Citation: Jingkun Yu,  Xue Yong,  Ang Cao,  Siyu Lu. 双层单原子催化剂用于促进高活性和选择性电催化硝酸盐还原制氨[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230701. doi: 10.3866/PKU.WHXB202307015 shu

双层单原子催化剂用于促进高活性和选择性电催化硝酸盐还原制氨

  • Corresponding author: Xue Yong,  Siyu Lu, 
  • Received Date: 6 July 2023
    Revised Date: 22 August 2023
    Accepted Date: 23 August 2023

    Fund Project: This work was supported by the National Natural Science Foundation of China (51973200, 52122308) and the National Supercomputing Center in Zhengzhou, China. X.Y. would like to acknowledge Levhelum Trut.

  • 高效、高选择性的单原子催化剂(SACs)在电催化硝酸盐还原制氨过程中具有重要作用。然而,由于中间体、金属活性中心和配位环境之间复杂的竞争性电子相互作用,仍然面临挑战。本研究采用密度泛函理论(DFT)计算,对27种SACs以及双层SACs (BSACs)进行了系统研究,通过轴向dd轨道杂化提高了从SACs到BSACs的电催化硝酸盐还原反应(NO3RR)的活性和选择性。考虑到可能的O端、N端、NO端和NO二聚体途径,计算结果显示,在单层SACs中,Ti-Pc和V-Pc分别具有优异的极限电位(UL),分别为-0.24和-0.48 V。形成能、溶解势以及从头算分子动力学结果表明,在反应条件下,这些催化剂非常稳定。在这些单层TM-Pc中,它们的d带能级和占据数受到dxz/dyzpz轨道杂化的影响。其轴向dz2轨道的可用性通过形成dz2dz2相互作用来进一步调整d带和反应性。在此基础上,以Ti-Pc和V-Pc为底物,通过形成轴向dd轨道杂化来构建BSACs,为调节NO3RR催化性能提供了一种独特的新途径。重要的是,我们发现d带中心(εd)、dxz+dyz轨道的占据数和UL之间存在二维火山关系,用于描述它们的NO3RR催化性能。最佳的BSACs应该同时具备适当的εddxz+dyz占用数。Ti-Mo和Ti-Ta被确定为出色的NO3RR催化剂,其UL均降低至-0.13 V。而dz2dz2轨道之间的杂化则增强了双层金属之间的电荷转移和结构稳定性。缺乏相邻的金属位点将导致生成NO2、NO和N2的能垒较高,从而抑制副产物生成。最终,本研究揭示了在SACs和BSACs上对硝酸盐还原进行合理优化的方法,可为改进电催化剂的设计提供指导。
  • 加载中
    1. [1]

      (1) Kim, H. E.; Kim, J.; Ra, E. C.; Zhang, H.; Jang, Y. J.; Lee, J. S. Angew. Chem. Int. Ed. 2022, 61, e202204117. doi:10.1002/anie.202204117z

    2. [2]

      (2) Chen, F.-Y.; Wu, Z.-Y.; Gupta, S.; Rivera, D. J.; Lambeets, S. V.; Pecaut, S.; Kim, J. Y. T.; Zhu, P.; Finfrock, Y. Z.; Meira, D. M.; et al. Nat. Nanotechnol. 2022, 17, 759. doi:10.1038/s41565-022-01121-4

    3. [3]

      (3) Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. Nano Res. Energy 2022, 1, e9120010. doi:10.26599/NRE.2022.9120010

    4. [4]

      (4) Song, W.; Yue, L.; Fan, X.; Luo, Y.; Ying, B.; Sun, S.; Zheng, D.; Liu, Q.; Hamdy, M. S.; Sun, X. Inorg. Chem. Front. 2023, 10, 3489. doi:10.1039/D3QI00554B

    5. [5]

      (5) Li, Z.; Liang, J.; Liu, Q.; Xie, L.; Zhang, L.; Ren, Y.; Yue, L.; Li, N.; Tang, B.; Alshehri, A. A.; et al. Mater. Today Phys. 2022, 23, 100619. doi:10.1016/j.mtphys.2022.100619

    6. [6]

      (6) Liu, Q.; Xie, L.; Liang, J.; Ren, Y.; Wan, G.; Zhang, Y. L.; Yue, L.; Li, T.; Luo, Y.; Li, N.; et al. Small 2022, 18, 2106961. doi:10.1002/smll.202106961

    7. [7]

      (7) Xu, X.; Hu, L.; Li, Z.; Xie, L.; Sun, S.; Zhang, L.; Li, J.; Luo, Y.; Yan, X.; Hamdy, et al. Sustain. Energy Fuels 2022, 6, 4130. doi:10.1039/D2SE00830K

    8. [8]

