Citation: Jingkun Yu, Xue Yong, Ang Cao, Siyu Lu. 双层单原子催化剂用于促进高活性和选择性电催化硝酸盐还原制氨[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230701. doi: 10.3866/PKU.WHXB202307015
-
高效、高选择性的单原子催化剂(SACs)在电催化硝酸盐还原制氨过程中具有重要作用。然而,由于中间体、金属活性中心和配位环境之间复杂的竞争性电子相互作用,仍然面临挑战。本研究采用密度泛函理论(DFT)计算,对27种SACs以及双层SACs (BSACs)进行了系统研究,通过轴向d–d轨道杂化提高了从SACs到BSACs的电催化硝酸盐还原反应(NO3RR)的活性和选择性。考虑到可能的O端、N端、NO端和NO二聚体途径,计算结果显示,在单层SACs中,Ti-Pc和V-Pc分别具有优异的极限电位(UL),分别为-0.24和-0.48 V。形成能、溶解势以及从头算分子动力学结果表明,在反应条件下,这些催化剂非常稳定。在这些单层TM-Pc中,它们的d带能级和占据数受到dxz/dyz和pz轨道杂化的影响。其轴向dz2轨道的可用性通过形成dz2–dz2相互作用来进一步调整d带和反应性。在此基础上,以Ti-Pc和V-Pc为底物,通过形成轴向d–d轨道杂化来构建BSACs,为调节NO3RR催化性能提供了一种独特的新途径。重要的是,我们发现d带中心(εd)、dxz+dyz轨道的占据数和UL之间存在二维火山关系,用于描述它们的NO3RR催化性能。最佳的BSACs应该同时具备适当的εd和dxz+dyz占用数。Ti-Mo和Ti-Ta被确定为出色的NO3RR催化剂,其UL均降低至-0.13 V。而dz2–dz2轨道之间的杂化则增强了双层金属之间的电荷转移和结构稳定性。缺乏相邻的金属位点将导致生成NO2、NO和N2的能垒较高,从而抑制副产物生成。最终,本研究揭示了在SACs和BSACs上对硝酸盐还原进行合理优化的方法,可为改进电催化剂的设计提供指导。
-
-
[1]
(1) Kim, H. E.; Kim, J.; Ra, E. C.; Zhang, H.; Jang, Y. J.; Lee, J. S. Angew. Chem. Int. Ed. 2022, 61, e202204117. doi:10.1002/anie.202204117z
-
[2]
(2) Chen, F.-Y.; Wu, Z.-Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M.; et al. Nat. Nanotechnol. 2022, 17, 759. doi:10.1038/s41565-022-01121-4
-
[3]
(3) Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. Nano Res. Energy 2022, 1, e9120010. doi:10.26599/NRE.2022.9120010
-
[4]
(4) Song, W.; Yue, L.; Fan, X.; Luo, Y.; Ying, B.; Sun, S.; Zheng, D.; Liu, Q.; Hamdy, M. S.; Sun, X. Inorg. Chem. Front. 2023, 10, 3489. doi:10.1039/D3QI00554B
-
[5]
(5) Li, Z.; Liang, J.; Liu, Q.; Xie, L.; Zhang, L.; Ren, Y.; Yue, L.; Li, N.; Tang, B.; Alshehri, A. A.; et al. Mater. Today Phys. 2022, 23, 100619. doi:10.1016/j.mtphys.2022.100619
-
[6]
(6) Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wan, G.; Zhang, Y. L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18, 2106961. doi:10.1002/smll.202106961
-
[7]
(7) Xu, X.; Hu, L.; Li, Z.; Xie, L.; Sun, S.; Zhang, L.; Li, J.; Luo, Y.; Yan, X.; Hamdy, et al. Sustain. Energy Fuels 2022, 6, 4130. doi:10.1039/D2SE00830K
-
[8]
(8) Zhao, D.; Ma, C.; Li, J.; Li, R.; Fan, X.; Zhang, L.; Dong, K.; Luo, Y.; Zheng, D.; Sun, S.; et al. Inorg. Chem. Front. 2022, 9, 6412. doi:10.1039/D2QI01791A
-
[9]
(9) Lu, X.; Yu, J.; Cai, J.; Zhang, Q.; Yang, S.; Gu, L.; Waterhouse, G. I. N.; Zang, S.-Q.; Yang, B.; Lu, S. Cell Rep. Phys. Sci. 2022, 3, 100961. doi:10.1016/j.xcrp.2022.100961
-
[10]
(10) Cai, J.; Huang, J.; Cao, A.; Wei, Y.; Wang, H.; Li, X.; Jiang, Z.; Waterhouse, G. I. N.; Lu, S.; Zang, S.-Q. Appl. Catal. B Environ. 2023, 328, 122473. doi:10.1016/j.apcatb.2023.122473
-
[11]
(11) Lin, L.; Li, H.; Wang, Y.; Li, H.; Wei, P.; Nan, B.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2021, 60, 26582. doi:10.1002/ange.202113135
-
[12]
-
[13]
(13) Shen, T.; Huang, X.; Xi, S.; Li, W.; Sun, S.; Hou, Y. J. Energy Chem. 2022, 68, 184. doi:10.1016/j.jechem.2021.10.027
-
[14]
(14) Lv, X.; Wei, W.; Zhao, P.; Er, D.; Huang, B.; Dai, Y.; Jacob, T. J. Catal. 2019, 378, 97. doi:10.1016/j.jcat.2019.08.019
