Citation: Xue Xiao, Jiachun Li, Xiangtong Meng, Jieshan Qiu. 硫掺杂碳包覆Fe0.95S1.05纳米球复合材料的储钠性能[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230700. doi: 10.3866/PKU.WHXB202307006
-
铁硫化物因其较高的理论容量,被认为是一种很有前途的钠离子电池负极材料。然而,铁硫化物在充放电过程中存在较大的体积变化,导致其倍率性能和稳定性较差。本文通过简单的一步法策略,制备了一种具有三维簇状结构的硫掺杂碳包覆的Fe0.95S1.05纳米球(Fe0.95S1.05@SC),并研究了其储钠性能。硫掺杂碳层可提高材料的导电率,缓解Fe0.95S1.05纳米球在反应过程中产生的体积膨胀,故提升了材料的稳定性。Fe0.95S1.05@SC的相互贯通的簇状结构,为电子和离子的传输提供了通道,使材料具备优异的倍率性能。在半电池体系中,Fe0.95S1.05@SC在0.1 A·g-1下循环100圈后,保留614.7 mAh·g-1的高比容量,10 A·g-1下比容量仍可以达到235.7 mAh·g-1。在全电池体系中,在0.1和10 A·g-1时,Fe0.95S1.05@SC的可逆容量分别为482.8和288.3 mAh·g-1。该材料具有良好电化学性能,在钠离子电池中具有广阔的应用前景。
-
-
[1]
(1) Perveen, T.; Siddiq, M.; Shahzad, N.; Ihsan, R.; Ahmad, A.; Shahzad, M. Renew. Sust. Energ. Rev. 2020, 119, 109549. doi:10.16/j.rser.2019.109549
-
[2]
(2) Bai, Y.; Liu, Y.; Li, Y.; Ling, L.; Wu, F.; Wu, C. RSC Adv. 2017, 7, 5519. doi:10.1039/c6ra27212f
-
[3]
(3) Zhao, L.; Zhang, T.; Li, W.; Li, T.; Zhang, L.; Zhang, X.; Wang, Z. Engineering 2023, doi:10.1016/j.eng.2021.08.032
-
[4]
(4) Zhang, T.; Li, C.; Wang, F.; Noori, A.; Mousavi, M.; Xia, X.; Zhang, Y. Chem. Rec. 2022, 22, e202200083. doi:10.1002/tcr.202200083
-
[5]
(5) Hwang, J.; Myung, S.; Sun, Y. Chem. Soc. Rev. 2017, 46, 3529. doi:10.1039/c6cs00776g
-
[6]
(6) Nayak, P.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. doi:10.1002/anie.201703772
-
[7]
(7) Sun, L.; Xie, J.; Zhang, X.; Zhang, L.; Wu, J.; Shao, R.; Jiang, R.; Jin, Z. Dalton Trans. 2020, 49, 15712. doi:10.1039/D0DT03258A
-
[8]
(8) Ma, L.; Chen, R.; Hu, Y.; Zhu, G.; Chen, T.; Lu, H.; Liang, J.; Tie, Z.; Jin, Z.; Liu, J. Nanoscale 2016, 8, 17911. doi:10.1039/C6NR06307A
-
[9]
(9) Sun, L.; Song, X.; Liu, Y.; Xie, J.; Wu, J.; Cheng, F.; Zhang, X.; Tie, Z.; Jin, Z. FlatChem 2021, 28, 100258. doi:10.1016/j.flatc.2021.100258
-
[10]
(10) Chen, T.; Cheng, B.; Chen, R.; Hu, Y.; Lv, H.; Zhu, G.; Wang, Y.; Ma, L.; Liang, J.; Tie, Z.; et al. ACS Appl. Mater. Interfaces 2016, 8, 26834. doi:10.1021/acsami.6b08911
-
[11]
-
[12]
(12) Zhang, H.; Huang, Y.; Ming, H.; Cao, G.; Zhang, W.; Ming, J.; Chen, R. J. Mater. Chem. A 2020, 8, 1604. doi:10.1039/C9TA09984K
-
[13]
(13) Miao, X.; Sun, D.; Zhou, X.; Lei, Z. Chem. Eng. J. 2019, 364, 208. doi:10.1016/j.cej.2019.01.158
-
[14]
(14) Xiao, Y.; Lee, S.; Sun, Y. Adv. Energy Mater. 2017, 7, 1601329. doi:10.1002/aenm.201601329
-
[15]
(15) Zhang, K.; Park, M.; Zhou, L.; Lee, G.; Shin, J.; Hu, Z.; Chou, S.; Chen, J.; Kang, Y. Angew.Chem. Int. Ed. 2016, 55, 12822. doi:10.1002/anie.201607469
-
[16]
(16) Zhu, Y.; Nie, P.; Shen, L.; Dong, S.; Sheng, Q.; Li, H.; Luo, H.; Zhang, X. Nanoscale 2015, 7, 3309. doi:10.1039/C4NR05242K
-
[17]
(17) Walter, M.; Zünd, T.; Kovalenko, M. Nanoscale 2015, 7, 9158. doi:10.1039/C5NR00398A
-
[18]
(18) Wang, Y.; Yang, J.; Chou, S.; Liu, H.; Zhang, W.; Zhao, D.; Dou, S. Nat. Commun. 2015, 6, 8689. doi:10.1038/ncomms9689
-
[19]
(19) Bu, F.; Xiao, P.; Chen, J.; Aly, A. M.; Shakir, I.; Xu, Y. J. Mater. Chem. A 2018, 6, 6414. doi:10.1039/c7ta11111h
-
[20]
(20) Kandula, S.; Sik, Y. B.; Cho, J.; Lim, H.; Gon, S. J. Chem. Eng. J. 2022, 439, 135678. doi:10.1016/j.cej.2022.135678
-
[21]
(21) Ma, H.; Su, D.; Klein, H. A.; Jin, G.; Guo, X. Carbon 2006, 44, 2254. doi:10.1016/j.carbon.2006.02.033
-
[22]
(22) Qian, J.; Wu, F.; Ye, Y.; Zhang, M.; Huang, Y.; Xing, Y.; Qu, W.; Li, L.; Chen, R. Adv. Energy Mater. 2018, 8, 1703159. doi:10.1002/aenm.201703159
-
[23]