      (8) Zhao, D.; Ma, C.; Li, J.; Li, R.; Fan, X.; Zhang, L.; Dong, K.; Luo, Y.; Zheng, D.; Sun, S.; et al. Inorg. Chem. Front. 2022, 9, 6412. doi:10.1039/D2QI01791A

    9. [9]

      (9) Lu, X.; Yu, J.; Cai, J.; Zhang, Q.; Yang, S.; Gu, L.; Waterhouse, G. I. N.; Zang, S.-Q.; Yang, B.; Lu, S. Cell Rep. Phys. Sci. 2022, 3, 100961. doi:10.1016/j.xcrp.2022.100961

    10. [10]

      (10) Cai, J.; Huang, J.; Cao, A.; Wei, Y.; Wang, H.; Li, X.; Jiang, Z.; Waterhouse, G. I. N.; Lu, S.; Zang, S.-Q. Appl. Catal. B Environ. 2023, 328, 122473. doi:10.1016/j.apcatb.2023.122473

    11. [11]

      (11) Lin, L.; Li, H.; Wang, Y.; Li, H.; Wei, P.; Nan, B.; Si, R.; Wang, G.; Bao, X. Angew. Chem. Int. Ed. 2021, 60, 26582. doi:10.1002/ange.202113135

    12. [12]

    13. [13]

      (13) Shen, T.; Huang, X.; Xi, S.; Li, W.; Sun, S.; Hou, Y. J. Energy Chem. 2022, 68, 184. doi:10.1016/j.jechem.2021.10.027

    14. [14]

      (14) Lv, X.; Wei, W.; Zhao, P.; Er, D.; Huang, B.; Dai, Y.; Jacob, T. J. Catal. 2019, 378, 97. doi:10.1016/j.jcat.2019.08.019

    15. [15]

    16. [16]

      (16) Giulimondi, V.; Mitchell, S.; Pérez-Ramírez, J. ACS Catal. 2023, 13, 2981. doi:10.1021/acscatal.2c05992

    17. [17]

      (17) Hung, S. F.; Xu, A.; Wang, X.; Li, F.; Hsu, S. H.; Li, Y.; Wicks, J.; Cervantes, E. G.; Rasouli, A. S.; Li, Y. C.; et al. Nat. Commun. 2022, 13, 819. doi:10.1038/s41467-022-28456-9

    18. [18]

      (18) Wang, Y.; Liang, Y.; Bo, T.; Meng, S.; Liu, M. J. Phys. Chem. Lett. 2022, 13, 5969. doi:10.1021/acs.jpclett.2c01381

    19. [19]

      (19) Li, X.; Chen, T.; Yang, B.; Xiang, Z. Angew. Chem. Int. Ed. 2023, 62, e202215441. doi:10.1002/ange.202215441

    20. [20]

      (20) Bai, L.; Hsu, C.-S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. Nat. Energy 2021, 6, 1054. doi:10.1038/s41560-021-00925-3

    21. [21]

      (21) Zhang, Y. X.; Zhang, S.; Huang, H.; Liu, X.; Li, B.; Lee, Y.; Wang, X.; Bai, Y.; Sun, M.; Wu, Y.; et al. J. Am. Chem. Soc. 2023, 145, 4819. doi:10.1021/jacs.2c13886

    22. [22]

      (22) Hu, R.; Li, Y.; Wang, F.; Shang, J. Nanoscale 2020, 12, 20413. doi:10.1039/D0NR05202G

    23. [23]

      (23) Wu, X.; Wang, Q.; Yang, S.; Zhang, J.; Cheng, Y.; Tang, H.; Ma, L.; Min, X.; Tang, C.; Jiang, S. P.; et al. Energy Environ. Sci. 2022, 15, 1183. doi:10.1039/D1EE03311E

    24. [24]

      (24) Lv, X. S.; Mou, T.; Li, J. W.; Kou, L. Z.; Frauenheim, T. Adv. Funct. Mater. 2022, 32, 2201262. doi:10.1002/adfm.202201262

    25. [25]

      (25) Zhang, K.; Xu, J.; Yan, T.; Jia, L.; Zhang, J.; Shao, C.; Zhang, L.; Han, N.; Li, Y. Adv. Funct. Mater. 2023, 33, 2214062. doi:10.1002/adfm.202214062

    26. [26]

      (26) Wang, T.; Zhou, L.; Xia, S.; Yu, L. J. Phys. Chem. C 2023, 127, 2963. doi:10.1021/acs.jpcc.2c08319

    27. [27]

      (27) Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi:10.1016/0927-0256(96)00008-0

    28. [28]

      (28) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi:10.1103/PhysRevB.47.558

    29. [29]

      (29) Hammer, B.; Hansen, L. B.; Nørskov, J. K. Phys. Rev. B 1999, 59, 7413. doi:10.1103/PhysRevB.59.7413

    30. [30]

