Citation: Xiaofei Liu,  He Wang,  Li Tao,  Weimin Ren,  Xiaobing Lu,  Wenzhen Zhang. Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230700. doi: 10.3866/PKU.WHXB202307008 shu

Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide

  • Corresponding author: Wenzhen Zhang, zhangwz@dlut.edu.cn
  • Received Date: 3 July 2023
    Revised Date: 27 July 2023
    Accepted Date: 27 July 2023

    Fund Project: This work was supported by the National Natural Science Foundation of China (22278054, 21920102006) and the Fundamental Research Funds for the Central Universities, China (DUT22LAB609).

  • Carbon dioxide (CO2) serves as a non-toxic, abundant, cheap, and renewable C1 feedstock in synthetic chemistry. The synthesis of high value-added fine chemicals, such as organic carboxylic acids, using CO2, is always a focal point of research. Due to the thermodynamic stability and kinetic inertness of carbon dioxide, traditional carboxylation reactions utilizing CO2 often require harsh reaction conditions. However, organic electrochemical synthesis, which employs electrons as clean reagents to drive the reaction and avoids additional chemical oxidants or reductants, has emerged as a safer, more economical, highly selective, sustainable, and environmentally friendly method for preparing fine chemicals. Electrocarboxylation, which leverages organic electrochemical synthesis to catalytically transform CO2, provides a milder and more efficient route for CO2 utilization. Among these approaches, electrocarboxylation of organic halides or pseudohalides containing C―X bonds with CO2 has been extensively investigated as a means to access value-added carboxylic acids. Phosphates, known for their good leaving group properties, find extensive applications in organic synthesis. Under reductive conditions, the radical anion generated by benzyl phosphate easily dissociates into a benzyl radical and a phosphate anion. Hence, it can serve as an attractive substrate for participating in electrocarboxylation reactions. In this study, we report the highly efficient electrocarboxylation of benzylic phosphate and phosphinate derivatives using CO2 as the carboxyl source. The constant current reaction took place in an undivided cell, employing glassy carbon as the cathode, and magnesium as the sacrificial anode, in a mixed solvent of DMF and THF. Additionally, this mild electrolysis can be carried out under nonsacrificial anode conditions, using cheap carbon felt electrode as both the nonsacrificial anode and cathode and N,N-diisopropylethylamine as an external reductant, therefore provided operationally simple and highly efficient synthetic method toward aryl acetic acids in moderate to good yield. The broad substrate scope, simple operation, facile scalability, and highly efficient transformation of phosphates into high value-added aryl acetic acids under mild conditions demonstrate the potential applicability of this reaction. To gain insight into the possible reaction mechanism, several control experiments were conducted. Isotope-labeling 13CO2 experiment, cyclic voltammetry experiments, radical trapping reactions, and deuterium-labeling experiment indicated that cathodically generated benzylic radical and benzylic anion were key intermediates. Moreover, the single electron reduction of CO2 to CO2•− might also occur during the reaction.
  • 加载中
    1. [1]

      (1) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. doi: 10.1038/ncomms6933

    2. [2]

      (2) Jacob, D.; Julien, R. L.; Dmitry, P. Z.; Ruben, M. Chem 2021, 7, 2927. doi: 10.1016/j.chempr.2021.10.016

    3. [3]

      (3) Cai, S. F.; Li, H. R.; He, L. N. Green Chem. 2021, 23, 9334. doi: 10.1039/d1gc02783b

    4. [4]

      (4) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. doi: 10.1016/s1872-2067(21)64029-9

    5. [5]

      (5) Ye, J. H.; Ju, T.; Huang, H.; Liao, L. L.; Yu, D. G. Acc. Chem. Res. 2021, 54, 2518. doi: 10.1021/acs.accounts.1c00135

    6. [6]

      (6) Yi, Y.; Xi, C. Chin. J. Catal. 2022, 43, 1652. doi: 10.1016/s1872-2067(21)63956-6

    7. [7]

      (7) Blobaum, A. L.; Marnett, L. J. J. Biol. Chem. 2007, 282, 16379. doi: 10.1074/jbc.M609883200

    8. [8]

      (8) Senboku, H.; Yoneda, K.; Hara, S. Tetrahedron Lett. 2015, 56, 6772. doi: 10.1016/j.tetlet.2015.10.068

    9. [9]

      (9) Mita, T.; Higuchi, Y.; Sato, Y. Chem. Eur. J. 2015, 21, 16391. doi: 10.1002/chem.201503359

    10. [10]

      (10) Shao, P.; Wang, S.; Chen, C.; Xi, C. Org. Lett. 2016, 18, 2050. doi: 10.1021/acs.orglett.6b00665

    11. [11]

      (11) Leon, T.; Correa, A.; Martin, R. J. Am. Chem. Soc. 2013, 135, 1221. doi: 10.1021/ja311045f

