Citation: Yanhui Guo, Li Wei, Zhonglin Wen, Chaorong Qi, Huanfeng Jiang. Recent Progress on Conversion of Carbon Dioxide into Carbamates[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230700. doi: 10.3866/PKU.WHXB202307004
-
Carbon dioxide (CO2) serves as one of the major greenhouse gases in the atmosphere. However, it is also abundant, non-toxic, and renewable, making it a valuable one-carbon source. Therefore, converting CO2 into valuable chemicals holds immense significance as an effective approach towards achieving carbon neutrality. Nevertheless, due to CO2’s thermodynamic stability and kinetic inertness, its activation and conversion present considerable challenges. Organic carbamates, both cyclic and acyclic, represent a crucial class of bioactive compounds found in various natural products, agricultural chemicals, and pharmaceutically relevant molecules. They are also widely used as essential intermediates in organic synthesis. Unfortunately, traditional methods for preparing organic carbamates often rely on highly toxic phosgene and its derivatives as raw materials, posing serious environmental and safety concerns and limiting practical applications. From a cost-effective and sustainable standpoint, substituting CO2 for phosgene in the synthesis of organic carbamates is highly appealing. In recent decades, numerous new reactions, particularly multicomponent reactions involving CO2 and amines, have emerged, providing efficient methods for constructing diverse and valuable carbamates. Some of these reactions can be conducted under transition-metal-free conditions, utilizing organic and inorganic bases, ionic liquids, or small organic molecules as catalysts or promoters. However, in certain cases, transition-metal catalysts, such as those based on copper, palladium, or silver, are required, especially when the reactions involve activating unsaturated hydrocarbons like alkenes and alkynes. Mechanistically, most of these methods involve in situ generation of nucleophilic CO2-amine adducts, such as carbamate salts or carbamic acids, which then react with other electrophiles or coupling partners to yield the desired carbamates. Notably, recent advancements have led to the successful development of several elegant methods for synthesizing specific types of carbamates using electrocatalysis or photocatalysis, which are not achievable through conventional thermal catalysis. This review comprehensively summarizes the recent progress in the synthesis of organic carbamates using CO2 and amines under various catalytic conditions, including transition metal-free conditions, transition metal-catalysis, electrocatalysis, and photocatalysis. Additionally, the review discusses the challenges and future prospects associated with converting CO2 into organic carbamates.
-
-
[1]
(1) Yu, D. Y.; Teong, S. P.; Zhang, Y. G. Coord. Chem. Rev. 2015, 293, 279. doi: 10.1016/j.ccr.2014.09.002
-
[2]
(2) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. doi: 10.1021/acscatal.6b02124
-
[3]
(3) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524. doi: 10.1039/C5CS00895F
-
[4]
(4) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861. doi: 10.1039/C7CS00065K
-
[5]
(5) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G. Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439. doi: 10.1016/j.ccr.2018.07.011
-
[6]
(6) Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466. doi: 10.1039/c9cs00047j
-
[7]
(7) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382. doi: 10.1039/C8CS00281A
-
[8]
(8) Yeung, C. S. Angew. Chem. Int. Ed. 2019, 58, 5492. doi: 10.1002/anie.201806285
-
[9]
(9) Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. doi: 10.6023/cjoc202004030
-
[10]