(23) Pan, Q.; Zheng, F.; Liu, Y.; Li, Y.; Zhong, W.; Chen, G.; Hu, J.; Yang, C.; Liu, M. J. Mater. Chem. A 2019, 7, 20229. doi:10.1039/c9ta07302g
-
[24]
(24) Xiao, Y.; Hwang, J.; Belharouak, I.; Sun, Y. ACS Energy Lett. 2017, 2, 364. doi:10.1021/acsenergylett.6b00660
-
[25]
(25) Huang, S.; Li, Y.; Chen, S.; Wang, Y.; Wang, Z.; Fan, S.; Zhang, D.; Yang, H. Energy Storage Mater. 2020, 32, 151. doi:10.1016/j.ensm.2020.06.039
-
[26]
(26) Wang, Q.; Zhang, W.; Guo, C.; Liu, Y.; Wang, C.; Guo, Z. Adv. Funct. Mater. 2017, 27, 1703390. doi:10.1002/adfm.201703390
-
[27]
(27) Xu, Y.; Li, W.; Zhang, F.; Zhang, X.; Zhang, W.; Lee, C.; Tang, Y. J. Mater. Chem. A 2016, 4, 3697. doi:10.1039/C5TA09138A
-
[28]
(28) Chen, B.; Qin, H.; Li, K.; Zhang, B.; Liu, E.; Zhao, N.; Shi, C.; He, C. Nano Energy 2019, 66, 104133. doi:10.1016/j.nanoen.2019.104133
-
[29]
(29) Lu, Z.; Wang, N.; Zhang, Y.; Xue, P.; Guo, M.; Tang, B.; Xu, X.; Wang, W.; Bai, Z.; Dou, S. ACS Appl. Energy Mater. 2018, 1, 6234. doi:10.1021/acsaem.8b01239
-
[30]
(30) Luo, W.; Cao, X.; Liang, S.; Huang, J.; Su, Q.; Wang, Y.; Fang, G.; Shan, L.; Zhou, J. ACS Appl. Energy Mater. 2019, 2, 4567. doi:10.1021/acsaem.9b00632
-
[31]
(31) Peng, Q.; Lu, Y.; Qi, S.; Liang, M.; Xu, D.; Sun, W.; Lv, L.; Wei, Y.; Chen, S.; Wang, Y. ACS Appl. Energy Mater. 2022, 5, 3199. doi:10.1021/acsaem.1c03810
-
[32]
(32) Xia, G.; Li, X.; Gu, Y.; Dong, P.; Zhang, Y.; Duan, J.; Wang, D.; Zhang, Y. Ionics 2020, 27, 191. doi:10.1007/s11581-020-03818-9
-
[33]
(33) Xie, D.; Cai, S.; Sun, X.; Hou, T.; Shen, K.; Ling, R.; Fan, A.; Zhang, R.; Jiang, S.; Lin, Y. Inorg. Chem. Commun. 2020, 11, 107635. doi:10.1016/j.inoche.2019.107635
-
[34]
(34) Haridas, A.; Angulakshmi, N.; Stephan, A.; Lee, Y.; Ahn, J. Molecules 2021, 26, 4349. doi:10.3390/molecules26144349
-
[35]
(35) Chen, Y.; Zhao, Y.; Liu, H.; Ma, T. ACS Omega 2023, 8, 9145. doi:10.1021/acsomega.2c06429
-
[36]
(36) Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Nat. Commun. 2015, 6, 6929. doi:10.1038/ncomms7929
-
[37]
(37) Fang, Y.; Yu, X.; Lou, X. Angewa. Chem. Int. Ed. 2018, 57, 9859. doi:10.1002/anie.201805552
-
[38]
(38) Fang, G.; Wu, Z.; Zhou, J.; Zhu, C.; Cao, X.; Lin, T.; Chen, Y.; Wang, C.; Pan, A.; Liang, S. Adv. Energy Mater. 2018, 8, 1703115. doi:10.1002/aenm.201703155
-
[1]
-
-
[1]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[2]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[3]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[4]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[5]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[6]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[7]
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
-
[8]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[9]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[10]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[11]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[12]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[13]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[14]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[15]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[16]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[17]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[18]
Yueguang Chen , Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074
-
[19]
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
-
[20]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(345)
- HTML views(25)