Citation: Jiawei Yang, Chunyang Zheng, Yahui Pang, Zhongyang Ji, Yurui Li, Jiayi Hu, Jiangrui Zhu, Qi Lu, Li Lin, Zhongfan Liu, Qingmei Hu, Baolu Guan, Jianbo Yin. Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230701. doi: 10.3866/PKU.WHXB202307012 shu

Graphene Based Room-Temperature Terahertz Detector with Integrated Bow-Tie Antenna

  • Corresponding author: Qingmei Hu, huqm@bgi-graphene.com Baolu Guan, gbl@bjut.edu.cn Jianbo Yin, yinjb-cnc@pku.edu.cn
  • Received Date: 4 July 2023
    Revised Date: 15 August 2023
    Accepted Date: 16 August 2023
    Available Online: 28 August 2023

    Fund Project: the National Key R & D Program of China 2020YFA0308900National Natural Science Foundation of China T2188101National Natural Science Foundation of China 52072043National Natural Science Foundation of China 60908012National Natural Science Foundation of China 61575008National Natural Science Foundation of China 61775007Natural Science Foundation of Beijing, China 4172011

  • In electromagnetic spectrum, terahertz (THz) wave is between light and microwave. Its photon energy is much lower than normal infrared light and its frequency is higher than microwave. Therefore, it is hard to implement techniques of these two spectral ranges into THz spectrum, especially techniques in generation, modulation and detection. This has hindered the exploitation of THz spectrum although recent studies have showed its promising potentials in industries such as semiconductors, biotechnology, communications, imaging and so on. In THz detection, it is critical to have detectors with high response speed, high sensitivity and capability of operating at room temperature. In this study, we have designed a bow-tie antenna and integrated it into a graphene photodetector. By simulating with finite element analysis, we optimize the total length of the bow-tie antenna as about 50 μm and a gap of about 800 nm in the middle in order to target at 2.7 THz wave. By design, the antenna localizes the THz radiation to the narrow gap and enhances the local electric field by more than 20 times. Inside the same narrow gap, we build a graphene pn junction by applying different voltages on the two halves of the antenna, which also function as two independent gate electrodes in the device. In this device geometry, the absorption enhancement region overlaps with photocarrier separation regions in graphene, which therefore greatly increases photocurrent generation as firstly reported in Ref. 25. In addition to the antenna, we also design the channel. Firstly, we use BN-encapsulated graphene which has shown low residual doping (residual doping concentration of 1.3 × 1011 cm−2) and high mobility (μ up to 20000 cm2∙V−1∙s−1 at room temperature) in the device. The high‑quality graphene as channel guarantees a large seeback-coefficient difference at the pn junction and fast photoresponse. Secondly, the channel width at the antenna gap is reduced for further increasing the electron temperature and photocarrier-separating efficiency. Whereas the channel width at the contact is maintained for decreasing the contact resistance. With the antenna and channel design in an as-fabricated device, the photocurrent is enhanced by up to 2 orders of magnitude when the polarization of incident wave coincides with the optimized polarization of the antenna. The corresponding noise equivalent power (NEP) is calculated as about 1 nW∙Hz−1/2 if Johnson-Nyquist noise is assumed as the dominating noise. Moreover, the operating frequency is measured as larger than 5 kHz, which, together with the enhanced photoresponse, indicates that our design is a promising candidate for THz detection.
  • 加载中
    1. [1]

      Ferguson, B.; Zhang, X. C. Nat. Mater. 2002, 1, 26. doi: 10.1038/nmat708  doi: 10.1038/nmat708

    2. [2]

      Boppel, S.; Lisauskas, A.; Mundt, M.; Seliuta, D.; Minkevicius, L.; Kasalynas, I.; Valusis, G.; Mittendorff, M.; Winnerl, S.; Krozer, V.; et al. IEEE Trans. Microw. Theory Tech. 2012, 60, 3834. doi: 10.1109/TMTT.2012.2221732  doi: 10.1109/TMTT.2012.2221732

    3. [3]

      Pickwell, E.; Wallace, V. P. J. Phys. D-Appl. Phys. 2006, 39, R301. doi: 10.1088/0022-3727/39/17/R01  doi: 10.1088/0022-3727/39/17/R01

    4. [4]

