Citation: Meng-Yin Wang,  Ruo-Bei Huang,  Jian-Feng Xiong,  Jing-Hua Tian,  Jian-Feng Li,  Zhong-Qun Tian. 锌-空气电池隔膜的关键作用及其最新研究进展[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230701. doi: 10.3866/PKU.WHXB202307017 shu

锌-空气电池隔膜的关键作用及其最新研究进展

  • Corresponding author: Jing-Hua Tian,  Jian-Feng Li, 
  • Received Date: 11 July 2023
    Revised Date: 18 August 2023
    Accepted Date: 22 August 2023

    Fund Project: The project was supported by the Natural Science Foundation of Fujian Province, China (2021J06001) and the National Key Research and Development Program of China (2020YFB1505800).

  • 在化石能源日益短缺、资源消耗急剧增加的背景下,开发可再生的清洁能源,如太阳能和风能,变得尤为重要。然而,这些清洁能源供应不稳定,因此需要大规模能源转换和储存装置的发展。在这方面,锌-空气电池能量密度高、安全性好、成本低、易组装、对环境友好并且金属锌储量丰富,作为能源储存与转换器件有良好的发展前景,但在应用的过程中仍存在一些问题。其中,隔膜在锌-空气电池中起着隔离正负极,防止短路的重要作用,但关于锌-空气电池隔膜及其改性的研究较少。本文简要介绍了锌-空气电池的发展,以水系碱性锌-空气电池为例,阐述了其工作原理。文中通过理解电池各个组件可能导致电池失效的机制,重点分析了隔膜性能对整体电池性能的影响。其中包括隔膜的离子选择性、离子导电性、稳定性以及保水性等因素。这些因素在锌-空气电池中起到至关重要的作用,直接影响电池的效率、寿命和稳定性。此外,本文还对锌-空气电池隔膜未来发展方向进行了展望。随着科技的进步,锌-空气电池的隔膜材料可能会进行更多的改良和创新,以提高电池的性能和稳定性。对于清洁能源的推动,锌-空气电池在能源储存和转换领域有望发挥更大的作用。
  • 加载中
    1. [1]

      (1) Liu, J.-N.; Zhao, C.-X.; Wang, J.; Ren, D.; Li, B.-Q.; Zhang, Q. Energy Environ. Sci. 2022, 15, 4542. doi:10.1039/d2ee02440c

    2. [2]

      (2) Harting, K.; Kunz, U.; Turek, T. Z. Phys. Chem. 2012, 226, 151. doi:10.1524/zpch.2012.0152

    3. [3]

      (3) Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z. Adv. Mater. 2017, 29, 1604685. doi:10.1002/adma.201604685

    4. [4]

      (4) Zhu, X.; Hu, C.; Amal, R.; Dai, L.; Lu, X. Energy Environ. Sci. 2020, 13, 4536. doi:10.1039/d0ee02800b

    5. [5]

      (5) Park, J. E.; Lim, M. S.; Kim, J. K.; Choi, H. J.; Sung, Y.-E.; Cho, Y.-H. J. Ind. Eng. Chem. 2019, 69, 161. doi:10.1016/j.jiec.2018.09.023

    6. [6]

      (6) Qaseem, A.; Chen, F.; Qiu, C.; Mahmoudi, A.; Wu, X.; Wang, X.; Johnston, R. L. Part. Part. Syst. Charact. 2017, 34, 1700097. doi:10.1002/ppsc.201700097

    7. [7]

      (7) Chakkaravarthy, C.; Waheed, A. K. A.; Udupa, H. V. K. J. Power Sources 1981, 6, 203. doi:10.1016/0378-7753(81)80027-4

    8. [8]

      (8) Zheng, Q.; Zhang, Y.; Su, C.; Zhao, L.; Guo, Y. Asia-Pac. J. Chem. Eng. 2022, 17, e2776. doi:10.1002/apj.2776

    9. [9]

      (9) Liu, H.; Liu, Q.; Wang, Y.; Wang, Y.; Chou, S.; Hu, Z.; Zhang, Z. Chin. Chem. Lett. 2022, 33, 683. doi:10.1016/j.cclet.2021.07.038

