Citation: Minghui Wu, Markus Mühlinghaus, Xuechao Li, Chaojie Xu, Qiang Chen, Haiming Zhang, Klaus Müllen, Lifeng Chi. 含Benzo[a]azulene单元的锯齿状梯形共轭聚合物的表面在位合成[J]. Acta Physico-Chimica Sinica, ;2024, 40(8): 230702. doi: 10.3866/PKU.WHXB202307024
-
梯形共轭聚合物(CLPs)因其独特的光电性质而受到广泛关注。绝大多数CLPs是通过溶液方法合成的,但近年来,在超高真空环境中进行的表面原位合成策略逐渐崭露头角,成为CPL合成的新方法。表面原位合成方法能够克服传统溶液合成的限制,如随着聚合度增加而受限的溶解度和结构稳定性,从而实现复杂共轭结构的精确合成。Azulene衍生物是在表面合成非苯型CLPs的有吸引力的前体。与传统的只含六元环的CLPs相比,使用烷基取代的azulene作为前体分子,有望获得具有复杂骨架结构的CLPs,从而调控其电子性质,但目前很少有人探索这种策略。本文报道了3,3'-二溴-2,2’-二甲基-1,1’-联薁(DBMA)在Au(111)表面上的热化学反应。在室温的Au(111)衬底上,我们发现沉积的分子在重构表面的fcc (面心立方堆积)区域形成无定型的聚集体,并在100 ℃以下保持形貌不变。当退火温度高于150 ℃后,DBMA发生脱溴反应并与金原子络合形成具有复杂空间立体结构的2,2’-二甲基-1,1’-联薁有机金属聚合物,并展现出迥异的图像特征。随后在更高温度下退火,有机金属聚合物脱去金属原子并经历碳碳偶联反应。该过程伴随着甲基与相邻薁单元之间的分子内环化反应,形成了含有benzo[a]azulene单元的梯形共轭聚合物。有趣的是,我们发现当一侧甲基参与反应并在聚合物中形成六元环时,会显著地弯折聚合物链,使得另一侧甲基与薁单元之间的距离增加,并抑制预期的环化过程。我们通过键分辨扫描探针显微镜对反应过程中的相关结构进行了研究,发现反应结果与反应中间结构的应力关联紧密。我们的结果表明,烷基取代的azulene前体可应用于非苯型碳纳米结构的表面合成,并有望实现扩展的非苯型二维碳纳米结构。
-
-
[1]
(1) Grimsdale, A. C.; Müllen, K. Macromol. Rapid Commun. 2007, 28, 1676. doi: 10.1002/marc.200700247
-
[2]
(2) Lee, J.; Kalin, A. J.; Yuan, T. Y.; Al-Hashimi, M.; Fang, L. Chem. Sci. 2017, 8, 2503. doi: 10.1039/c7sc00154a
-
[3]
(3) Scherf, U. J. Mater. Chem. 1999, 9, 1853. doi: 10.1039/a900447e
-
[4]
(4) Yu, L. P.; Chen, M.; Dalton, L. R. Chem. Mater. 1990, 2, 649. doi: 10.1021/cm00012a013
-
[5]
(5) Leng, M.; Fang, L. Processing of Conjugated Ladder Polymers. In Ladder Polymers; Xia, Y.; Yamaguchi M.; Luh, T.-Y.; Eds. Wiley-VCH: online edition; 2023; pp. 97–120. doi: 10.1002/9783527833306.ch4
-
[6]
(6) Lee, J. B. Asian J. Org. Chem. 2023, 12, e202300104. doi: 10.1002/ajoc.202300104
-
[7]
(7) Li, X.; Niu, K.; Zhang, J.; Yu, X.; Zhang, H.; Wang, Y.; Guo, Q.; Wang, P.; Li, F.; Hao, Z.; et al. Natl. Sci. Rev. 2021, 8, nwab093. doi: 10.1093/nsr/nwab093
-
[8]
(8) Pawlak, R.; Meyer, E.; Anindya, K. N.; Shimizu, T.; Liu, J. C.; Sakamaki, T.; Shang, R.; Rochefort, A.; Nakamura, E. J. Phys. Chem. C 2022, 126, 19726. doi: 10.1021/acs.jpcc.2c05866
-
[9]
(9) Sun, K. W.; Ji, P. H.; Zhang, J. J.; Wang, J. X.; Li, X. C.; Xu, X.; Zhang, H. M.; Chi, L. F. Small 2019, 15, 1804526 doi: 10.1002/smll.201804526
-
[10]
(10) Sun, K. W.; Li, X. C.; Chen, L.; Zhang, H. M.; Chi, L. F. J. Phys. Chem. C 2020, 124, 11422. doi: 10.1021/acs.jpcc.0c01272
-
[11]
(11) Tang, Y. N.; Ejlli, B.; Niu, K. F.; Li, X. C.; Hao, Z. M.; Xu, C. J.; Zhang, H. M.; Rominger, F.; Freudenberg, J.; Bunz, U. H. F.; Müllen, K.; Chi, L. F. Angew. Chem. Int. Ed. 2022, 61, e202204123. doi: 10.1002/anie.202204123
-
[12]