(10) Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China Chem. 2020, 63, 1336. doi: 10.1007/s11426-020-9788-2
-
[11]
(11) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871. doi: 10.1021/acscatal.0c03127
-
[12]
(12) Tortajada, A.; Börjesson, M.; Martin. R. Acc. Chem. Res. 2021, 54, 3941. doi: 10.1021/acs.accounts.1c00480
-
[13]
(13) Ghosh, A. K.; Brindisi, M. J. Med. Chem. 2015, 58, 2895. doi: 10.1021/jm501371s
-
[14]
(14) Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. J. Agric. Food Chem. 2016, 64, 2145. doi: 10.1021/acs.jafc.5b05437
-
[15]
(15) Hara, S.; Ishikawa, N.; Hara, Y.; Nehira, T.; Sakai, K.; Gonoi, T.; Ishi-bashi, M. J. Nat. Prod. 2017, 80, 565. doi: 10.1021/acs.jnatprod.6b00935
-
[16]
(16) Pandey, G.; Khamrai, J.; Mishra, A. Org. Lett. 2018, 20, 166. doi: 10.1021/acs.orglett.7b03537
-
[17]
(17) Chiacchio, M. A.; Lanza, G.; Chiacchio, U.; Giofrè, S. V.; Romeo, R.; Iannazzo, D.; Legnani, L. Curr. Med. Chem. 2019, 26, 7337. doi: 10.2174/0929867326666181203130402
-
[18]
(18) Marchese, A. D.; Wollenburg, M.; Mirabi, B.; Abel-Snape, X.; Whyte, A.; Glorius, F.; Lautens, M. ACS Catal. 2020, 10, 4780. doi: 10.1021/acscatal.0c00841
-
[19]
(19) Wang, Y.; Wu, S.-B.; Shi, W.-J.; Shi, Z.-J. Org. Lett. 2016, 18, 2548. doi: 10.1021/acs.orglett.6b00819
-
[20]
(20) Tobisu, M.; Yasui, K.; Aihara, Y.; Chatani, N. Angew. Chem. Int. Ed. 2017, 56, 1877. doi: 10.1002/anie.201610409
-
[21]
(21) Guo, W.; Gómez, J. E.; Cristòfol, À.; Xie, J.; Kleij, A. W. Angew. Chem. Int. Ed. 2018, 57, 13735. doi: 10.1002/anie.201805009
-
[22]
(22) Yasui, K.; Chatani, N.; Tobisu, M. Org. Lett. 2018, 20, 2108. doi: 10.1021/acs.orglett.8b00674
-
[23]
(23) Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. ACS Omega 2020, 5, 7406. doi: 10.1021/acsomega.9b04450
-
[24]
(24) Tanaka, J.; Shibata, Y.; Joseph, A.; Nogami, J.; Terasawa, J.; Yoshimura R.; Tanaka, K. Chem.-Eur. J. 2020, 26, 5774. doi: 10.1002/chem.202000253
-
[25]
(25) Tanaka, J.; Nagashima, Y.; Tanaka, K. Org. Lett. 2020, 22, 7181. doi: 10.1021/acs.orglett.0c02499
-
[26]
(26) Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. doi: 10.1021/ja100783c
-
[27]
(27) Lo, H.-J.; Lin, C.-Y.; Tseng, M.-C.; Chein, R.-J. Angew. Chem. Int. Ed. 2014, 53, 9026. doi: 10.1002/anie.201404495
-
[28]
(28) Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262. doi: 10.1039/C3CC47431C
-
[29]
(29) Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52. doi: 10.1002/cssc.201402837
-
[30]
(30) Vessally, E.; Mohammadi, R.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. J. CO2 Util. 2018, 24, 361. doi: 10.1016/j.jcou.2018.01.015
-
[31]
(31) Schilling, W.; Das, S. ChemSusChem 2020, 13, 6246. doi: 10.1002/cssc.202002073
-
[32]
(32) Xiong, T.-K.; Li, X.-J.; Zhang, M.; Liang, Y. Org. Biomol. Chem. 2020, 18, 7774. doi: 10.1039/D0OB01590C
-
[33]
(33) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. doi: 10.1016/S1872-2067(21)64029-9
-
[34]
(34) Leino, E.; Mäki-Arvela, P.; Eränen, K.; Tenho, M.; Murzina, D. Y.; Salmi, T.; Mikkolaa, J.-P. Chem. Eng. J. 2011, 176, 124. doi: 10.1016/j.cej.2011.07.054
-
[35]
(35) Ma, J.; Song, J. L.; Liu, H. Z.; Liu, J. L.; Zhang, Z. F.; Jiang, T.; Fan, H. L.; Han, B. X. Green Chem. 2012, 14, 1743. doi: 10.1039/C2GC35150A
-
[36]
(36) Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519. doi: 10.1039/C2GC16039K
-
[37]
(37) Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem 2012, 5, 1793. doi: 10.1002/cssc.201200091
-
[38]
(38) Wang, B. S.; Elageed, E. H. M.; Zhang, D.; Yang, S. J.; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278. doi: 10.1002/cctc.201300801
-
[39]
(39) Wang, B.; Luo, Z.; Elageed, E. H.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830. doi: 10.1002/cctc.201500928