    12. [12]

      (12) Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem. Int. Ed. 2016, 55, 5053. doi: 10.1002/anie.201600697

    13. [13]

      (13) Liao, L. L.; Cao, G. M.; Ye, J. H.; Sun, G. Q.; Zhou, W. J.; Gui, Y. Y.; Yan, S. S.; Shen, G.; Yu, D. G. J. Am. Chem. Soc. 2018, 140, 17338. doi: 10.1021/jacs.8b08792

    14. [14]

      (14) Ran, C. K.; Niu, Y. N.; Song, L.; Wei, M. K.; Cao, Y. F.; Luo, S. P.; Yu, Y. M.; Liao, L. L.; Yu, D. G. ACS Catal. 2022, 12, 18. doi: 10.1021/acscatal.1c04921

    15. [15]

      (15) Jing, K.; Wei, M.-K.; Yan, S.-S.; Liao, L.-L.; Niu, Y.-N.; Luo, S.-P.; Yu, B.; Yu, D.-G. Chin. J. Catal. 2022, 43, 1667. doi: 10.1016/s1872-2067(21)63859-7

    16. [16]

      (16) Yan, S. S.; Liu, S. H.; Chen, L.; Bo, Z. Y.; Jing, K.; Gao, T. Y.; Yu, B.; Lan, Y.; Luo, S. P.; Yu, D. G. Chem 2021, 7, 3099. doi: 10.1016/j.chempr.2021.08.004

    17. [17]

      (17) Jin, Y.; Toriumi, N.; Iwasawa, N. ChemSusChem 2022, 15, e202200021. doi: 10.1002/cssc.202200021

    18. [18]

      (18) Zhang, S.; Chen, W. Q.; Yu, A.; He, L. N. ChemCatChem 2015, 7, 3972. doi: 10.1002/cctc.201500724

    19. [19]

      (19) Hang, W.; Li, D.; Zou, S.; Xi, C. J. Org. Chem. 2023, 88, 5007. doi: 10.1021/acs.joc.2c01840

    20. [20]

      (20) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230. doi: 10.1021/acs.chemrev.7b00397

    21. [21]

      (21) Yuan, Y.; Yang, J.; Lei, A. Chem. Soc. Rev. 2021, 50, 10058. doi: 10.1039/d1cs00150g

    22. [22]

      (22) Jiao, K. J.; Xing, Y. K.; Yang, Q. L.; Qiu, H.; Mei, T. S. Acc. Chem. Res. 2020, 53, 300. doi: 10.1021/acs.accounts.9b00603

    23. [23]

      (23) Rockl, J. L.; Pollok, D.; Franke, R.; Waldvogel, S. R. Acc. Chem. Res. 2020, 53, 45. doi: 10.1021/acs.accounts.9b00511

    24. [24]

      (24) Siu, J. C.; Fu, N.; Lin, S. Acc. Chem. Res. 2020, 53, 547. doi: 10.1021/acs.accounts.9b00529

    25. [25]

      (25) Zhu, C.; Ang, N. W. J.; Meyer, T. H.; Qiu, Y.; Ackermann, L. ACS Cent. Sci. 2021, 7, 415. doi: 10.1021/acscentsci.0c01532

    26. [26]

      (26) Novaes, L. F. T.; Liu, J.; Shen, Y.; Lu, L.; Meinhardt, J. M.; Lin, S. Chem. Soc. Rev. 2021, 50, 7941. doi: 10.1039/d1cs00223f

    27. [27]

      (27) Liu, Y.; Li, P.; Wang, Y.; Qiu, Y. Angew. Chem. Int. Ed. 2023, e202306679. doi: 10.1002/anie.202306679

    28. [28]

      (28) Cheng, X.; Lei, A.; Mei, T.-S.; Xu, H.-C.; Xu, K.; Zeng, C. CCS Chem. 2022, 4, 1120. doi: 10.31635/ccschem.021.202101451

    29. [29]

      (29) Kingston, C.; Palkowitz, M. D.; Takahira, Y.; Vantourout, J. C.; Peters, B. K.; Kawamata, Y.; Baran, P. S. Acc. Chem. Res. 2020, 53, 72. doi: 10.1021/acs.accounts.9b00539

    30. [30]

      (30) Chang, X.; Zhang, Q.; Guo, C. Angew. Chem. Int. Ed. 2020, 59, 12612. doi: 10.1002/anie.202000016

    31. [31]

      (31) Senboku, H.; Katayama, A. Curr. Opin. Green Sustain. Chem. 2017, 3, 50. doi: 10.1016/j.cogsc.2016.10.003

    32. [32]