    10. [10]

      (10) Niu, Y.; Gong, S.; Liu, X.; Xu, C.; Xu, M.; Sun, S.-G.; Chen, Z. eScience 2022, 2, 546. doi:10.1016/j.esci.2022.05.001

    11. [11]

      (11) Dong, F.; Wu, M.; Chen, Z.; Liu, X.; Zhang, G.; Qiao, J.; Sun, S. Nano-Micro Lett. 2022, 14, 36. doi:10.1007/s40820-021-00768-3

    12. [12]

    13. [13]

    14. [14]

      (14) Prakoso, B.; Mahbub, M. A. A.; Yilmaz, M.; Khoiruddin; Wenten, I. G.; Handoko, A. D.; Sumboja, A. Chemnanomat 2021, 7, 354. doi:10.1002/cnma.202000672

    15. [15]

      (15) Zhao, Z.; Fan, X.; Ding, J.; Hu, W.; Zhong, C.; Lu, J. ACS Energy Lett. 2019, 4, 2259. doi:10.1021/acsenergylett.9b01541

    16. [16]

      (16) Jeong, B. J.; Jo, Y. N. Appl. Sci.-Basel 2021, 11, 11675. doi:10.3390/app112411675

    17. [17]

      (17) Chen, C.-Y.; Matsumoto, K.; Kubota, K.; Hagiwara, R.; Xu, Q. Adv. Energy Mater. 2019, 9, 1900196. doi:10.1002/aenm.201900196

    18. [18]

      (18) Thomas, S.; Cole, I. S.; Sridhar, M.; Birbilis, N. Electrochim. Acta 2013, 97, 192. doi:10.1016/j.electacta.2013.03.008

    19. [19]

      (19) Lee, S. H.; Ryu, K. S. Bull. Korean Chem. Soc. 2017, 38, 523. doi:10.1002/bkcs.11149

    20. [20]

      (20) Kim, H. S.; Jo, Y. N.; Lee, W. J.; Kim, K. J.; Lee, C. W. Electroanalysis 2015, 27, 517. doi:10.1002/elan.201400457

    21. [21]

      (21) Clark, S.; Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Blazquez, J. A.; Tolchard, J. R.; Jusys, Z.; Horstmann, B. Adv. Energy Mater. 2020, 10, 1903470. doi:10.1002/aenm.201903470

    22. [22]

      (22) Ingale, P.; Sakthivel, M.; Drillet, J. F. J. Electrochem. Soc. 2017, 164, H5224. doi:10.1149/2.0351708jes

    23. [23]

      (23) Dai, G.; Lu, L.; Shim, J.; Lee, H. T. Korean Hydrogen New Energ. Soc. 2021, 32, 401. doi:10.7316/KHNES.2021.32.5.401

    24. [24]

      (24) Sumboja, A.; Ge, X.; Zheng, G.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Liu, Z. J. Power Sources 2016, 332, 330. doi:10.1016/j.jpowsour.2016.09.142

    25. [25]

      (25) Goh, F. W. T.; Liu, Z.; Hor, T. S. A.; Zhang, J.; Ge, X.; Zong, Y.; Yu, A.; Khoo, W. J. Electrochem. Soc. 2014, 161, A2080. doi:10.1149/2.0311414jes

    26. [26]

      (26) Han, J. W.; Jo, Y. N. Kor. J. Mater. Res. 2019, 29, 798. doi:10.3740/mrsk.2019.29.12.798

    27. [27]

      (27) Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Blazquez, J. A.; Grande, H.-J. Energy Sci. Eng. 2018, 6, 174. doi:10.1002/ese3.191

    28. [28]

      (28) Mainar, A. R.; Leonet, O.; Bengoechea, M.; Boyano, I.; de Meatza, I.; Kvasha, A.; Guerfi, A.; Alberto Blazquez, J. Int. J. Energy Res. 2016, 40, 1032. doi:10.1002/er.3499

    29. [29]

      (29) Yang, D.; Chen, D.; Jiang, Y.; Ang, E. H.; Feng, Y.; Rui, X.; Yu, Y. Carbon Energy 2021, 3, 50. doi:10.1002/cey2.88

