Citation: Haoyu Sun,  Dun Li,  Yuanyuan Min,  Yingying Wang,  Yanyun Ma,  Yiqun Zheng,  Hongwen Huang. 多级钯-铜-银多孔纳米花作为高效电催化剂催化CO2还原为C2+产物[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230700. doi: 10.3866/PKU.WHXB202307007 shu

多级钯-铜-银多孔纳米花作为高效电催化剂催化CO2还原为C2+产物

  • Corresponding author: Yingying Wang,  Yiqun Zheng,  Hongwen Huang, 
  • Received Date: 3 July 2023
    Revised Date: 14 August 2023
    Accepted Date: 19 August 2023

    Fund Project: This work was financially supported by the Natural Science Foundation of China (21701100), Shandong Provincial Natural Science Foundation, China (2020MB048, ZR2022MB120), Young Innovative Talents Introduction & Cultivation Program for Colleges and Universities of Shandong Province, China (Granted by Department of Education of Shandong Province, Sub-Title: Innovative Research Team on Energy Storage and Environment Materials), the University Feature Laboratory for Energy Conversion and Nanocatalysis of Shandong Province, Doctoral Startup Research Funding, China (2020BSZX01) and Hundred Outstanding Talent Program of Jining University, China (2020ZYRC05). This work is also supported by Suzhou Key Laboratory of Functional Nano & Soft Materials, Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, China.

  • 近年来,具有可控元素分布的铜基多金属纳米晶作为CO2还原反应(CO2RR)的电催化剂,受到了广泛研究。通过对铜电催化剂进行二次甚至多次的金属元素修饰,能够有效改变其整体d带结构并引起d带中心的位移。这种变化可以影响铜对关键中间体的表面亲和力,从而影响后续的催化途径。除了调整电子结构,形貌工程也成为提高CO2RR电催化性能的有效手段。相对于随机形状的球形颗粒,基于二维纳米片构建的三维多孔结构有利于最大限度地暴露表面原子,为催化过程中产生的关键中间体提供丰富的扩散通道和反应中心。然而,通过设计合成路线构建这种类型的纳米结构是一项技术挑战,传统的分步自组装策略耗时且难以精确控制结构。因此,我们的研究旨在实现高纯度的合成方法,制备这种独特的纳米结构,并精确调控元素组成和电子结构,以探索结构优势与CO2RR电化学性能改善之间的潜在关系,具有重要的应用价值。在此研究中,我们合理设计了钯-铜-银(Pd-Cu-Ag)纳米晶的二维-三维杂化结构,实现了可控的合成过程,并验证了其在电化学CO2还原中的应用潜力。合成过程中,通过使用封装剂十八烷基三甲基氯化铵,成功地将Au@CuxO纳米球转化为层状CuAg纳米花(HNFs)。有趣的是,该过程中原位形成了作为构建单元的纳米薄片。通过对CuAg HNFs与Na2PdCl4进行电偶置换,除去了Ag和Cu,引入了零价的Pd,并在纳米片上形成了大量孔隙。我们对这些CuAg电催化剂进行了CO2RR测试,结果显示Pd0.7Cu40.0Ag59.7PHNs在C2+产物选择性(69.5%)和C2+分电流密度(-349.1 mA·cm-2)方面表现出最佳性能。密度泛函理论(DFT)模拟表明,PdAgCu表面具有独特的电子性质,降低了C-C偶联反应的能垒,凸显了Pd掺杂对CuAg电催化剂CO2还原的卓越性能。本研究为基于多孔纳米薄片构建多层次多金属纳米结构提供了一种直观方法,并验证了其在电催化方面的结构优势,为高效的CO2RR催化剂的合理设计提供了依据。
  • 加载中
    1. [1]

      (1) Xia, W.; Xie, Y.; Jia, S.; Han, S.; Qi, R.; Chen, T.; Xing, X.; Yao, T.; Zhou, D.; Dong, X.; et al. J. Am. Chem. Soc. 2023, 145, 17253. doi:10.1021/jacs.3c04612

    2. [2]

      (2) Xue, H.; Zhao, Z.; Liao, P.; Chen, X. J. Am. Chem. Soc. 2023, 145, 14978. doi:10.1021/jacs.3c05023

    3. [3]