(12) Yu, X.; Cai, L. L.; Bao, M. L.; Sun, Q.; Ma, H. H.; Yuan, C. X.; Xu, W. Chem. Commun. 2020, 56, 1685. doi: 10.1039/c9cc07421j
-
[13]
(13) Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Müllen, K.; Fasel, R.; et al. Nature 2010, 466, 470. doi: 10.1038/nature09211
-
[14]
(14) Fan, Q.; Yan, L.; Tripp, M. W.; Krejčí, O.; Dimosthenous, S.; Kachel, S. R.; Chen, M.; Foster, A. S.; Koert, U.; Liljeroth, P.; Gottfried, J. M. Science 2021, 372, 852. doi: 10.1126/science.abg4509
-
[15]
(15) de la Torre, B.; Matěj, A.; Sánchez-Grande, A.; Cirera, B.; Mallada, B.; Rodríguez-Sánchez, E.; Santos, J.; Mendieta-Moreno, J. I.; Edalatmanesh, S.; Lauwaet, K.; et al. Nat. Commun. 2020, 11, 4567. doi: 10.1038/s41467-020-18371-2
-
[16]
(16) Li, D.; Qiu, X.; Li, S.; Ren, Y.; Zhu, Y.; Shu, C.; Hou, X.; Liu, M.; Shi, X.; Qiu, X.; Liu, P. J. Am. Chem. Soc. 2021, 143, 12955. doi: 10.1021/jacs.1c05586
-
[17]
(17) Di Giovannantonio, M.; Urgel, J. I.; Beser, U.; Yakutovich, A. V.; Wilhelm, J.; Pignedoli, C. A.; Ruffieux, P.; Narita, A.; Müllen, K.; Fasel, R. J. Am. Chem. Soc. 2018, 140, 3532. doi: 10.1021/jacs.8b00587
-
[18]
(18) Jiménez-Martín, A.; Villalobos, F.; Mallada, B.; Edalatmanesh, S.; Matěj, A.; Cuerva, J. M.; Jelínek, P.; Campaña, A. G.; La Torre, B. D. Chem. Sci. 2023, 14, 1403. doi: 10.1039/d2sc04722e
-
[19]
(19) Liu, M.; Liu, M.; She, L.; Zha, Z.; Pan, J.; Li, S.; Li, T.; He, Y.; Cai, Z.; Wang, J.; Zheng, Y.; Qiu, X.; Zhong, D. Nat. Commun. 2017, 8, 14924. doi: 10.1038/ncomms14924
-
[20]
(20) Bravo, S.; Correa, J.; Chico, L.; Pacheco, M. Sci. Rep. 2018, 8, 11070. doi: 10.1038/s41598-018-29288-8
-
[21]
(21) Cervenka, J.; Flipse, C. F. J. Phys. Rev. B 2009, 79, 195429. doi: 10.1103/PhysRevB.79.195429
-
[22]
(22) Deyerling, J.; Portner, M.; Dordevic, L.; Riss, A.; Bonifazi, D.; Auwarter, W. J. Phys. Chem. C 2022, 126, 8467. doi: 10.1021/acs.jpcc.2c00912
-
[23]
(23) Mallada, B.; de la Torre, B.; Mendieta-Moreno, J. I.; Nachtigallová, D.; Matěj, A.; Matoušek, M.; Mutombo, P.; Brabec, J.; Veis, L.; Cadart, T.; et al. J. Am. Chem. Soc. 2021, 143, 14694. doi: 10.1021/jacs.1c06168
-
[24]
(24) Mishra, S.; Beyer, D.; Berger, R.; Liu, J. Z.; Groning, O.; Urgel, J. I.; Müllen, K.; Ruffieux, P.; Feng, X. L.; Fasel, R. J. Am. Chem. Soc. 2020, 142, 1147. doi: 10.1021/jacs.9b09212
-
[25]
(25) Mishra, S.; Fatayer, S.; Fernandez, S.; Kaiser, K.; Pena, D.; Gross, L. ACS Nano 2022, 16, 3264. doi: 10.1021/acsnano.1c11157
-
[26]
(26) Peres, N. M. R.; Guinea, F.; Castro Neto, A. H. Phys. Rev. B 2006, 73, 125411. doi: 10.1103/PhysRevB.73.125411
-
[27]
(27) Xin, H. S.; Gao, X. K. ChemPlusChem. 2017, 82, 945. doi: 10.1002/cplu.201700039
