Citation: Shuang Cao,  Bo Zhong,  Chuanbiao Bie,  Bei Cheng,  Feiyan Xu. WO3/Zn0.5Cd0.5S S型异质结光催化产氢耦合有机物转化机理研究[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230701. doi: 10.3866/PKU.WHXB202307016 shu

WO3/Zn0.5Cd0.5S S型异质结光催化产氢耦合有机物转化机理研究

  • Received Date: 11 July 2023
    Revised Date: 25 July 2023
    Accepted Date: 25 July 2023

    Fund Project: This work was supported by the National Key Research and Development Program of China (2022YFB3803600, 2022YFE0115900), National Natural Science Foundation of China (52003213, 22238009, 22261142666, 52073223, 22278324, 51932007), and the Natural Science Foundation of Hubei Province of China (2022CFA001).

  • 开发新型纳米材料实现光催化产氢耦合有机物转化、提高太阳能到化学能的转换效率,在解决能源和环境危机方面具有巨大潜力。三元金属硫化物具有可调控的带隙和优异的可见光响应,在光催化分解水产氢方面引起了广泛关注。其中,Zn0.5Cd0.5S是一种带隙较窄、导带位置较高、耐光腐蚀的还原型光催化剂;然而,单一Zn0.5Cd0.5S中光生电子和空穴的复合率较高,只有少部分光生载流子参与光催化反应,导致量子效率较低而无法达到实际需求。WO3是一种典型的氧化型光催化剂,具有较低的价带位置和较强的氧化能力,是与Zn0.5Cd0.5S耦合构建S型异质结的理想半导体。基于此,本文通过静电纺丝和水热方法将Zn0.5Cd0.5S纳米片垂直生长在WO3纳米纤维上,制备了具有核壳结构的WO3/Zn0.5Cd0.5S异质结。功函数的差异驱动Zn0.5Cd0.5S的电子转移到WO3上,在界面处形成内建电场并使能带弯曲。通过原位光照X射线光电子能谱、电子顺磁共振和时间分辨荧光光谱分析,发现在内建电场、弯曲能带和库仑吸引力的作用下,WO3导带上的光生电子迁移到Zn0.5Cd0.5S价带上并与其光生空穴复合,表明WO3和Zn0.5Cd0.5S之间形成了S型异质结,实现了具有强氧化还原能力的载流子的高效分离。得益于独特的S型光催化机制以及反应物在催化剂表面的有效吸附与活化,没有贵金属助催化剂的情况下,WO3/Zn0.5Cd0.5S异质结在产氢(715 μmol·g-1·h-1)和乳酸转化为丙酮酸方面表现出增强的光催化活性,实现了光生电子和空穴的高效利用。原位漫反射傅里叶变换红外光谱和密度泛函理论计算揭示了光催化产氢和有机物转化的反应机理。本工作为设计和研究新型S型异质结光催化剂、实现高效产氢耦合有机物转化提供了新的见解。
  • 加载中
    1. [1]

      (1) Domaschke, M.; Zhou, X.; Wergen, L.; Romeis, S.; Miehlich, M. E.; Meyer, K.; Peukert, W.; Schmuki, P. ACS Catal. 2019, 9, 3627. doi: 10.1021/acscatal.9b00578

    2. [2]

      (2) Liu, Q.; Shen, J.; Yu, X.; Yang, X.; Liu, W.; Yang, J.; Tang, H.; Xu, H.; Li, H.; Li, Y.; et al. Appl. Catal. B 2019, 248, 84. doi: 10.1016/j.apcatb.2019.02.020

    3. [3]

      (3) Tuna Genç, M.; Sarilmaz, A.; Dogan, S.; Aksoy Çekceoğlu, İ.; Ozen, A.; Aslan, E.; Saner Okan, B.; Jaafar, J.; Ozel, F.; Ersoz, M.; et al. Int. J. Hydrog. Energy 2023, 38, 253. doi: 10.1016/j.ijhydene.2023.04.185

    4. [4]

