.1021/acsaem.8b01141
(47) Cheng, Z.; Liu, M.; Ganapathy, S.; Li, C.; Li, Z.; Zhang, X.; He, P.; Zhou, H.; Wagemaker, M. Joule 2020, 4 (6), 1311. doi:10.1016/j.joule.2020.04.002
(48) Takada, K.; Ohta, N.; Zhang, L.; Xu, X.; Hang, B. T.; Ohnishi, T.; Osada, M.; Sasaki, T. Solid State Ion. 2012, 225, 594. doi:10.1016/j.ssi.2012.01.009
(49) Haruyama, J.; Sodeyama, K.; Han, L.; Takada, K.; Tateyama, Y. Chem. Mater. 2014, 26 (14), 4248. doi:10.1021/cm5016959
(50) Li, X.; Sun, Q.; Wang, Z.; Song, D.; Zhang, H.; Shi, X.; Li, C.; Zhang, L.; Zhu, L. J. Power Sources 2020, 456, 227997. doi:10.1016/j.jpowsour.2020.227997
(53) Seino, Y.; Ota, T.; Takada, K. J. Power Sources 2011, 196 (15), 6488. doi:10.1016/j.jpowsour.2011.03.090
(54) Sakuda, A.; Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Electrochem. Soc. 2009, 156 (1), A27. doi:10.1149/1.3005972
(55) Takada, K.; Ohta, N.; Zhang, L.; Fukuda, K.; Sakaguchi, I.; Ma, R.; Osada, M.; Sasaki, T. Solid State Ion. 2008, 179 (27-32), 1333. doi:10.1016/j.ssi.2008.02.017
(56) Machida, N.; Kashiwagi, J.; Naito, M.; Shigematsu, T. Solid State Ion. 2012, 225, 354. doi:10.1016/j.ssi.2011.11.026
(57) Woo, J. H.; Trevey, J. E.; Cavanagh, A. S.; Choi, Y. S.; Kim, S. C.; George, S. M.; Oh, K. H.; Lee, S.-H. J. Electrochem. Soc. 2012, 159 (7), A1120. doi:10.1149/2.085207jes
(58) Wang, C.-W.; Ren, F.-C.; Zhou, Y.; Yan, P.-F.; Zhou, X.-D.; Zhang, S.-J.; Liu, W.; Zhang, W.-D.; Zou, M.-H.; Zeng, L.-Y.; et al. Energy Environ. Sci. 2021, 14 (1), 437. doi:10.1039/D0EE03212C
(59) Xu, Z.-M.; Bo, S.-H.; Zhu, H. ACS Appl. Mater. Interfaces 2018, 10 (43), 36941. doi:10.1021/acsami.8b12026
(60) Nolan, A. M.; Liu, Y.; Mo, Y. ACS Energy Lett. 2019, 4 (10), 2444. doi:10.1021/acsenergylett.9b01703
(61) Zhang, H.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. Chem. Rev. 2022, 122 (6), 5641. doi:10.1021/acs.chemrev.1c00327
(62) Haruta, M.; Shiraki, S.; Suzuki, T.; Kumatani, A.; Ohsawa, T.; Takagi, Y.; Shimizu, R.; Hitosugi, T. Nano Lett. 2015, 15 (3), 1498. doi:10.1021/nl5035896
(63) Hart, F. X.; Bates, J. B. J. Appl. Phys. 1998, 83 (12), 7560. doi:10.1063/1.367521
(64) Lucovsky, G.; Liang, W. Y.; White, R. M.; Pisharody, K. R. Solid State Commun. 1976, 19 (4), 303. doi:10.1016/0038-1098(76)91337-5
(65) Trevey, J. E.; Stoldt, C. R.; Lee, S.-H. J. Electrochem. Soc. 2011, 158 (12), A1282. doi:10.1149/2.017112jes
(66) Cai, L.; Zhang, Q.; Mwizerwa, J. P.; Wan, H.; Yang, X.; Xu, X.; Yao, X. ACS Appl. Mater. Interfaces 2018, 10 (12), 10053. doi:10.1021/acsami.7b18798
(67) Chen, F.; Kong, L.; Song, W.; Jiang, C.; Tian, S.; Yu, F.; Qin, L.; Wang, C.; Zhao, X. J. Materiomics 2019, 5 (1), 73. doi:10.1016/j.jmat.2018.10.001
(68) Yada, C.; Ohmori, A.; Ide, K.; Yamasaki, H.; Kato, T.; Saito, T.; Sagane, F.; Iriyama, Y. Adv. Energy Mater. 2014, 4 (9), 1301416. doi:10.1002/aenm.201301416
(69) Kim, S.; Fleig, J.; Maier, J. Phys. Chem. Chem. Phys. 2003, 5 (11), 2268. doi:10.1039/B300170A
(70) Gregori, G.; Merkle, R.; Maier, J. Prog. Mater. Sci. 2017, 89, 252. doi:10.1016/j.pmatsci.2017.04.009
(71) Yamamoto, K.; Iriyama, Y.; Asaka, T.; Hirayama, T.; Fujita, H.; Fisher, C. A. J.; Nonaka, K.; Sugita, Y.; Ogumi, Z. Angew. Chem. Int. Ed. 2010, 49 (26), 4414. doi:10.1002/anie.200907319