    30. [30]

      (30) Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Z. Energy Environ. Sci. 2017, 10, 2056. doi:10.1039/c7ee01913k

    31. [31]

      (31) Liu, Q.; Liu, R.; He, C.; Xia, C.; Guo, W.; Xu, Z.-L.; Xia, B. Y. eScience 2022, 2, 453. doi:10.1016/j.esci.2022.08.004

    32. [32]

      (32) Tsehaye, M. T.; Alloin, F.; Iojoiu, C.; Tufa, R. A.; Aili, D.; Fischer, P.; Velizarov, S. J. Power Sources 2020, 475, 228689. doi:10.1016/j.jpowsour.2020.228689

    33. [33]

      (33) Zhu, A. L.; Wilkinson, D. P.; Zhang, X.; Xing, Y.; Rozhin, A. G.; Kulinich, S. A. J. Energy Storage 2016, 8, 35. doi:10.1016/j.est.2016.09.007

    34. [34]

      (34) Hwang, H. J.; Chi, W. S.; Kwon, O.; Lee, J. G.; Kim, J. H.; Shul, Y.-G. ACS Appl. Mater. Interfaces 2016, 8, 26298. doi:10.1021/acsami.6b07841

    35. [35]

      (35) Zhao, C.-X.; Yu, L.; Liu, J.-N.; Wang, J.; Yao, N.; Li, X.-Y.; Chen, X.; Li, B.-Q.; Zhang, Q. Angew. Chem.-Int. Ed. 2022, 61, e202208042. doi:10.1002/anie.202208042

    36. [36]

      (36) Zhao, C.-X.; Liu, J.-N.; Yao, N.; Wang, J.; Ren, D.; Chen, X.; Li, B.-Q.; Zhang, Q. Angew. Chem.-Int. Ed. 2021, 60, 15281. doi:10.1002/anie.202104171

    37. [37]

      (37) Sangeetha, T.; Chen, P.-T.; Yan, W.-M.; Huang, K. D. Energy 2020, 197, 117181. doi:10.1016/j.energy.2020.117181

    38. [38]

      (38) Zhong, Y.; Liu, B.; Zhao, Z.; Shen, Y.; Liu, X.; Zhong, C. Energies 2021, 14, 2607. doi:10.3390/en14092607

    39. [39]

      (39) Lu, C.-T.; Zhu, Z.-Y.; Chen, S.-W.; Chang, Y.-L.; Hsueh, K.-L. Batteries-Basel 2022, 8, 92. doi:10.3390/batteries8080092

    40. [40]

      (40) Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Kvasha, A.; de Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z.; Alberto Blazquez, J. J. Energy Storage 2018, 15, 304. doi:10.1016/j.est.2017.12.004

    41. [41]

      (41) Zhu, Y.; Yue, K.; Xia, C.; Zaman, S.; Yang, H.; Wang, X.; Yan, Y.; Xia, B. Y. Nano-Micro Lett. 2021, 13, 137. doi:10.1007/s40820-021-00669-5

    42. [42]

      (42) Yao, Z.-C.; Tang, T.; Hu, J.-S.; Wan, L.-J. Energy Fuels 2021, 35, 6380. doi:10.1021/acs.energyfuels.1c00275

    43. [43]

      (43) Abbasi, A.; Xu, Y.; Khezri, R.; Etesami, M.; Lin, C.; Kheawhom, S.; Lu, Y. Mater. Today Sustain. 2022, 18, 100126. doi:10.1016/j.mtsust.2022.100126

    44. [44]

      (44) Leong, K. W.; Wang, Y.; Ni, M.; Pan, W.; Luo, S.; Leung, D. Y. C. Renew. Sust. Energ. Rev. 2022, 154, 111771. doi:10.1016/j.rser.2021.111771

    45. [45]

      (45) Chen, X.; Zhou, Z.; Karahan, H. E.; Shao, Q.; Wei, L.; Chen, Y. Small 2018, 14, 1801929. doi:10.1002/smll.201801929

    46. [46]