-
[28]
(28) Xin, H. S.; Hou, B.; Gao, X. K. Acc. Chem. Res. 2021, 54, 1737. doi: 10.1021/acs.accounts.0c00893
-
[29]
(29) Fan, Q.; Martin-Jimenez, D.; Ebeling, D.; Krug, C. K.; Brechmann, L.; Kohlmeyer, C.; Hilt, G.; Hieringer, W.; Schirmeisen, A.; Gottfried, J. M. J. Am. Chem. Soc. 2019, 141, 17713. doi: 10.1021/jacs.9b08060
-
[30]
(30) Hou, I. C. Y.; Sun, Q.; Eimre, K.; Di Giovannantonio, M.; Urgel, J. I.; Ruffieux, P.; Narita, A.; Fasel, R.; Mullen, K. J. Am. Chem. Soc. 2020, 142, 10291. doi: 10.1021/jacs.0c03635
-
[31]
(31) Zeng, H. N.; Png, Z. M.; Xu, J. Chem. Asian J. 2020, 15, 1904. doi: 10.1002/asia.202000444
-
[32]
(32) Alder, R. W.; Whiteside, R. W.; Whittaker, G.; Wilshire, C. J. Am. Chem. Soc. 1979, 101, 629. doi: 10.1021/ja00497a024
-
[33]
(33) Alder, R. W.; Wilshire, C. J. Chem. Soc., Perkin Trans. 1975, 13, 1464. doi: 10.1039/p29750001464
-
[34]
(34) Bartels, L.; Meyer, G.; Rieder, K. H. Phys. Rev. Lett. 1998, 80, 2004. doi: 10.1103/PhysRevLett.80.2004
-
[35]
(35) Mohn, F.; Repp, J.; Gross, L.; Meyer, G.; Dyer, M. S.; Persson, M. Phys. Rev. Lett. 2010, 105, 266102. doi: 10.1103/PhysRevLett.105.266102
-
[1]
-
-
[1]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[2]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[3]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[4]
Liyang ZHANG , Dongdong YANG , Ning LI , Yuanyu YANG , Qi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079
-
[5]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[6]
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
-
[7]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[8]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[9]
Liang MA , Honghua ZHANG , Weilu ZHENG , Aoqi YOU , Zhiyong OUYANG , Junjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075
-
[10]
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
-
[11]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[12]
Tao Cao , Fang Fang , Nianguang Li , Yinan Zhang , Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098
-
[13]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[14]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[15]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[16]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[17]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[18]
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056
-
[19]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[20]
Feng Sha , Xinyan Wu , Ping Hu , Wenqing Zhang , Xiaoyang Luan , Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(77)
- HTML views(1)