      Song, H. -J.; Nagatsuma, T. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 256. doi: 10.1109/TTHZ.2011.2159552  doi: 10.1109/TTHZ.2011.2159552

    5. [5]

      Mittleman, D. M.; Gupta, M.; Neelamani, R.; Baraniuk, R. G.; Rudd, J. V.; Koch, M. Appl. Phys. B 1999, 68, 1085. doi: 10.1007/s003400050750  doi: 10.1007/s003400050750

    6. [6]

      Harde, H.; Keiding, S.; Grischkowsky, D. Phys. Rev. Lett. 1991, 66, 1834. doi: 10.1103/PhysRevLett.66.1834  doi: 10.1103/PhysRevLett.66.1834

    7. [7]

      Leitner, D. M.; Havenith, M.; Gruebele, M. Int. Rev. Phys. Chem. 2006, 25, 553. doi: 10.1080/01442350600862117  doi: 10.1080/01442350600862117

    8. [8]

      Lien Nguyen, K.; Friščić, T.; Day, G. M.; Gladden, L. F.; Jones, W. Nat. Mater. 2007, 6, 206. doi: 10.1038/nmat1848  doi: 10.1038/nmat1848

    9. [9]

      Sensale-Rodriguez, B.; Yan, R.; Kelly, M. M.; Fang, T.; Tahy, K.; Hwang, W. S.; Jena, D.; Liu, L.; Xing, H. G. Nat. Commun. 2012, 3, 780. doi: 10.1038/ncomms1787  doi: 10.1038/ncomms1787

    10. [10]

      Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol'tsman, G. N.; Demsar, J. Phys. Rev. Lett. 2011, 107, 177007. doi: 10.1103/PhysRevLett.107.177007  doi: 10.1103/PhysRevLett.107.177007

    11. [11]

      Slocum, D. M.; Slingerland, E. J.; Giles, R. H.; Goyette, T. M. J. Quant. Spectrosc. Radiat. Transf. 2013, 127, 49. doi: 10.1016/j.jqsrt.2013.04.022  doi: 10.1016/j.jqsrt.2013.04.022

    12. [12]

      Lewis, R. A. J. Phys. D-Appl. Phys. 2019, 52, 433001. doi: 10.1088/1361-6463/ab31d5  doi: 10.1088/1361-6463/ab31d5

    13. [13]

      Ajakaiye, O.; Grade, J.; Shin, C.; Kenny, T. Sensors Actuators A-Phys. 2007, 134, 575. doi: 10.1016/j.sna.2005.07.028  doi: 10.1016/j.sna.2005.07.028

    14. [14]

      https://www.gentec-eo.com/chinese/products/THz5i-bl-bnc (accessed May 17, 2023)

    15. [15]

      https://www.scontel.ru/terahertz/(accessed May 17, 2023)

    16. [16]

      https://www.toptica.com/products/terahertz-systems/accessories/schottky-receivers/(accessed May 17, 2023)

    17. [17]

      Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320, 1308. doi: 10.1126/science.1156965  doi: 10.1126/science.1156965

    18. [18]

      Chen, J. -H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Nat. Nanotechnol. 2008, 3, 206. doi: 10.1038/nnano.2008.58  doi: 10.1038/nnano.2008.58

    19. [19]

      Vicarelli, L.; Vitiello, M. S.; Coquillat, D.; Lombardo, A.; Ferrari, A. C.; Knap, W.; Polini, M.; Pellegrini, V.; Tredicucci, A. Nat. Mater. 2012, 11, 865. doi: 10.1038/nmat3417  doi: 10.1038/nmat3417

    20. [20]

      Tan, R. -B.; Qin, H.; Sun, J. -D.; Zhang, X. -Y.; Zhang, B. -S. Appl. Phys. Lett. 2013, 103, 173507. doi: 10.1063/1.4826118  doi: 10.1063/1.4826118

    21. [21]

      Qin, H.; Sun, J.; Liang, S.; Li, X.; Yang, X.; He, Z.; Yu, C.; Feng, Z. Carbon 2017, 116, 760. doi: 10.1016/j.carbon.2017.02.037  doi: 10.1016/j.carbon.2017.02.037

    22. [22]

      Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; et al. Nat. Commun. 2018, 9, 4. doi: 10.1038/s41467-018-07848-w  doi: 10.1038/s41467-018-07848-w

    23. [23]