-
[15]
-
[16]
(16) Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. ACS Catal. 2023, 13, 2981. doi:10.1021/acscatal.2c05992
-
[17]
(17) Hung, S. F.; Xu, A.; Wang, X.; Li, F.; Hsu, S. H.; Li, Y.; Wicks, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C.; et al. Nat. Commun. 2022, 13, 819. doi:10.1038/s41467-022-28456-9
-
[18]
(18) Wang, Y.; Liang, Y.; Bo, T.; Meng, S.; Liu, M. J. Phys. Chem. Lett. 2022, 13, 5969. doi:10.1021/acs.jpclett.2c01381
-
[19]
(19) Li, X.; Chen, T.; Yang, B.; Xiang, Z. Angew. Chem. Int. Ed. 2023, 62, e202215441. doi:10.1002/ange.202215441
-
[20]
(20) Bai, L.; Hsu, C.-S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. Nat. Energy 2021, 6, 1054. doi:10.1038/s41560-021-00925-3
-
[21]
(21) Zhang, Y. X.; Zhang, S.; Huang, H.; Liu, X.; Li, B.; Lee, Y.; Wang, X.; Bai, Y.; Sun, M.; Wu, Y.; et al. J. Am. Chem. Soc. 2023, 145, 4819. doi:10.1021/jacs.2c13886
-
[22]
(22) Hu, R.; Li, Y.; Wang, F.; Shang, J. Nanoscale 2020, 12, 20413. doi:10.1039/D0NR05202G
-
[23]
(23) Wu, X.; Wang, Q.; Yang, S.; Zhang, J.; Cheng, Y.; Tang, H.; Ma, L.; Min, X.; Tang, C.; Jiang, S. P.; et al. Energy Environ. Sci. 2022, 15, 1183. doi:10.1039/D1EE03311E
-
[24]
(24) Lv, X. S.; Mou, T.; Li, J. W.; Kou, L. Z.; Frauenheim, T. Adv. Funct. Mater. 2022, 32, 2201262. doi:10.1002/adfm.202201262
-
[25]
(25) Zhang, K.; Xu, J.; Yan, T.; Jia, L.; Zhang, J.; Shao, C.; Zhang, L.; Han, N.; Li, Y. Adv. Funct. Mater. 2023, 33, 2214062. doi:10.1002/adfm.202214062
-
[26]
(26) Wang, T.; Zhou, L.; Xia, S.; Yu, L. J. Phys. Chem. C 2023, 127, 2963. doi:10.1021/acs.jpcc.2c08319
-
[27]
(27) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi:10.1016/0927-0256(96)00008-0
-
[28]
(28) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi:10.1103/PhysRevB.47.558
-
[29]
(29) Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. doi:10.1103/PhysRevB.59.7413
-
[30]
(30) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978. doi:10.1103/PhysRevB.48.4978.2
-
[31]
(31) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi:10.1103/PhysRevB.50.17953
-
[32]
(32) Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi:10.1002/jcc.20495
-
[33]
(33) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi:10.1103/PhysRevB.13.5188
-
[34]
(34) Tang, W.; Sanville, E.; Henkelman, G. J. Phys. Condens. Matter 2009, 21, 084204. doi:10.1088/0953-8984/21/8/084204
-
[35]
(35) Nosé, S. J. Chem. Phys. 1984, 81, 511. doi:10.1063/1.447334
-
[36]
(36) Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. J. Comput. Chem. 2020, 41, 1931. doi:10.1002/jcc.26353
-
[37]
(37) Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. Comput. Phys. Commun. 2021, 267, 108033. doi:10.1016/j.cpc.2021.108033
-
[38]
(38) Chen, Z. W.; Chen, L. X.; Jiang, M.; Chen, D.; Wang, Z. L.; Yao, X.; Singh, C. V.; Jiang, Q. J. Mater. Chem. A 2020, 8, 15086. doi:10.1039/D0TA04919K
-
[39]
(39) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. doi:10.1021/jp047349j
-
[40]