      (4) Lin, K.; Wang, Z.; Hu, Z.; Luo, P.; Yang, X.; Zhang, X.; Rafiq, M.; Huang, F.; Cao, Y. J. Mater. Chem. A 2019, 7, 19087. doi: 10.1039/c9ta06219j

    5. [5]

      (5) Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, 1. doi: 10.1016/j.jmst.2021.10.016

    6. [6]

      (6) Gao, R.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. Chin. J. Catal. 2021, 42, 15. doi: 10.1016/s1872-2067(20)63614-2

    7. [7]

      (7) Lei, Y.; Zhang, Y.; Li, Z.; Xu, S.; Huang, J.; Hoong Ng, K.; Lai, Y. Chem. Eng. J. 2021, 425, 131478. doi: 10.1016/j.cej.2021.131478

    8. [8]

      (8) Liu, Y.; Sun, Z.; Hu, Y. H. Chem. Eng. J. 2021, 409, 128250. doi: 10.1016/j.cej.2020.128250

    9. [9]

      (9) Wageh, S.; Al-Ghamdi, A. A.; Al-Hartomy, O. A.; Alotaibi, M. F.; Wang, L. Chin. J. Catal. 2022, 43, 586. doi: 10.1016/s1872-2067(21)63925-6

    10. [10]

    11. [11]

      (11) Wang, L.; Yang, T.; Peng, L.; Zhang, Q.; She, X.; Tang, H.; Liu, Q. Chin. J. Catal. 2022, 43, 2720. doi: 10.1016/S1872-2067(22)64133-0

    12. [12]

      (12) Lin, S.; Zhang, N.; Wang, F.; Lei, J.; Zhou, L.; Liu, Y.; Zhang, J. ACS Sustain. Chem. Eng. 2020, 9, 481. doi: 10.1021/acssuschemeng.0c07753

    13. [13]

      (13) Qin, D.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y.; Lv, K. J. Mater. Sci. Technol. 2020, 56, 206. doi: 10.1016/j.jmst.2020.03.034

    14. [14]

      (14) Zhen, W.; Ning, X.; Yang, B.; Wu, Y.; Li, Z.; Lu, G. Appl. Catal. B 2018, 221, 243. doi: 10.1016/j.apcatb.2017.09.024

    15. [15]

      (15) Gao, D.; Xu, J.; Wang, L.; Zhu, B.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2108475. doi: 10.1002/adma.202108475

    16. [16]

      (16) Cao, S.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Mousavi, M.; Ghasemi, J. B.; Xu, F. J. Mater. Chem. A 2022, 10, 17174. doi: 10.1039/d2ta05181h

    17. [17]

      (17) Cheng, C.; He, B.; Fan, J.; Cheng, B.; Cao, S.; Yu, J. Adv. Mater. 2021, 33, 2100317. doi: 10.1002/adma.202100317

    18. [18]

      (18) Gao, D.; Deng, P.; Zhang, J.; Zhang, L.; Wang, X.; Yu, H.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202304559. doi: 10.1002/anie.202304559

    19. [19]

    20. [20]

    21. [21]

      (21) Liu, K.; Peng, L.; Zhen, P.; Chen, L.; Song, S.; Garcia, H.; Sun, C. J. Phys. Chem. C 2021, 125, 14656. doi: 10.1021/acs.jpcc.1c03535

    22. [22]

      (22) Wang, K.; Li, S.; Wang, G.; Li, Y.; Li, Y.; Jin, Z. Int. J. Energy Res. 2022, 46, 19508. doi: 10.1002/er.8522

    23. [23]

      (23) Zou, Y.; Guo, C.; Cao, X.; Chen, T.; Kou, Y.; Zhang, L.; Wang, T.; Akram, N.; Wang, J. Int. J. Hydrog. Energy 2022, 47, 25289. doi: 10.1016/j.ijhydene.2022.05.251

    24. [24]

      (24) Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688

    25. [25]

      (25) Xia, Y.; Zhu, B.; Li, L.; Ho, W.; Wu, J.; Chen, H.; Yu, J. Small 2023, 19, 2301928. doi: 10.1002/smll.202301928