      (32) Yang, Z.; Yu, Y.; Lai, L.; Zhou, L.; Ye, K.; Chen, F.-E. Green Synth. Catal. 2021, 2, 19. doi: 10.1016/j.gresc.2021.01.009

    33. [33]

      (33) Liu, X.-F.; Zhang, K.; Tao, L.; Lu, X.-B.; Zhang, W.-Z. Green Chem. Eng. 2022, 3, 125. doi: 10.1016/j.gce.2021.12.001

    34. [34]

      (34) Zhang, K.; Liu, X. F.; Ren, W. M.; Lu, X. B.; Zhang, W. Z. Chem. Eur. J. 2023, 29, e202204073. doi: 10.1002/chem.202204073

    35. [35]

      (35) Wang, S.; Feng, T.; Wang, Y.; Qiu, Y. Chem. Asian J. 2022, 17, e202200543. doi: 10.1002/asia.202200543

    36. [36]

      (36) Wang, Y.; Zhao, Z.; Pan, D.; Wang, S.; Jia, K.; Ma, D.; Yang, G.; Xue, X. S.; Qiu, Y. Angew. Chem. Int. Ed. 2022, 61, e202210201. doi: 10.1002/anie.202210201

    37. [37]

      (37) Sun, G. Q.; Zhang, W.; Liao, L. L.; Li, L.; Nie, Z. H.; Wu, J. G.; Zhang, Z.; Yu, D. G. Nat. Commun. 2021, 12, 7086. doi: 10.1038/s41467-021-27437-8

    38. [38]

      (38) Tummanapalli, S.; Gulipalli, K. C.; Endoori, S.; Bodige, S.; Kumar Pommidi, A.; Medaboina, S.; Rejinthala, S.; Choppadandi, S.; Boya, R.; Kanuka, A.; et al. Tetrahedron Lett. 2022, 104, 154022. doi: 10.1016/j.tetlet.2022.154022

    39. [39]

      (39) Corbin, N.; Junor, G. P.; Ton, T. N.; Baker, R. J.; Manthiram, K. J. Am. Chem. Soc. 2023, 145, 1740. doi: 10.1021/jacs.2c10561

    40. [40]

      (40) Ang, N. W. J.; Oliveira, J. C. A.; Ackermann, L. Angew. Chem. Int. Ed. 2020, 59, 12842. doi: 10.1002/anie.202003218

    41. [41]

      (41) Jiao, K. J.; Li, Z. M.; Xu, X. T.; Zhang, L. P.; Li, Y. Q.; Zhang, K.; Mei, T. S. Org. Chem. Front. 2018, 5, 2244. doi: 10.1039/c8qo00507a

    42. [42]

      (42) Sun, G. Q.; Yu, P.; Zhang, W.; Zhang, W.; Wang, Y.; Liao, L. L.; Zhang, Z.; Li, L.; Lu, Z.; Yu, D. G.; et al. Nature 2023, 615, 67. doi: 10.1038/s41586-022-05667-0

    43. [43]

      (43) Zhao, Z.; Liu, Y.; Wang, S.; Tang, S.; Ma, D.; Zhu, Z.; Guo, C.; Qiu, Y. Angew. Chem. Int. Ed. 2023, 62, e202214710. doi: 10.1002/anie.202214710

    44. [44]

      (44) Rawat, V. K.; Hayashi, H.; Katsuyama, H.; Mangaonkar, S. R.; Mita, T. Org. Lett. 2023, 25, 4231. doi: 10.1021/acs.orglett.3c01033

    45. [45]

      (45) Zhang, W.; Liao, L. L.; Li, L.; Liu, Y.; Dai, L. F.; Sun, G. Q.; Ran, C. K.; Ye, J. H.; Lan, Y.; Yu, D. G. Angew. Chem. Int. Ed. 2023, 62, e202301892. doi: 10.1002/anie.202301892

    46. [46]

      (46) Sheta, A. M.; Alkayal, A.; Mashaly, M. A.; Said, S. B.; Elmorsy, S. S.; Malkov, A. V.; Buckley, B. R. Angew. Chem. Int. Ed. 2021, 60, 21832. doi: 10.1002/anie.202105490

    47. [47]

      (47) Sheta, A. M.; Mashaly, M. A.; Said, S. B.; Elmorsy, S. S.; Malkov, A. V.; Buckley, B. R. Chem. Sci. 2020, 11, 9109. doi: 10.1039/d0sc03148h

    48. [48]

      (48) Alkayal, A.; Tabas, V.; Montanaro, S.; Wright, I. A.; Malkov, A. V.; Buckley, B. R. J. Am. Chem. Soc. 2020, 142, 1780. doi: 10.1021/jacs.9b13305

    49. [49]

      (49) Zhang, W.; Lin, S. J. Am. Chem. Soc. 2020, 142, 20661. doi: 10.1021/jacs.0c08532