      (3) Bi, J.; Li, P.; Liu, J.; Wang, Y.; Song, X.; Kang, X.; Sun, X.; Zhu, Q.; Han, B. Angew. Chem. Int. Ed. 2023, 1, e202307612. doi:10.1002/anie.202307612

    4. [4]

      (4) Ling, N.; Zhang, J.; Wang, M.; Wang, Z.; Mi, Z.; Bin Dolmanan, S.; Zhang, M.; Wang, B.; Leow, W. R.; Zhang, J.; et al. Angew. Chem. Int. Ed. 2023, 1, e202308782. doi:10.1002/anie.202308782

    5. [5]

      (5) Weng, S.; Toh, W. L.; Surendranath, Y. J. Am. Chem. Soc. 2023, 145, 16787. doi:10.1021/jacs.3c04769

    6. [6]

      (6) Jia, H.; Yang, Y.; Chow, T. H.; Zhang, H.; Liu, X.; Wang, J.; Zhang, C. Adv. Funct. Mater. 2021, 31, 2101255. doi:10.1002/adfm.202101255

    7. [7]

      (7) Zheng, Y.; Zhang, J.; Ma, Z.; Zhang, G.; Zhang, H.; Fu, X.; Ma, Y.; Liu, F.; Liu, M.; Huang, H. Small 2022, 18, e2201695. doi:10.1002/small.202201695

    8. [8]

      (8) Kuhn, A. N.; Zhao, H.; Nwabara, U. O.; Lu, X.; Liu, M.; Pan, Y. T.; Zhu, W.; Kenis, P. J. A.; Yang, H. Adv. Funct. Mater. 2021, 31, 2101668. doi:10.1002/adfm.202101668

    9. [9]

      (9) Wei, D.; Wang, Y.; Dong, C. L.; Zhang, Z.; Wang, X.; Huang, Y. C.; Shi, Y.; Zhao, X.; Wang, J; Long, R; et al. Angew. Chem. Int. Ed. 2023, 62, e202217369. doi:10.1002/anie.202217369

    10. [10]

      (10) Lv, H.; Lv, F.; Qin, H.; Min, X.; Sun, L.; Han, N.; Xu, D.; Li, Y.; Liu, B. CCS Chem. 2022, 4, 1376. doi:10.31635/ccschem.021.202100958

    11. [11]

      (11) Li, Z.; He, D.; Yan, X.; Dai, S.; Younan, S.; Ke, Z.; Pan, X.; Xiao, X.; Wu, H.; Gu, J. Angew. Chem. Int. Ed. 2020, 59, 18572. doi:10.1002/anie.202000318

    12. [12]

      (12) Guntern, Y. T.; Okatenko, V.; Pankhurst, J.; Varandili, S. B.; Iyengar, P.; Koolen, C.; Stoian, D.; Vavra, J.; Buonsanti, R. ACS Catal. 2021, 11, 1248. doi:10.1021/acscatal.0c04403

    13. [13]

      (13) Hammer, B.; Nørskov, J. K. Adv. Catal. 2000, 45, 71. doi:10.1016/S0360-0564(02)45013-4

    14. [14]

      (14) Zhang, X.-G.; Jin, X.; Wu, D.-Y.; Tian, Z.-Q. J. Phys. Chem. C. 2018, 122, 25447. doi:10.1021/acs.jpcc.8b08170

    15. [15]

      (15) Chang, K.; Jian, X.; Jeong, H. M.; Kwon, Y.; Lu, Q.; Cheng, M. J. J. Phys. Chem. Lett. 2020, 11, 1896. doi:10.1021/acs.jpclett.0c00082

    16. [16]

      (16) Xiong, L.; Zhang, X.; Yuan, H.; Wang, J.; Yuan, X.; Lian, Y.; Jin, H.; Sun, H.; Deng, Z.; Wang, D; et al. Angew. Chem. Int. Ed. 2021, 60, 2508. doi:10.1002/anie.202012631

    17. [17]

      (17) Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M.; Huang, Y. Nano Res. 2021, 14, 3497. doi:10.1007/s12274-021-3639-x

    18. [18]

      (18) Ting, L. R. L.; Piqué, O.; Lim, S. Y.; Tanhaei, M.; Calle-Vallejo, F.; Yeo, B. S. ACS Catal. 2020, 10, 4059. doi:10.1021/acscatal.9b05319

