Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna
- Corresponding author: Qingmei Hu, huqm@bgi-graphene.com Baolu Guan, gbl@bjut.edu.cn Jianbo Yin, yinjb-cnc@pku.edu.cn
Citation: Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230701. doi: 10.3866/PKU.WHXB202307012
Ferguson, B.; Zhang, X. C. Nat. Mater. 2002, 1, 26. doi: 10.1038/nmat708
doi: 10.1038/nmat708
Boppel, S.; Lisauskas, A.; Mundt, M.; Seliuta, D.; Minkevicius, L.; Kasalynas, I.; Valusis, G.; Mittendorff, M.; Winnerl, S.; Krozer, V.; et al. IEEE Trans. Microw. Theory Tech. 2012, 60, 3834. doi: 10.1109/TMTT.2012.2221732
doi: 10.1109/TMTT.2012.2221732
Pickwell, E.; Wallace, V. P. J. Phys. D-Appl. Phys. 2006, 39, R301. doi: 10.1088/0022-3727/39/17/R01
doi: 10.1088/0022-3727/39/17/R01
Song, H. -J.; Nagatsuma, T. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256. doi: 10.1109/TTHZ.2011.2159552
doi: 10.1109/TTHZ.2011.2159552
Mittleman, D. M.; Gupta, M.; Neelamani, R.; Baraniuk, R. G.; Rudd, J. V.; Koch, M. Appl. Phys. B 1999, 68, 1085. doi: 10.1007/s003400050750
doi: 10.1007/s003400050750
Harde, H.; Keiding, S.; Grischkowsky, D. Phys. Rev. Lett. 1991, 66, 1834. doi: 10.1103/PhysRevLett.66.1834
doi: 10.1103/PhysRevLett.66.1834
Leitner, D. M.; Havenith, M.; Gruebele, M. Int. Rev. Phys. Chem. 2006, 25, 553. doi: 10.1080/01442350600862117
doi: 10.1080/01442350600862117
Lien Nguyen, K.; Friščić, T.; Day, G. M.; Gladden, L. F.; Jones, W. Nat. Mater. 2007, 6, 206. doi: 10.1038/nmat1848
doi: 10.1038/nmat1848
Sensale-Rodriguez, B.; Yan, R.; Kelly, M. M.; Fang, T.; Tahy, K.; Hwang, W. S.; Jena, D.; Liu, L.; Xing, H. G. Nat. Commun. 2012, 3, 780. doi: 10.1038/ncomms1787
doi: 10.1038/ncomms1787
Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol'tsman, G. N.; Demsar, J. Phys. Rev. Lett. 2011, 107, 177007. doi: 10.1103/PhysRevLett.107.177007
doi: 10.1103/PhysRevLett.107.177007
Slocum, D. M.; Slingerland, E. J.; Giles, R. H.; Goyette, T. M. J. Quant. Spectrosc. Radiat. Transf. 2013, 127, 49. doi: 10.1016/j.jqsrt.2013.04.022
doi: 10.1016/j.jqsrt.2013.04.022
Lewis, R. A. J. Phys. D-Appl. Phys. 2019, 52, 433001. doi: 10.1088/1361-6463/ab31d5
doi: 10.1088/1361-6463/ab31d5
Ajakaiye, O.; Grade, J.; Shin, C.; Kenny, T. Sensors Actuators A-Phys. 2007, 134, 575. doi: 10.1016/j.sna.2005.07.028
doi: 10.1016/j.sna.2005.07.028
Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965
doi: 10.1126/science.1156965
Chen, J. -H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Nat. Nanotechnol. 2008, 3, 206. doi: 10.1038/nnano.2008.58
doi: 10.1038/nnano.2008.58
Vicarelli, L.; Vitiello, M. S.; Coquillat, D.; Lombardo, A.; Ferrari, A. C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Nat. Mater. 2012, 11, 865. doi: 10.1038/nmat3417
doi: 10.1038/nmat3417
Tan, R. -B.; Qin, H.; Sun, J. -D.; Zhang, X. -Y.; Zhang, B. -S. Appl. Phys. Lett. 2013, 103, 173507. doi: 10.1063/1.4826118
doi: 10.1063/1.4826118
Qin, H.; Sun, J.; Liang, S.; Li, X.; Yang, X.; He, Z.; Yu, C.; Feng, Z. Carbon 2017, 116, 760. doi: 10.1016/j.carbon.2017.02.037
doi: 10.1016/j.carbon.2017.02.037
Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; et al. Nat. Commun. 2018, 9, 4. doi: 10.1038/s41467-018-07848-w
doi: 10.1038/s41467-018-07848-w
Tomadin, A.; Brida, D.; Cerullo, G.; Ferrari, A. C.; Polini, M. Phys. Rev. B 2013, 88, 35430. doi: 10.1103/PhysRevB.88.035430
doi: 10.1103/PhysRevB.88.035430
Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G.; Polini, M. Nat. Commun. 2013, 4, 1. doi: 10.1038/ncomms2987
doi: 10.1038/ncomms2987
Castilla, S.; Terrés, B.; Autore, M.; Viti, L.; Li, J.; Nikitin, A. Y.; Vangelidis, I.; Watanabe, K.; Taniguchi, T.; Lidorikis, E.; et al. Nano Lett. 2019, 19, 2765. doi: 10.1021/acs.nanolett.8b04171
doi: 10.1021/acs.nanolett.8b04171
Cai, X.; Sushkov, A. B.; Suess, R. J.; Jadidi, M. M.; Jenkins, G. S.; Nyakiti, L. O.; Myers-Ward, R. L.; Li, S.; Yan, J.; et al. Nat. Nanotechnol. 2014, 9, 814. doi: 10.1038/nnano.2014.182
doi: 10.1038/nnano.2014.182
Viti, L.; Purdie, D. G.; Lombardo, A.; Ferrari, A. C.; Vitiello, M. S. Nano Lett. 2020, 20, 3169. doi: 10.1021/acs.nanolett.9b05207