    50. [50]

      (50) Liao, L. L.; Wang, Z. H.; Cao, K. G.; Sun, G. Q.; Zhang, W.; Ran, C. K.; Li, Y.; Chen, L.; Yu, D. G. J. Am. Chem. Soc. 2022, 144, 2062. doi: 10.1021/jacs.1c12071

    51. [51]

      (51) Zhao, B.; Pan, Z.; Pan, J.; Deng, H.; Bu, X.; Ma, M.; Xue, F. Green Chem. 2023, 25, 3095. doi: 10.1039/d2gc04636a

    52. [52]

      (52) You, Y.; Kanna, W.; Takano, H.; Hayashi, H.; Maeda, S.; Mita, T. J. Am. Chem. Soc. 2022, 144, 3685. doi: 10.1021/jacs.1c13032

    53. [53]

      (53) Wang, Y.; Tang, S.; Yang, G.; Wang, S.; Ma, D.; Qiu, Y. Angew. Chem. Int. Ed. 2022, e202207746. doi: 10.1002/anie.202207746

    54. [54]

      (54) Scott J. H.; Mark D. E. J. Med. Chem. 2008, 51, 2328. doi: 10.1021/jm701260b

    55. [55]

      (55) Pradere, U.; Garnier-Amblard, E. C.; Coats, S. J.; Amblard, F.; Schinazi, R. F. Chem. Rev. 2014, 114, 9154. doi: 10.1021/cr5002035

    56. [56]

      (56) Trost, B. M.; Czabaniuk, L. C. J. Am. Chem. Soc. 2012, 134, 5778. doi: 10.1021/ja301461p

    57. [57]

      (57) He, Y.; Huang, L.; Xie, L.; Liu, P.; Wei, Q.; Mao, F.; Zhang, X.; Huang, J.; Chen, S.; Huang, C. J. Org. Chem. 2019, 84, 10088. doi: 10.1021/acs.joc.9b01278

    58. [58]

      (58) Schwarz, K. J.; Yang, C.; Fyfe, J. W. B.; Snaddon, T. N. Angew. Chem. Int. Ed. 2018, 57, 12102. doi: 10.1002/anie.201806742

    59. [59]

      (59) Liu, W.; Zheng, Y. Chin. J. Org. Chem. 2021, 41, 3344. doi: 10.6023/cjoc202100061

    60. [60]

      (60) Wang, H.; Wang, Z.; Zhao, G.; Ramadoss, V.; Tian, L.; Wang, Y. Org. Lett. 2022, 24, 3668. doi: 10.1021/acs.orglett.2c01286

    61. [61]

      (61) Zhang, K.; Liu, X. F.; Zhang, W. Z.; Ren, W. M.; Lu, X. B. Org. Lett. 2022, 24, 3565. doi: 10.1021/acs.orglett.2c01267

    62. [62]

      (62) Zhang, K.; Ren, B. H.; Liu, X. F.; Wang, L. L.; Zhang, M.; Ren, W. M.; Lu, X. B.; Zhang, W. Z. Angew. Chem. Int. Ed. 2022, 61, e202207660. doi: 10.1002/anie.202207660

    63. [63]

      (63) Liu, X. F.; Zhang, K.; Wang, L. L.; Wang, H.; Huang, J.; Zhang, X. T.; Lu, X. B.; Zhang, W. Z. J. Org. Chem. 2023, 88, 5212. doi: 10.1021/acs.joc.2c01816

    64. [64]

      (64) Wang, L. L.; Liu, X. F.; Wang, H.; Tao, L.; Huang, J.; Ren, W. M.; Lu, X. B.; Zhang, W. Z. Synthesis 2023, 55, 2951. doi: 10.1055/s-0041-1738439

    65. [65]

      (65) Deposition no. 2278317 (for 2t) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif, accessed on Aug 2, 2023).

    66. [66]

      (66) Chen, X. W.; Zhu, L.; Gui, Y. Y.; Jing, K.; Jiang, Y. X.; Bo, Z. Y.; Lan, Y.; Li, J.; Yu, D. G. J. Am. Chem. Soc. 2019, 141, 18825. doi: 10.1021/jacs.9b09721

    67. [67]

      (67) Chen, X. W.; Yue, J. P.; Wang, K.; Gui, Y. Y.; Niu, Y. N.; Liu, J.; Ran, C. K.; Kong, W.; Zhou, W. J.; Yu, D. G. Angew. Chem. Int. Ed. 2021, 60, 14068. doi: 10.1002/anie.202102769

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    3. [3]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    7. [7]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    8. [8]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    9. [9]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    10. [10]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    13. [13]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    18. [18]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    19. [19]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    20. [20]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

Metrics
  • PDF Downloads(0)
  • Abstract views(543)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return