(40) Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y. Adv. Funct. Mater. 2020, 31, 2008533. doi:10.1002/adfm.202008533
-
[41]
(41) Hammer, B.; Nørskov, J. K. Adv. Catal. 2000, 45, 71. doi:10.1016/S0360-0564(02)45013-4
-
[42]
(42) Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulie, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Isci, U.; Berlinguette, C. P.; et al. Nat. Commun. 2019, 10, 3602. doi:10.1038/s41467-019-11542-w
-
[43]
(43) Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. ACS Energy Lett. 2018, 3, 1381. doi:10.1021/acsenergylett.8b00519
-
[44]
(44) Han, A.; Wang, B.; Kumar, A.; Qin, Y.; Jin, J.; Wang, X.; Yang, C.; Dong, B.; Jia, Y.; Liu, J.; Sun, X. Small Methods 2019, 3, 1800471. doi:10.1002/smtd.201800471
-
[45]
(45) Li, J.; Zhang, L.; Doyle-Davis, K.; Li, R.; Sun, X. Carbon Energy 2020, 2, 488. doi:10.1002/cey2.74
-
[46]
(46) Lv, L.; Shen, Y.; Liu, J.; Meng, X.; Gao, X.; Zhou, M.; Zhang, Y.; Gong, D.; Zheng, Y.; Zhou, Z. J. Phys. Chem. Lett. 2021, 12, 11143. doi:10.1021/acs.jpclett.1c03005
-
[47]
(47) Yang, M.; Wang, Z.; Jiao, D.; Li, G.; Cai, Q.; Zhao, J. Appl. Surf. Sci. 2022, 592, 153213. doi:10.1016/j.apsusc.2022.153213
-
[48]
(48) Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D. H.; Tan, C. S.; et al. J. Am. Chem. Soc. 2020, 142, 5702. doi:10.1021/jacs.9b13347
-
[49]
(49) Hu, T.; Wang, C.; Wang, M.; Li, C. M.; Guo, C. ACS Catal. 2021, 11, 14417. doi:10.1021/acscatal.1c03666
-
[50]
(50) Hu, T.; Wang, M.; Guo, C.; Li, C. M. J. Mater. Chem. A 2022, 10, 8923. doi:10.1039/D2TA00470D
-
[51]
(51) Niu, H.; Wang, X.; Shao, C.; Liu, Y.; Zhang, Z.; Guo, Y. J. Mater. Chem. A 2020, 8, 6555. doi:10.1039/D0TA00794C
-
[52]
(52) Sathishkumar, N.; Wu, S.; Chen, H. App. Surf. Sci. 2022, 598, 153829. doi:10.1016/j.apsusc.2022.153829
-
[53]
(53) Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B. R. ACS Catal. 2019, 9, 7052. doi:10.1021/acscatal.9b02179
-
[1]
-
-
[1]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[2]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[5]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[6]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[7]
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
-
[8]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[9]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[10]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[11]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[12]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[13]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[14]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[15]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[16]
Xin XIONG , Qian CHEN , Quan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064
-
[17]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[18]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[19]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[20]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(410)
- HTML views(25)