-
[40]
(40) Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119. doi: 10.1007/s10562-017-2217-z
-
[41]
(41) Zhang, W.; Xia, T.; Yang, X.; Lu, X. Chem. Commun. 2015, 51, 6175. doi: 10.1039/C5CC01530H
-
[42]
(42) Niemi, T.; Fernandez, I.; Steadman, B.; Mannisto, J. K.; Repo, T. Chem. Commun. 2018, 54, 3166. doi: 10.1039/C8CC00636A
-
[43]
(43) Yousefi, R.; Struble, T. J.; Payne, J. L.; Vishe, M.; Schley, N. D.; Johnston, J. N. J. Am. Chem. Soc. 2019, 141, 618. doi: 10.1021/jacs.8b11793
-
[44]
(44) Kumar, N.; Kulsoom, M.; Shukla, V.; Kumar, D.; Kumar, S.; Tiwari, J.; Dwivedi, N. Environ. Sci. Pollut. Res. 2018, 25, 29505. doi: 10.1007/s11356-018-2993-z
-
[45]
(45) Kovaleva, E. L.; Belanova, A. I.; Panova, L. I.; Zakharchenko, A. A. Pharm. Chem. J. 2018, 52, 84. doi: 10.1007/s11094-018-1769-6
-
[46]
(46) Bezrodnykh, E. A.; Vyshivannaya, O. V.; Polezhaev, A. V.; Abramchuk, S. S.; Blagodatskikh, I. V.; Tikhonov, V. E. Int. J. Biol. Macromol. 2020, 155, 979. doi: 10.1016/j.ijbiomac.2019.11.059
-
[47]
(47) Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12, 1340. doi: 10.1021/ol100259j
-
[48]
(48) Zhang, W.-Z.; Ren, X.; Lu, X.-B. Chin. J. Chem. 2015, 33, 610. doi: 10.1002/cjoc.201500011
-
[49]
(49) Xiong, W.; Qi, C.; Peng, Y.; Guo, T.; Zhang, M.; Jiang, H. Chem. Eur. J. 2015, 21, 14314. doi: 10.1002/chem.201502689
-
[50]
(50) Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem. Int. Ed. 2015, 54, 3084. doi: 10.1002/anie.201410605
-
[51]
(51) Riemer, D.; Hirapara, P.; Das, S. ChemSusChem 2016, 9, 1916. doi: 10.1002/cssc.201600521
-
[52]
(52) Peng, Y.; Liu, J.; Qi, C.; Yuan, G.; Li, J.; Jiang, H. Chem. Commun. 2017, 53, 2665. doi: 10.1039/C6CC09762F
-
[53]
(53) Wang, S.; Zhang, X.; Cao, C.; Chen, C.; Xi, C. Green Chem. 2017, 19, 4515. doi: 10.1039/c7gc01992k
-
[54]
(54) Zhang, Q.; Yuan, H.-Y.; Fukaya, N.; Choi, J.-C. ACS Sustain. Chem. Eng. 2018, 6, 6675. doi: 10.1021/acssuschemeng.8b00449
-
[55]
(55) Xiong, W.; Qi, C.; Cheng, R.; Zhang, H.; Wang, L.; Yan, D.; Jiang, H. Chem. Commun. 2018, 54, 5835. doi: 10.1039/C8CC01732H
-
[56]
(56) Franz, M.; Stalling, T.; Steinert, H.; Martens, J. Org. Biomol. Chem. 2018, 16, 8292. doi: 10.1039/C8OB01865K
-
[57]
(57) Zhang, Q.; Yuan, H.-Y.; Lin, X.-T.; Fukaya, N.; Fujitani, T.; Sato, K.; Choi, J.-C. Green Chem. 2020, 22, 4231. doi: 10.1039/D0GC01402H
-
[58]
(58) Sharma, S.; Singh, A. K.; Singh, D.; Kim, D. Green Chem. 2015, 17, 1404. doi: 10.1039/C4GC02089H
-
[59]
(59) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022. doi: 10.1002/anie.201603352
-
[60]
(60) Xiong, W.; Qi, C.; Guo, T.; Zhang, M.; Chen, K.; Jiang, H. Green Chem. 2017, 19, 1642. doi: 10.1039/C6GC03465A
-
[61]
(61) Bernoud, E.; Company, A.; Ribas, X. J. Organometal. Chem. 2017, 845, 44. doi: 10.1016/j.jorganchem.2017.02.004
-
[62]
(62) Luo, X.; Song, X.; Xiong, W.; Li, J.; Li, M.; Zhu, Z.; Wei, S.; Chan, A. S. C.; Zou, Y. Org. Lett. 2019, 21, 2013. doi: 10.1021/acs.orglett.9b00122
-
[63]
(63) Wang, L.; Qi, C.; Cheng, R.; Liu, H.; Xiong, W.; Jiang, H. Org. Lett. 2019, 21, 7386. doi: 10.1021/acs.orglett.9b02698
-
[64]
(64) Ran, C.-K.; Huang, H.; Li, X.-H.; Wang, W.; Ye, J.-H.; Yan, S.-S.; Wang, B.-Q.; Feng, C.; Yu, D.-G. Chin. J. Chem. 2020, 38, 69. doi: 10.1002/cjoc.201900384
-
[65]
(65) Wang, L.; Wang, P.; Guo, T.; Xiong, W.; Kang, B.; Qi, C.; Luo, G.; Luo, Y.; Jiang, H. Org. Chem. Front. 2021, 8, 1851. doi: 10.1039/D0QO01607A
-
[66]
(66) Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450. doi: 10.1016/j.tet.2013.09.087
-
[67]
(67) Cai, J.; Zhang, M.; Zhao, X. Eur. J. Org. Chem. 2015, 2015, 5925. doi: 10.1002/ejoc.201500769
-
[68]
(68) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914. doi: 10.1039/C6SC00419A
-
[69]
(69) Xiong, W.; Yan, D.; