Citation: Minghui Wu,  Markus Mühlinghaus,  Xuechao Li,  Chaojie Xu,  Qiang Chen,  Haiming Zhang,  Klaus Müllen,  Lifeng Chi. 含Benzo[a]azulene单元的锯齿状梯形共轭聚合物的表面在位合成[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230702. doi: 10.3866/PKU.WHXB202307024 shu

含Benzo[a]azulene单元的锯齿状梯形共轭聚合物的表面在位合成

  • Corresponding author: Klaus Müllen,  Lifeng Chi, 
  • Received Date: 12 July 2023
    Revised Date: 8 September 2023
    Accepted Date: 18 September 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (51821002, 22072103, 22161132026), the Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the 111 Project, and the Jiangsu Funding Program for Excellent Postdoctoral Talent.

  • 梯形共轭聚合物(CLPs)因其独特的光电性质而受到广泛关注。绝大多数CLPs是通过溶液方法合成的,但近年来,在超高真空环境中进行的表面原位合成策略逐渐崭露头角,成为CPL合成的新方法。表面原位合成方法能够克服传统溶液合成的限制,如随着聚合度增加而受限的溶解度和结构稳定性,从而实现复杂共轭结构的精确合成。Azulene衍生物是在表面合成非苯型CLPs的有吸引力的前体。与传统的只含六元环的CLPs相比,使用烷基取代的azulene作为前体分子,有望获得具有复杂骨架结构的CLPs,从而调控其电子性质,但目前很少有人探索这种策略。本文报道了3,3'-二溴-2,2’-二甲基-1,1’-联薁(DBMA)在Au(111)表面上的热化学反应。在室温的Au(111)衬底上,我们发现沉积的分子在重构表面的fcc (面心立方堆积)区域形成无定型的聚集体,并在100 ℃以下保持形貌不变。当退火温度高于150 ℃后,DBMA发生脱溴反应并与金原子络合形成具有复杂空间立体结构的2,2’-二甲基-1,1’-联薁有机金属聚合物,并展现出迥异的图像特征。随后在更高温度下退火,有机金属聚合物脱去金属原子并经历碳碳偶联反应。该过程伴随着甲基与相邻薁单元之间的分子内环化反应,形成了含有benzo[a]azulene单元的梯形共轭聚合物。有趣的是,我们发现当一侧甲基参与反应并在聚合物中形成六元环时,会显著地弯折聚合物链,使得另一侧甲基与薁单元之间的距离增加,并抑制预期的环化过程。我们通过键分辨扫描探针显微镜对反应过程中的相关结构进行了研究,发现反应结果与反应中间结构的应力关联紧密。我们的结果表明,烷基取代的azulene前体可应用于非苯型碳纳米结构的表面合成,并有望实现扩展的非苯型二维碳纳米结构。
  • 加载中
    1. [1]

      (1) Grimsdale, A. C.; Müllen, K. Macromol. Rapid Commun. 2007, 28, 1676. doi: 10.1002/marc.200700247

    2. [2]

      (2) Lee, J.; Kalin, A. J.; Yuan, T. Y.; Al-Hashimi, M.; Fang, L. Chem. Sci. 2017, 8, 2503. doi: 10.1039/c7sc00154a

    3. [3]

      (3) Scherf, U. J. Mater. Chem. 1999, 9, 1853. doi: 10.1039/a900447e

    4. [4]

      (4) Yu, L. P.; Chen, M.; Dalton, L. R. Chem. Mater. 1990, 2, 649. doi: 10.1021/cm00012a013

    5. [5]

      (5) Leng, M.; Fang, L. Processing of Conjugated Ladder Polymers. In Ladder Polymers; Xia, Y.; Yamaguchi M.; Luh, T.-Y.; Eds. Wiley-VCH: online edition; 2023; pp. 97–120. doi: 10.1002/9783527833306.ch4

    6. [6]

      (6) Lee, J. B. Asian J. Org. Chem. 2023, 12, e202300104. doi: 10.1002/ajoc.202300104

    7. [7]

      (7) Li, X.; Niu, K.; Zhang, J.; Yu, X.; Zhang, H.; Wang, Y.; Guo, Q.; Wang, P.; Li, F.; Hao, Z.; et al. Natl. Sci. Rev. 2021, 8, nwab093. doi: 10.1093/nsr/nwab093

    8. [8]

      (8) Pawlak, R.; Meyer, E.; Anindya, K. N.; Shimizu, T.; Liu, J. C.; Sakamaki, T.; Shang, R.; Rochefort, A.; Nakamura, E. J. Phys. Chem. C 2022, 126, 19726. doi: 10.1021/acs.jpcc.2c05866

    9. [9]

      (9) Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. Small 2019, 15, 1804526 doi: 10.1002/smll.201804526

    10. [10]

      (10) Sun, K. W.; Li, X. C.; Chen, L.; Zhang, H. M.; Chi, L. F. J. Phys. Chem. C 2020, 124, 11422. doi: 10.1021/acs.jpcc.0c01272

    11. [11]

      (11) Tang, Y. N.; Ejlli, B.; Niu, K. F.; Li, X. C.; Hao, Z. M.; Xu, C. J.; Zhang, H. M.; Rominger, F.; Freudenberg, J.; Bunz, U. H. F.; Müllen, K.; Chi, L. F. Angew. Chem. Int. Ed. 2022, 61, e202204123. doi: 10.1002/anie.202204123

    12. [12]

      (12) Yu, X.; Cai, L. L.; Bao, M. L.; Sun, Q.; Ma, H. H.; Yuan, C. X.; Xu, W. Chem. Commun. 2020, 56, 1685. doi: 10.1039/c9cc07421j

    13. [13]

      (13) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel, R.; et al. Nature 2010, 466, 470. doi: 10.1038/nature09211

    14. [14]

      (14) Fan, Q.; Yan, L.; Tripp, M. W.; Krejčí, O.; Dimosthenous, S.; Kachel, S. R.; Chen, M.; Foster, A. S.; Koert, U.; Liljeroth, P.; Gottfried, J. M. Science 2021, 372, 852. doi: 10.1126/science.abg4509

    15. [15]

      (15) de la Torre, B.; Matěj, A.; Sánchez-Grande, A.; Cirera, B.; Mallada, B.; Rodríguez-Sánchez, E.; Santos, J.; Mendieta-Moreno, J. I.; Edalatmanesh, S.; Lauwaet, K.; et al. Nat. Commun. 2020, 11, 4567. doi: 10.1038/s41467-020-18371-2

    16. [16]

      (16) Li, D.; Qiu, X.; Li, S.; Ren, Y.; Zhu, Y.; Shu, C.; Hou, X.; Liu, M.; Shi, X.; Qiu, X.; Liu, P. J. Am. Chem. Soc. 2021, 143, 12955. doi: 10.1021/jacs.1c05586

    17. [17]

      (17) Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Müllen, K.; Fasel, R. J. Am. Chem. Soc. 2018, 140, 3532. doi: 10.1021/jacs.8b00587

    18. [18]

      (18) Jiménez-Martín, A.; Villalobos, F.; Mallada, B.; Edalatmanesh, S.; Matěj, A.; Cuerva, J. M.; Jelínek, P.; Campaña, A. G.; La Torre, B. D. Chem. Sci. 2023, 14, 1403. doi: 10.1039/d2sc04722e

    19. [19]

      (19) Liu, M.; Liu, M.; She, L.; Zha, Z.; Pan, J.; Li, S.; Li, T.; He, Y.; Cai, Z.; Wang, J.; Zheng, Y.; Qiu, X.; Zhong, D. Nat. Commun. 2017, 8, 14924. doi: 10.1038/ncomms14924

    20. [20]

      (20) Bravo, S.; Correa, J.; Chico, L.; Pacheco, M. Sci. Rep. 2018, 8, 11070. doi: 10.1038/s41598-018-29288-8

    21. [21]

      (21) Cervenka, J.; Flipse, C. F. J. Phys. Rev. B 2009, 79, 195429. doi: 10.1103/PhysRevB.79.195429

    22. [22]

      (22) Deyerling, J.; Portner, M.; Dordevic, L.; Riss, A.; Bonifazi, D.; Auwarter, W. J. Phys. Chem. C 2022, 126, 8467. doi: 10.1021/acs.jpcc.2c00912

    23. [23]

      (23) Mallada, B.; de la Torre, B.; Mendieta-Moreno, J. I.; Nachtigallová, D.; Matěj, A.; Matoušek, M.; Mutombo, P.; Brabec, J.; Veis, L.; Cadart, T.; et al. J. Am. Chem. Soc. 2021, 143, 14694. doi: 10.1021/jacs.1c06168

    24. [24]

      (24) Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Groning, O.; Urgel, J. I.; Müllen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. J. Am. Chem. Soc. 2020, 142, 1147. doi: 10.1021/jacs.9b09212

    25. [25]

      (25) Mishra, S.; Fatayer, S.; Fernandez, S.; Kaiser, K.; Pena, D.; Gross, L. ACS Nano 2022, 16, 3264. doi: 10.1021/acsnano.1c11157

    26. [26]

      (26) Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Phys. Rev. B 2006, 73, 125411. doi: 10.1103/PhysRevB.73.125411

    27. [27]

      (27) Xin, H. S.; Gao, X. K. ChemPlusChem. 2017, 82, 945. doi: 10.1002/cplu.201700039

    28. [28]

      (28) Xin, H. S.; Hou, B.; Gao, X. K. Acc. Chem. Res. 2021, 54, 1737. doi: 10.1021/acs.accounts.0c00893

    29. [29]

      (29) Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713. doi: 10.1021/jacs.9b08060

    30. [30]

      (30) Hou, I. C. Y.; Sun, Q.; Eimre, K.; Di Giovannantonio, M.; Urgel, J. I.; Ruffieux, P.; Narita, A.; Fasel, R.; Mullen, K. J. Am. Chem. Soc. 2020, 142, 10291. doi: 10.1021/jacs.0c03635

    31. [31]

      (31) Zeng, H. N.; Png, Z. M.; Xu, J. Chem. Asian J. 2020, 15, 1904. doi: 10.1002/asia.202000444

    32. [32]

      (32) Alder, R. W.; Whiteside, R. W.; Whittaker, G.; Wilshire, C. J. Am. Chem. Soc. 1979, 101, 629. doi: 10.1021/ja00497a024

    33. [33]

      (33) Alder, R. W.; Wilshire, C. J. Chem. Soc., Perkin Trans. 1975, 13, 1464. doi: 10.1039/p29750001464

    34. [34]

      (34) Bartels, L.; Meyer, G.; Rieder, K. H. Phys. Rev. Lett. 1998, 80, 2004. doi: 10.1103/PhysRevLett.80.2004

    35. [35]

      (35) Mohn, F.; Repp, J.; Gross, L.; Meyer, G.; Dyer, M. S.; Persson, M. Phys. Rev. Lett. 2010, 105, 266102. doi: 10.1103/PhysRevLett.105.266102

  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    19. [19]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(0)
  • Abstract views(76)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return