      (30) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1993, 48, 4978. doi:10.1103/PhysRevB.48.4978.2

    31. [31]

      (31) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953. doi:10.1103/PhysRevB.50.17953

    32. [32]

      (32) Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi:10.1002/jcc.20495

    33. [33]

      (33) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188. doi:10.1103/PhysRevB.13.5188

    34. [34]

      (34) Tang, W.; Sanville, E.; Henkelman, G. J. Phys. Condens. Matter 2009, 21, 084204. doi:10.1088/0953-8984/21/8/084204

    35. [35]

      (35) Nosé, S. J. Chem. Phys. 1984, 81, 511. doi:10.1063/1.447334

    36. [36]

      (36) Nelson, R.; Ertural, C.; George, J.; Deringer, V. L.; Hautier, G.; Dronskowski, R. J. Comput. Chem. 2020, 41, 1931. doi:10.1002/jcc.26353

    37. [37]

      (37) Wang, V.; Xu, N.; Liu, J.-C.; Tang, G.; Geng, W.-T. Comput. Phys. Commun. 2021, 267, 108033. doi:10.1016/j.cpc.2021.108033

    38. [38]

      (38) Chen, Z. W.; Chen, L. X.; Jiang, M.; Chen, D.; Wang, Z. L.; Yao, X.; Singh, C. V.; Jiang, Q. J. Mater. Chem. A 2020, 8, 15086. doi:10.1039/D0TA04919K

    39. [39]

      (39) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. doi:10.1021/jp047349j

    40. [40]

      (40) Niu, H.; Zhang, Z.; Wang, X.; Wan, X.; Shao, C.; Guo, Y. Adv. Funct. Mater. 2020, 31, 2008533. doi:10.1002/adfm.202008533

    41. [41]

      (41) Hammer, B.; Nørskov, J. K. Adv. Catal. 2000, 45, 71. doi:10.1016/S0360-0564(02)45013-4

    42. [42]

      (42) Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulie, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Isci, U.; Berlinguette, C. P.; et al. Nat. Commun. 2019, 10, 3602. doi:10.1038/s41467-019-11542-w

    43. [43]

      (43) Zhu, M.; Ye, R.; Jin, K.; Lazouski, N.; Manthiram, K. ACS Energy Lett. 2018, 3, 1381. doi:10.1021/acsenergylett.8b00519

    44. [44]

      (44) Han, A.; Wang, B.; Kumar, A.; Qin, Y.; Jin, J.; Wang, X.; Yang, C.; Dong, B.; Jia, Y.; Liu, J.; Sun, X. Small Methods 2019, 3, 1800471. doi:10.1002/smtd.201800471

    45. [45]

      (45) Li, J.; Zhang, L.; Doyle-Davis, K.; Li, R.; Sun, X. Carbon Energy 2020, 2, 488. doi:10.1002/cey2.74

    46. [46]

      (46) Lv, L.; Shen, Y.; Liu, J.; Meng, X.; Gao, X.; Zhou, M.; Zhang, Y.; Gong, D.; Zheng, Y.; Zhou, Z. J. Phys. Chem. Lett. 2021, 12, 11143. doi:10.1021/acs.jpclett.1c03005

    47. [47]

      (47) Yang, M.; Wang, Z.; Jiao, D.; Li, G.; Cai, Q.; Zhao, J. Appl. Surf. Sci. 2022, 592, 153213. doi:10.1016/j.apsusc.2022.153213

    48. [48]

      (48) Wang, Y.; Xu, A.; Wang, Z.; Huang, L.; Li, J.; Li, F.; Wicks, J.; Luo, M.; Nam, D. H.; Tan, C. S.; et al. J. Am. Chem. Soc. 2020, 142, 5702. doi:10.1021/jacs.9b13347

    49. [49]

      (49) Hu, T.; Wang, C.; Wang, M.; Li, C. M.; Guo, C. ACS Catal. 2021, 11, 14417. doi:10.1021/acscatal.1c03666

    50. [50]

      (50) Hu, T.; Wang, M.; Guo, C.; Li, C. M. J. Mater. Chem. A 2022, 10, 8923. doi:10.1039/D2TA00470D

    51. [51]

      (51) Niu, H.; Wang, X.; Shao, C.; Liu, Y.; Zhang, Z.; Guo, Y. J. Mater. Chem. A 2020, 8, 6555. doi:10.1039/D0TA00794C

    52. [52]

      (52) Sathishkumar, N.; Wu, S.; Chen, H. App. Surf. Sci. 2022, 598, 153829. doi:10.1016/j.apsusc.2022.153829

    53. [53]

      (53) Liu, J.-X.; Richards, D.; Singh, N.; Goldsmith, B. R. ACS Catal. 2019, 9, 7052. doi:10.1021/acscatal.9b02179

  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(0)
  • Abstract views(410)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return