(72) Masuda, H.; Ishida, N.; Ogata, Y.; Ito, D.; Fujita, D. Nanoscale 2017, 9 (2), 893. doi:10.1039/C6NR07971G
(73) Tsuchiya, B.; Ohnishi, J.; Sasaki, Y.; Yamamoto, T.; Yamamoto, Y.; Motoyama, M.; Iriyama, Y.; Morita, K. Adv. Mater. Interfaces 2019, 6 (14), 1900100. doi:10.1002/admi.201900100
(74) Katzenmeier, L.; Carstensen, L.; Schaper, S. J.; Müller-Buschbaum, P.; Bandarenka, A. S. Adv. Mater. 2021, 33 (24), 2100585. doi:10.1002/adma.202100585
(75) Katzenmeier, L.; Helmer, S.; Braxmeier, S.; Knobbe, E.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2021, 13 (4), 5853. doi:10.1021/acsami.0c21304
(76) Katzenmeier, L.; Carstensen, L.; Bandarenka, A. S. ACS Appl. Mater. Interfaces 2022, 14 (13), 15811. doi:10.1021/acsami.2c00650
(77) Swift, M. W.; Qi, Y. Phys. Rev. Lett. 2019, 122 (16), 167701. doi:10.1103/PhysRevLett.122.167701
(78) Liu, Y.; Bai, Y.; Jaegermann, W.; Hausbrand, R.; Xu, B.-X. ACS Appl. Mater. Interfaces 2021, 13 (4), 5895. doi:10.1021/acsami.0c22986
(79) Sinzig, S.; Hollweck, T.; Schmidt, C. P.; Wall, W. A. J. Electrochem. Soc. 2023, 170 (4), 040513. doi:10.1149/1945-7111/acc692
(80) Katzenmeier, L.; Gößwein, M.; Gagliardi, A.; Bandarenka, A. S. J. Phys. Chem. C 2022, 126 (26), 10900. doi:10.1021/acs.jpcc.2c02481
(81) Nomura, Y.; Yamamoto, K.; Hirayama, T.; Ouchi, S.; Igaki, E.; Saitoh, K. Angew. Chem. 2019, 131 (16), 5346. doi:10.1002/ange.201814669
(82) Zhang, J.; Zheng, C.; Li, L.; Xia, Y.; Huang, H.; Gan, Y.; Liang, C.; He, X.; Tao, X.; Zhang, W. Adv. Energy Mater. 2020, 10 (4), 1903311. doi:10.1002/aenm.201903311
(83) Lu, G.; Geng, F.; Gu, S.; Li, C.; Shen, M.; Hu, B. ACS Appl. Mater. Interfaces 2022, 14 (22), 25556. doi:10.1021/acsami.2c05239
(84) Fingerle, M.; Buchheit, R.; Sicolo, S.; Albe, K.; Hausbrand, R. Chem. Mater. 2017, 29 (18), 7675. doi:10.1021/acs.chemmater.7b00890
(85) Tian, H.-K.; Jalem, R.; Gao, B.; Yamamoto, Y.; Muto, S.; Sakakura, M.; Iriyama, Y.; Tateyama, Y. ACS Appl. Mater. Interfaces 2020, 12 (49), 54752. doi:10.1021/acsami.0c16463
(86) Wang, D.; Jiao, Y.; Shi, W.; Pu, B.; Ning, F.; Yi, J.; Ren, Y.; Yu, J.; Li, Y.; Wang, H.; et al. Prog. Mater. Sci. 2023, 133, 101055. doi:10.1016/j.pmatsci.2022.101055
(87) Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22 (3), 587. doi:10.1021/cm901452z
(88) Cherkashinin, G.; Hausbrand, R.; Jaegermann, W. J. Electrochem. Soc. 2019, 166 (3), A5308. doi:10.1149/2.0441903jes
(89) Boettcher, S. W.; Oener, S. Z.; Lonergan, M. C.; Surendranath, Y.; Ardo, S.; Brozek, C.; Kempler, P. A. ACS Energy Lett. 2021, 6 (1), 261. doi:10.1021/acsenergylett.0c02443
(90) Yu, P.; Li, C.; Guo, X. J. Phys. Chem. C 2014, 118 (20), 10616. doi:10.1021/jp5010693
(91) Usiskin, R.; Lu, Y.; Popovic, J.; Law, M.; Balaya, P.; Hu, Y.-S.; Maier, J. Nat. Rev. Mater. 2021, 6 (11), 1020. doi:10.1038/s41578-021-00324-w
(92) Li, X.; Su, J.; Li, Z.; Zhao, Z.; Zhang, F.; Zhang, L.; Ye, W.; Li, Q.; Wang, K.; Wang, X.; et al. Sci. Bull. 2022, 67 (11), 1145. doi:10.1016/j.scib.2022.04.001
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Xuan Zhou , Yi Fan , Zhuoqi Jiang , Zhipeng Li , Guowen Yuan , Laiying Zhang , Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
Yanhui Sun , Junmin Nan , Guozheng Ma , Xiaoxi Zuo , Guoliang Li , Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100