    19. [19]

      (19) Scarabelli, L.; Sun, M.; Zhuo, X.; Yoo, S.; Millstone, J. E.; Jones, M. R.; Liz-Marzan, L. M. Chem. Rev. 2023, 123, 3493. doi:10.1021/acs.chemrev.3c00033

    20. [20]

      (20) Zaza, L.; Rossi, K.; Buonsanti, R. ACS Energy Lett. 2022, 7, 1284. doi:10.1021/acsenergylett.2c00035

    21. [21]

      (21) Rong, S.; Wang, X. Chem. Commun. 2022, 58, 11475. doi:10.1039/d2cc04332g

    22. [22]

      (22) Xia, Z.; Guo, S. Chem. Soc. Rev. 2019, 48, 3265. doi:10.1039/c8cs00846a

    23. [23]

      (23) Yu, S.; Yang, H. Chem. Commun. 2023, 59, 4852. doi:10.1039/d3cc00590a

    24. [24]

      (24) Zhang, G.; Ma, Y.; Liu, F.; Tong, Z.; Sha, J.; Zhao, W.; Liu, M.; Zheng, Y. Front. Chem. 2021, 9, 671220. doi:10.3389/fchem.2021.671220

    25. [25]

      (25) Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.:Condens. Matter 2002, 14, 2717. doi:10.1088/0953-8984/14/11/301

    26. [26]

      (26) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi:10.1103/PhysRevLett.77.3865

    27. [27]

      (27) Wang, X.; Wang, Z.; García de Arquer, F. P.; Dinh, C.-T.; Ozden, A.; Li, Y. C.; Nam, D.-H.; Li, J.; Liu, Y.-S.; Wicks, J.; et al. Nat. Energy 2020, 5, 478. doi:10.1038/s41560-020-0607-8

    28. [28]

      (28) Li, F.; Thevenon, A.; Rosas-Hern;ez, A.; Wang, Z.; Li, Y.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y.; et al. Nature 2020, 577, 509. doi:10.1038/s41586-019-1782-2

    29. [29]

      (29) Wang, Y.; Wang, Z.; Dinh, C.-T.; Li, J.; Ozden, A.; Golam Kibria, M.; Seifitokaldani, A.; Tan, C.-S.; Gabardo, C. M.; Luo,M; et al. Nat. Catal. 2019, 3, 98. doi:10.1038/s41929-019-0397-1

    30. [30]

      (30) Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J. Comp. Mater. Sci. 2003, 28, 250. doi:10.1016/s0927-0256(03)00111-3

    31. [31]

      (31) Zheng, Y.; Zhang, G.; Ma, Y.; Kong, Y.; Liu, F.; Liu, M. CrystEngComm 2022, 24, 2451. doi:10.1039/D1CE01505B

    32. [32]

      (32) Wu, S.; Jia, Q.; Wang, Y.; Liu, F.; Zhang, G.; Zhang, H.; Zhang, H.; Liu, M.; Zheng, Y. Ceram. Int. 2022, 48, 30367. doi:10.1016/j.ceramint.2022.06.310

    33. [33]

      (33) Wu, J.; Huang, Y.; Ye, W.; Li, Y. Adv. Sci. 2017, 4, 1700194. doi:10.1002/advs.201700194

    34. [34]

      (34) Ou, L.; He, Z.; Yang, H.; Chen, Y. ACS Omega 2021, 6, 17839. doi:10.1021/acsomega.1c01062

    35. [35]

      (35) Liu, H.; Yang, B. Chem. Commun. 2022, 58, 709. doi:10.1039/d1cc06735d

    36. [36]

      (36) Zhu, C.; Chen, A.; Mao, J.; Wu, G.; Li, S.; Dong, X.; Li, G.; Jiang, Z.; Song, Y. Small. Strut. 2023, 4, 2200328. doi:10.1002/sstr.202200328

    37. [37]

      (37) Hammer, B.; Nørskov, J. K. Surf. Sci. 1995, 343, 211. doi:10.1016/0039-6028(96)80007-0

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    15. [15]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    16. [16]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    17. [17]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

Metrics
  • PDF Downloads(1)
  • Abstract views(386)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return