      (46) Marcus, K.; Liang, K.; Niu, W.; Yang, Y. J. Phys. Chem. Lett. 2018, 9, 2746. doi:10.1021/acs.jpclett.8b00925

    47. [47]

      (47) Kim, H.-W.; Lim, J.-M.; Lee, H.-J.; Eom, S.-W.; Hong, Y. T.; Lee, S.-Y. J. Mater. Chem. A 2016, 4, 3711. doi:10.1039/c5ta09576j

    48. [48]

      (48) Thuy Nguyen Thanh, T.; Chung, H.-J.; Ivey, D. G. Electrochim. Acta 2019, 327, 135021. doi:10.1016/j.electacta.2019.135021

    49. [49]

      (49) Bonnick, P.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A981. doi:10.1149/2.023207jes

    50. [50]

      (50) Saputra, H.; Othman, R.; Sutjipto, A. G. E.; Muhida, R. J. Membr. Sci. 2011, 367, 152. doi:10.1016/j.memsci.2010.10.061

    51. [51]

      (51) Xu, N.; Zhang, Y.; Wang, M.; Fan, X.; Zhang, T.; Peng, L.; Zhou, X.-D.; Qiao, J. Nano Energy 2019, 65, 104021. doi:10.1016/j.nanoen.2019.104021

    52. [52]

      (52) Wang, Q.; Feng, Q.; Lei, Y.; Tang, S.; Xu, L.; Xiong, Y.; Fang, G.; Wang, Y.; Yang, P.; Liu, J.; Liu, W.; Xiong, X. Nat. Commun. 2022, 13, 3689. doi:10.1038/s41467-022-31383-4

    53. [53]

      (53) Sankaralingam, R. K.; Seshadri, S.; Sunarso, J.; Bhatt, A. I.; Kapoor, A. In PVA-Based KOH Polymer Gel Electrolyte as a Membrane Separator for Zinc-Air Flow Battery, 1st International Conference on Energy Materials (ICEM), Xiamen Univ, Electr Network, Nov 05-08, 2022; Wee-Jun Ong, Ka Lun Wong, Eds.; Elsevier:Amsterdam, 2021; pp. 1649-1654.

    54. [54]

      (54) Yang, C. C.; Lin, S. J. J. Power Sources 2002, 112, 497. doi:10.1016/s0378-7753(02)00438-x

    55. [55]

      (55) Xu, M.; Dou, H.; Zhang, Z.; Zheng, Y.; Ren, B.; Ma, Q.; Wen, G.; Luo, D.; Yu, A.; Zhang, L.; et al. Angew. Chem.-Int. Ed. 2022, 61, e202117703. doi:10.1002/anie.202117703

    56. [56]

      (56) Arora, P.; Zhang, Z. J. Chem. Rev. 2004, 104, 4419. doi:10.1021/cr020738u

    57. [57]

      (57) Pleha, D.; Dvorak, P.; Kunovjanek, M.; Musil, M.; Cech, O. In Battery Separators, International Meeting on Advanced Batteries, Accumulators and Fuel Cells-12 (ABAF-12), Brno Univ Technol, Brno, Czech Republic, Sep. 11-14, 2012; Vondrak, J (Vondrak, J); Sedlarikova, M (Sedlarikova, M); Vanysek, P (Vanysek, P), Eds.; The Electrochemical Society:Pennington, 2011; pp. 153-158.

    58. [58]

      (58) Ma, L.; Chen, S.; Wang, D.; Yang, Q.; Mo, F.; Liang, G.; Li, N.; Zhang, H.; Zapien, J. A.; Zhi, C. Adv. Energy Mater. 2019, 9, 1803046. doi:10.1002/aenm.201803046

    59. [59]

      (59) Kwon, O.; Hwang, H. J.; Ji, Y.; Jeon, O. S.; Kim, J. P.; Lee, C.; Shul, Y. G. Sci. Rep. 2019, 9, 3175. doi:10.1038/s41598-019-38552-4

    60. [60]

      (60) Plaimer, M.; Breitfuss, C.; Sinz, W.; Heindl, S. F.; Ellersdorfer, C.; Steffan, H.; Wilkening, M.; Hennige, V.; Tatschl, R.; Geier, A.; et al. J. Power Sources 2016, 306, 702. doi:10.1016/j.jpowsour.2015.12.047