    26. [26]

      (26) Zhang, J.; Le, Y.; Zhang, Y. J. Mater. Sci. Technol. 2023, 142, 121. doi: 10.1016/j.jmst.2022.11.001

    27. [27]

      (27) Cao, B.; Wan, S.; Wang, Y.; Guo, H.; Ou, M.; Zhong, Q. J. Colloid Interface Sci. 2022, 605, 311. doi: 10.1016/j.jcis.2021.07.113

    28. [28]

      (28) He, F.; Meng, A.; Cheng, B.; Ho, W.; Yu, J. Chin. J. Catal. 2020, 41, 9. doi: 10.1016/s1872-2067(19)63382-6

    29. [29]

      (29) Huang, D.; Wen, M.; Zhou, C.; Li, Z.; Cheng, M.; Chen, S.; Xue, W.; Lei, L.; Yang, Y.; Xiong, W.; Wang, W. Appl. Catal. B 2020, 267, 118651. doi: 10.1016/j.apcatb.2020.118651

    30. [30]

      (30) Li, H.; Hao, X.; Liu, Y.; Li, Y.; Jin, Z. J. Colloid Interface Sci. 2020, 572, 62. doi: 10.1016/j.jcis.2020.03.052

    31. [31]

      (31) Ye, H.-F.; Shi, R.; Yang, X.; Fu, W.-F.; Chen, Y. Appl. Catal. B 2018, 233, 70. doi: 10.1016/j.apcatb.2018.03.060

    32. [32]

      (32) Cai, M.; Liu, Y.; Dong, K.; Wang, C.; Li, S. J. Colloid Interface Sci. 2023, 629, 276. doi: 10.1016/j.jcis.2022.08.136

    33. [33]

      (33) Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi: 10.1016/j.jmst.2023.05.009

    34. [34]

      (34) Cai, M.; Wang, C.; Liu, Y.; Yan, R.; Li, S. Sep. Purif. Technol. 2022, 300, 121892. doi: 10.1016/j.seppur.2022.121892

    35. [35]

      (35) Dai, D.; Xu, H.; Ge, L.; Han, C.; Gao, Y.; Li, S.; Lu, Y. Appl. Catal. B 2017, 217, 429. doi: 10.1016/j.apcatb.2017.06.014

    36. [36]

      (36) Shao, Z.; He, Y.; Zeng, T.; Yang, Y.; Pu, X.; Ge, B.; Dou, J. J. Alloy. Compd. 2018, 769, 889. doi: 10.1016/j.jallcom.2018.08.064

    37. [37]

      (37) Wang, P.; Zhan, S.; Wang, H.; Xia, Y.; Hou, Q.; Zhou, Q.; Li, Y.; Kumar, R. R. Appl. Catal. B 2018, 230, 210. doi: 10.1016/j.apcatb.2018.02.043

    38. [38]

      (38) Zhang, L.; Zhang, F.; Xue, H.; Gao, J.; Peng, Y.; Song, W.; Ge, L. Chin. J. Catal. 2021, 42, 1677. doi: 10.1016/S1872-2067(21)63791-9

    39. [39]

      (39) Bai, J.; Chen, W.; Hao, L.; Shen, R.; Zhang, P.; Li, N.; Li, X. Chem. Eng. J. 2022, 447, 137488. doi: 10.1016/j.cej.2022.137488

    40. [40]

      (40) Bai, J.; Shen, R.; Chen, W.; Xie, J.; Zhang, P.; Jiang, Z.; Li, X. Chem. Eng. J. 2022, 429, 132587. doi: 10.1016/j.cej.2021.132587

    41. [41]

      (41) Wang, Y.; Ying, M.; Zhang, M.; Ren, X.; Kim, I. S. Macromol. Mater. Eng. 2021, 306, 2100587. doi: 10.1002/mame.202100587

    42. [42]

      (42) Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Adv. Mater. 2022, 34, 2107668. doi: 10.1002/adma.202107668

    43. [43]