doi: 10.1021/acs.nanolett.9b05207
Koppens, F. H. L.; Mueller, T.; Avouris, Ph.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nat. Nanotechnol. 2014, 9, 780. doi: 10.1038/nnano.2014.215
doi: 10.1038/nnano.2014.215
Gabor, N. M.; Song, J. C. W.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Science 2011, 334, 648. doi: 10.1126/science.1211384
doi: 10.1126/science.1211384
Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; van Hulst, N. F.; et al. Nat. Nanotechnol. 2015, 10, 437. doi: 10.1038/nnano.2015.54
doi: 10.1038/nnano.2015.54
Mics, Z.; Tielrooij, K. -J.; Parvez, K.; Jensen, S. A.; Ivanov, I.; Feng, X.; Müllen, K.; Bonn, M.; Turchinovich, D. Nat. Commun. 2015, 6, 7655. doi: 10.1038/ncomms8655
doi: 10.1038/ncomms8655
Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Nano Lett. 2011, 11, 4688. doi: 10.1021/nl202318u
doi: 10.1021/nl202318u
Low, T.; Avouris, P. ACS Nano 2014, 8, 1086. doi: 10.1021/nn406627u
doi: 10.1021/nn406627u
Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. V.; Avouris, P.; Krupke, R. Nat. Commun. 2012, 3, 906. doi: 10.1038/ncomms1911
doi: 10.1038/ncomms1911
Shi, S. -F.; Xu, X.; Ralph, D. C.; McEuen, P. L. Nano Lett. 2011, 11, 1814. doi: 10.1021/nl200522t
doi: 10.1021/nl200522t
Emani, N. K.; Chung, T. -F.; Ni, X.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Nano Lett. 2012, 12, 5202. doi: 10.1021/nl302322t
doi: 10.1021/nl302322t
Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; et al. Science 2013, 342, 614. doi: 10.1126/science.1244358
doi: 10.1126/science.1244358
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401
doi: 10.1103/PhysRevLett.97.187401
Guo, W.; Wang, L.; Chen, X.; Liu, C.; Tang, W.; Guo, C.; Wang, J.; Lu, W. Opt. Lett. 2018, 43, 1647. doi: 10.1364/ol.43.001647
doi: 10.1364/ol.43.001647
Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Nat. Photonics 2017, 11, 366. doi: 10.1038/nphoton.2017.75
doi: 10.1038/nphoton.2017.75
Spirito, D.; Coquillat, D.; De Bonis, S. L.; Lombardo, A.; Bruna, M.; Ferrari, A. C.; Pellegrini, V.; Tredicucci, A.; Knap, W.; Vitiello, M. S. Appl. Phys. Lett. 2014, 104, 061111. doi: 10.1063/1.4864082
doi: 10.1063/1.4864082
Ahmad, Z.; Lisauskas, A.; Roskos, H. G. 9.74-THz Electronic Far-Infrared Detection Using Schottky Barrier Diodes in CMOS. 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014; 4.4.1–4.4.4, doi:
Zak, A.; Andersson, M. A.; Bauer, M.; Matukas, J.; Lisauskas, A.; Roskos, H. G.; Stake, J. Nano Lett. 2014, 14, 5834. doi: 10.1021/nl5027309
doi: 10.1021/nl5027309
Asgari, M.; Riccardi, E.; Balci, O.; De Fazio, D.; Shinde, S. M.; Zhang, J.; Mignuzzi, S.; Koppens, F. H. L.; Ferrari, A. C.; Viti, L.; et al. ACS Nano 2021, 15, 17966. doi: 10.1021/acsnano.1c06432
doi: 10.1021/acsnano.1c06432
Tan, Y. -W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Phys. Rev. Lett. 2007, 99, 246803. doi: 10.1103/PhysRevLett.99.246803
doi: 10.1103/PhysRevLett.99.246803
Agarwal, H.; Terrés, B.; Orsini, L.; Montanaro, A.; Sorianello, V.; Pantouvaki, M.; Watanabe, K.; Taniguchi, T.; Thourhout, D. V.; Romagnoli, M.; et al. Nat. Commun. 2021, 12, 1070. doi: 10.1038/s41467-021-20926-w
doi: 10.1038/s41467-021-20926-w
Mylnikov, D. A.; Titova, E. I.; Kashchenko, M. A.; Safonov, I. V.; Zhukov, S. S.; Semkin, V. A.; Novoselov, K. S.; Bandurin, D. A.; Svintsov, D. A. Nano Lett. 2023, 23, 220. doi: 10.1021/acs.nanolett.2c04119
doi: 10.1021/acs.nanolett.2c04119
Castilla, S.; Vangelidis, I.; Pusapati, V. -V.; Goldstein, J.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T.; et al. Nat. Commun. 2020, 11, 4872. doi: 10.1038/s41467-020-18544-z
doi: 10.1038/s41467-020-18544-z
Lemme, M. C.; Koppens, F. H. L.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Nano Lett. 2011, 11, 4134. doi: 10.1021/nl2019068
doi: 10.1021/nl2019068
Viti, L.; Cadore, A. R.; Yang, X.; Vorobiev, A.; Muench, J. E.; Watanabe, K.; Taniguchi, T.; Stake, J.; Ferrari, A. C.; Vitiello, M. S. Front. Opt. Photonics 2021, 10, 89. doi: 10.1515/9783110710687-007
doi: 10.1515/9783110710687-007
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477