    61. [61]

      (61) Abbasi, A.; Hosseini, S.; Somwangthanaroj, A.; Mohamad, A. A.; Kheawhom, S. Int. J. Mol. Sci. 2019, 20, 3678. doi:10.3390/ijms20153678

    62. [62]

      (62) Lee, H.-J.; Lim, J.-M.; Kim, H.-W.; Jeong, S.-H.; Eom, S.-W.; Hong, Y. T.; Lee, S.-Y. J. Membr. Sci. 2016, 499, 526. doi:10.1016/j.memsci.2015.10.038

    63. [63]

      (63) Tsehaye, M. T.; Gebreslassie, G. T.; Choi, N. H.; Milian, D.; Martin, V.; Fischer, P.; Tubke, J.; El Kissi, N.; Donten, M. L.; Alloin, F.; et al. Molecules 2021, 26, 4062. doi:10.3390/molecules26134062

    64. [64]

      (64) Tsehaye, M. T.; Choi, N. H.; Fischer, P.; Tubke, J.; Planes, E.; Alloin, F.; Iojoiu, C. ACS Appl. Energ. Mater. 2022, 5, 7069. doi:10.1021/acsaem.2c00697

    65. [65]

      (65) Dewi, E. L.; Oyaizu, K.; Nishide, H.; Tsuchida, E. J. Power Sources 2003, 115, 149. doi:10.1016/s0378-7753(02)00650-x

    66. [66]

      (66) Nanthapong, S.; Kheawhom, S.; Klaysom, C. Int. J. Mol. Sci. 2020, 21, 7052. doi:10.3390/ijms21197052

    67. [67]

      (67) Zuo, Y.; Wang, K.; Zhao, S.; Wei, M.; Liu, X.; Zhang, P.; Xiao, Y.; Xiong, J. Chem. Eng. J. 2022, 430, 132996. doi:10.1016/j.cej.2021.132996

    68. [68]

      (68) Fu, J.; Zhang, J.; Song, X.; Zarrin, H.; Tian, X.; Qiao, J.; Rasen, L.; Li, K.; Chen, Z. Energy Environ. Sci. 2016, 9, 663. doi:10.1039/c5ee03404c

    69. [69]

    70. [70]

      (70) Wu, G. M.; Lin, S. J.; Yang, C. C. J. Membr. Sci. 2006, 280, 802. doi:10.1016/j.memsci.2006.02.037

    71. [71]

      (71) Zhang, G.; Cai, X.; Li, C.; Yao, J.; Tian, Z.; Zhang, F.; Liu, Y.; Liu, W.; Zhang, X. Int. J. Biol. Macromol. 2022, 221, 446. doi:10.1016/j.ijbiomac.2022.09.005

    72. [72]

      (72) Miao, H.; Chen, B.; Li, S.; Wu, X.; Wang, Q.; Zhang, C.; Sun, Z.; Li, H. J. Power Sources 2020, 450, 227653. doi:10.1016/j.jpowsour.2019.227653

    73. [73]

      (73) Wu, G. M.; Lin, S. J.; You, J. H.; Yang, C. C. Mater. Chem. Phys. 2008, 112,798. doi:10.1016/j.matchemphys.2008.06.058

    74. [74]

      (74) Zhang, Y.; Li, C.; Cai, X.; Yao, J.; Li, M.; Zhang, X.; Liu, Q. Electrochim. Acta 2016, 220, 635. doi:10.1016/j.electacta.2016.10.103

    75. [75]

      (75) Wang, M.; Xu, N.; Fu, J.; Liu, Y.; Qiao, J. J. Mater. Chem. A 2019, 7, 11257. doi:10.1039/c9ta02314c

    76. [76]

      (76) Cai, X.; Zhang, Y.; Li, C.; Zhang, G.; Wang, X.; Zhang, X.; Wang, Q.; Wang, F. Membranes. 2021, 11, 224. doi:10.3390/membranes11030224

    77. [77]