      (43) Zhu, B.; Tan, H.; Fan, J.; Cheng, B.; Yu, J.; Ho, W. J. Materiomics 2021, 7, 988. doi: 10.1016/j.jmat.2021.02.015

    44. [44]

      (44) Dai, Z.; Zhen, Y.; Sun, Y.; Li, L.; Ding, D. Chem. Eng. J. 2021, 415, 129002. doi: 10.1016/j.cej.2021.129002

    45. [45]

      (45) Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi: 10.1016/j.jmst.2022.02.016

    46. [46]

      (46) Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. Chin. J. Catal. 2023, 46, 167. doi: 10.1016/S1872-2067(22)64201-3

    47. [47]

      (47) Dai, M.; He, Z.; Zhang, P.; Li, X.; Wang, S. J. Mater. Sci. Technol. 2022, 122, 231. doi: 10.1016/j.jmst.2022.02.014

    48. [48]

      (48) Kumar, A.; Khosla, A.; Kumar Sharma, S.; Dhiman, P.; Sharma, G.; Gnanasekaran, L.; Naushad, M.; Stadler, F. J. Fuel 2023, 333, 126267. doi: 10.1016/j.fuel.2022.126267

    49. [49]

      (49) Wang, L.; Bie, C.; Yu, J. Trends in Chem. 2022, 4, 973. doi: 10.1016/j.trechm.2022.08.008

    50. [50]

      (50) Xi, Y.; Chen, W.; Dong, W.; Fan, Z.; Wang, K.; Shen, Y.; Tu, G.; Zhong, S.; Bai, S. ACS Appl. Mater. Interfaces 2021, 13, 39491. doi: 10.1021/acsami.1c11233

    51. [51]

      (51) Zhang, B.; Hu, X.; Liu, E.; Fan, J. Chin. J. Catal. 2021, 42, 1519. doi: 10.1016/S1872-2067(20)63765-2

    52. [52]

      (52) Wang, X.; Sayed, M.; Ruzimuradov, O.; Zhang, J.; Fan, Y.; Li, X.; Bai, X.; Low, J. Appl. Mater. Today 2022, 29, 101609. doi: 10.1016/j.apmt.2022.101609

    53. [53]

      (53) Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin. J. Catal. 2022, 43, 2652. doi: 10.1016/s1872-2067(22)64106-8

    54. [54]

      (54) Dutta, V.; Sharma, S.; Raizada, P.; Thakur, V. K.; Khan, A. A. P.; Saini, V.; Asiri, A. M.; Singh, P. J. Environ. Chem. Eng. 2021, 9, 105018. doi: 10.1016/j.jece.2020.105018

    55. [55]

      (55) Xiang, X.; Zhu, B.; Zhang, J.; Jiang, C.; Chen, T.; Yu, H.; Yu, J.; Wang, L. Appl. Catal. B 2023, 324, 122301. doi: 10.1016/j.apcatb.2022.122301

    56. [56]

      (56) Yang, Y.; Wu, J.; Cheng, B.; Zhang, L.; Al-Ghamdi, A. A.; Wageh, S.; Li, Y. Chin. J. Struct. Chem. 2022, 41, 2206006. doi: 10.14102/j.cnki.0254-5861.2022-0124

    57. [57]

      (57) Jiang, J.; Wang, G.; Shao, Y.; Wang, J.; Zhou, S.; Su, Y. Chin. J. Catal. 2022, 43, 329. doi: 10.1016/S1872-2067(21)63889-5

    58. [58]

      (58) Wei, Y.; Zhang, Q.; Zhou, Y.; Ma, X.; Wang, L.; Wang, Y.; Sa, R.; Long, J.; Fu, X.; Yuan, R. Chin. J. Catal. 2022, 43, 2665. doi: 10.1016/S1872-2067(22)64124-X

    59. [59]

      (59) Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi: 10.1021/acs.jpclett.2c02125

    60. [60]

      (60) He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi: 10.1002/adma.202203225

    61. [61]

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    5. [5]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    7. [7]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(0)
  • Abstract views(93)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return