      Tomadin, A.; Brida, D.; Cerullo, G.; Ferrari, A. C.; Polini, M. Phys. Rev. B 2013, 88, 35430. doi: 10.1103/PhysRevB.88.035430  doi: 10.1103/PhysRevB.88.035430

    24. [24]

      Brida, D.; Tomadin, A.; Manzoni, C.; Kim, Y. J.; Lombardo, A.; Milana, S.; Nair, R. R.; Novoselov, K. S.; Ferrari, A. C.; Cerullo, G.; Polini, M. Nat. Commun. 2013, 4, 1. doi: 10.1038/ncomms2987  doi: 10.1038/ncomms2987

    25. [25]

      Castilla, S.; Terrés, B.; Autore, M.; Viti, L.; Li, J.; Nikitin, A. Y.; Vangelidis, I.; Watanabe, K.; Taniguchi, T.; Lidorikis, E.; et al. Nano Lett. 2019, 19, 2765. doi: 10.1021/acs.nanolett.8b04171  doi: 10.1021/acs.nanolett.8b04171

    26. [26]

      Cai, X.; Sushkov, A. B.; Suess, R. J.; Jadidi, M. M.; Jenkins, G. S.; Nyakiti, L. O.; Myers-Ward, R. L.; Li, S.; Yan, J.; et al. Nat. Nanotechnol. 2014, 9, 814. doi: 10.1038/nnano.2014.182  doi: 10.1038/nnano.2014.182

    27. [27]

      Viti, L.; Purdie, D. G.; Lombardo, A.; Ferrari, A. C.; Vitiello, M. S. Nano Lett. 2020, 20, 3169. doi: 10.1021/acs.nanolett.9b05207  doi: 10.1021/acs.nanolett.9b05207

    28. [28]

      Koppens, F. H. L.; Mueller, T.; Avouris, Ph.; Ferrari, A. C.; Vitiello, M. S.; Polini, M. Nat. Nanotechnol. 2014, 9, 780. doi: 10.1038/nnano.2014.215  doi: 10.1038/nnano.2014.215

    29. [29]

      Gabor, N. M.; Song, J. C. W.; Ma, Q.; Nair, N. L.; Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Levitov, L. S.; Jarillo-Herrero, P. Science 2011, 334, 648. doi: 10.1126/science.1211384  doi: 10.1126/science.1211384

    30. [30]

      Tielrooij, K. J.; Piatkowski, L.; Massicotte, M.; Woessner, A.; Ma, Q.; Lee, Y.; Myhro, K. S.; Lau, C. N.; Jarillo-Herrero, P.; van Hulst, N. F.; et al. Nat. Nanotechnol. 2015, 10, 437. doi: 10.1038/nnano.2015.54  doi: 10.1038/nnano.2015.54

    31. [31]

      Mics, Z.; Tielrooij, K. -J.; Parvez, K.; Jensen, S. A.; Ivanov, I.; Feng, X.; Müllen, K.; Bonn, M.; Turchinovich, D. Nat. Commun. 2015, 6, 7655. doi: 10.1038/ncomms8655  doi: 10.1038/ncomms8655

    32. [32]

      Song, J. C. W.; Rudner, M. S.; Marcus, C. M.; Levitov, L. S. Nano Lett. 2011, 11, 4688. doi: 10.1021/nl202318u  doi: 10.1021/nl202318u

    33. [33]

      Low, T.; Avouris, P. ACS Nano 2014, 8, 1086. doi: 10.1021/nn406627u  doi: 10.1021/nn406627u

    34. [34]

      Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. V.; Avouris, P.; Krupke, R. Nat. Commun. 2012, 3, 906. doi: 10.1038/ncomms1911  doi: 10.1038/ncomms1911

    35. [35]

      Shi, S. -F.; Xu, X.; Ralph, D. C.; McEuen, P. L. Nano Lett. 2011, 11, 1814. doi: 10.1021/nl200522t  doi: 10.1021/nl200522t

    36. [36]

      Emani, N. K.; Chung, T. -F.; Ni, X.; Kildishev, A. V.; Chen, Y. P.; Boltasseva, A. Nano Lett. 2012, 12, 5202. doi: 10.1021/nl302322t  doi: 10.1021/nl302322t

    37. [37]

      Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; et al. Science 2013, 342, 614. doi: 10.1126/science.1244358  doi: 10.1126/science.1244358