      (77) Liu, X.; Fan, X.; Liu, B.; Ding, J.; Deng, Y.; Han, X.; Zhong, C.; Hu, W. Adv. Mater.. 2021, 33, 2006461. doi:10.1002/adma.202006461

    78. [78]

      (78) Singh, G.; Kumar, M.; Thomas, T. S.; Nagaiah, T. C.; Mandal, D. ACS Appl. Energ. Mater. 2021, 4, 14689. doi:10.1021/acsaem.1c03318

    79. [79]

      (79) Sapkota, P.; Kim, H. J. Ind. Eng. Chem. 2010, 16, 39. doi:10.1016/j.jiec.2010.01.024

    80. [80]

      (80) You, X.; Qiao, C.; Peng, D.; Liu, W.; Li, C.; Zhao, H.; Qi, H.; Cai, X.; Shao, Y.; Shi, X. Polymers 2021, 13, 9. doi:10.3390/polym13010009

    81. [81]

      (81) Zhao, N.; Wu, F.; Xing, Y.; Qu, W.; Chen, N.; Shang, Y.; Yan, M.; Li, Y.; Li, L.; Chen, R. ACS Appl. Mater. Interfaces 2019, 11, 15537. doi:10.1021/acsami.9b00758

    82. [82]

      (82) Song, Z.; Liu, X.; Ding, J.; Liu, J.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. ACS Appl. Mater. Interfaces 2022, 14, 49801. doi:10.1021/acsami.2c14470

    83. [83]

      (83) Yang, C. C.; Lin, S. J. J. Appl. Electrochem. 2003, 33, 777. doi:10.1023/a:1025514620869

    84. [84]

      (84) Fan, X.; Liu, J.; Song, Z.; Han, X.; Deng, Y.; Zhong, C.; Hu, W. Nano Energy 2019, 56, 454. doi:10.1016/j.nanoen.2018.11.057

    85. [85]

      (85) Zuo, Y.; Zhang, W.; Wei, M.; Zhang, P.; Zhao, S.; Pei, P.; Qiu, L.; Wang, H.; Meng, Z.; Wang, K. Energy Storage Mater. 2022, 53, 136. doi:10.1016/j.ensm.2022.08.047

    86. [86]

      (86) Song, Z.; Ding, J.; Liu, B.; Liu, X.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. Adv. Mater. 2020, 32, 1908127. doi:10.1002/adma.201908127

    87. [87]

      (87) Zhang, P.; Wang, K.; Zuo, Y.; Wei, M.; Wang, H.; Chen, Z.; Shang, N.; Pei, P. ACS Appl. Mater. Interfaces 2022, 14, 49109. doi:10.1021/acsami.2c13625

    88. [88]

      (88) Li, M.; Liu, B.; Fan, X.; Liu, X.; Liu, J.; Ding, J.; Han, X.; Deng, Y.; Hu, W.; Zhong, C. ACS Appl. Mater. Interfaces 2019, 11, 28909. doi:10.1021/acsami.9b09086

    89. [89]

      (89) Liu, Q.; Xia, C.; He, C.; Guo, W.; Wu, Z. P.; Li, Z.; Zhao, Q.; Xia, B. Y. Angew. Chem.-Int. Ed. 2022, 61, e202210567. doi:10.1002/anie.202210567

    90. [90]

      (90) Park, J.; Park, M.; Nam, G.; Lee, J.-S.; Cho, J. Adv. Mater. 2015, 27, 1396. doi:10.1002/adma.201404639

    91. [91]

      (91) Gu, C.; Xie, X.-Q.; Liang, Y.; Li, J.; Wang, H.; Wang, K.; Liu, J.; Wang, M.; Zhang, Y.; Li, M.; et al. Energy Environ. Sci. 2021, 14, 4451. doi:10.1039/d1ee01134k

    92. [92]

      (92) Sun, N.; Lu, F.; Yu, Y.; Su, L.; Gao, X.; Zheng, L. ACS Appl. Mater. Interfaces 2020, 12, 11778. doi:10.1021/acsami.0c00325

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

Metrics
  • PDF Downloads(2)
  • Abstract views(440)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return