    38. [38]

      Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Phys. Rev. Lett. 2006, 97, 187401. doi: 10.1103/PhysRevLett.97.187401  doi: 10.1103/PhysRevLett.97.187401

    39. [39]

      Guo, W.; Wang, L.; Chen, X.; Liu, C.; Tang, W.; Guo, C.; Wang, J.; Lu, W. Opt. Lett. 2018, 43, 1647. doi: 10.1364/ol.43.001647  doi: 10.1364/ol.43.001647

    40. [40]

      Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Nat. Photonics 2017, 11, 366. doi: 10.1038/nphoton.2017.75  doi: 10.1038/nphoton.2017.75

    41. [41]

      Spirito, D.; Coquillat, D.; De Bonis, S. L.; Lombardo, A.; Bruna, M.; Ferrari, A. C.; Pellegrini, V.; Tredicucci, A.; Knap, W.; Vitiello, M. S. Appl. Phys. Lett. 2014, 104, 061111. doi: 10.1063/1.4864082  doi: 10.1063/1.4864082

    42. [42]

      Ahmad, Z.; Lisauskas, A.; Roskos, H. G. 9.74-THz Electronic Far-Infrared Detection Using Schottky Barrier Diodes in CMOS. 2014 IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2014; 4.4.1–4.4.4, doi: 10.1109/iedm.2014.7046982

    43. [43]

      Zak, A.; Andersson, M. A.; Bauer, M.; Matukas, J.; Lisauskas, A.; Roskos, H. G.; Stake, J. Nano Lett. 2014, 14, 5834. doi: 10.1021/nl5027309  doi: 10.1021/nl5027309

    44. [44]

      Asgari, M.; Riccardi, E.; Balci, O.; De Fazio, D.; Shinde, S. M.; Zhang, J.; Mignuzzi, S.; Koppens, F. H. L.; Ferrari, A. C.; Viti, L.; et al. ACS Nano 2021, 15, 17966. doi: 10.1021/acsnano.1c06432  doi: 10.1021/acsnano.1c06432

    45. [45]

      Tan, Y. -W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Phys. Rev. Lett. 2007, 99, 246803. doi: 10.1103/PhysRevLett.99.246803  doi: 10.1103/PhysRevLett.99.246803

    46. [46]

      Agarwal, H.; Terrés, B.; Orsini, L.; Montanaro, A.; Sorianello, V.; Pantouvaki, M.; Watanabe, K.; Taniguchi, T.; Thourhout, D. V.; Romagnoli, M.; et al. Nat. Commun. 2021, 12, 1070. doi: 10.1038/s41467-021-20926-w  doi: 10.1038/s41467-021-20926-w

    47. [47]

      Mylnikov, D. A.; Titova, E. I.; Kashchenko, M. A.; Safonov, I. V.; Zhukov, S. S.; Semkin, V. A.; Novoselov, K. S.; Bandurin, D. A.; Svintsov, D. A. Nano Lett. 2023, 23, 220. doi: 10.1021/acs.nanolett.2c04119  doi: 10.1021/acs.nanolett.2c04119

    48. [48]

      Castilla, S.; Vangelidis, I.; Pusapati, V. -V.; Goldstein, J.; Autore, M.; Slipchenko, T.; Rajendran, K.; Kim, S.; Watanabe, K.; Taniguchi, T.; et al. Nat. Commun. 2020, 11, 4872. doi: 10.1038/s41467-020-18544-z  doi: 10.1038/s41467-020-18544-z

    49. [49]

      Lemme, M. C.; Koppens, F. H. L.; Falk, A. L.; Rudner, M. S.; Park, H.; Levitov, L. S.; Marcus, C. M. Nano Lett. 2011, 11, 4134. doi: 10.1021/nl2019068  doi: 10.1021/nl2019068

    50. [50]

      Viti, L.; Cadore, A. R.; Yang, X.; Vorobiev, A.; Muench, J. E.; Watanabe, K.; Taniguchi, T.; Stake, J.; Ferrari, A. C.; Vitiello, M. S. Front. Opt. Photonics 2021, 10, 89. doi: 10.1515/9783110710687-007  doi: 10.1515/9783110710687-007

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    13. [13]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    19. [19]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    20. [20]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

Metrics
  • PDF Downloads(1)
  • Abstract views(140)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return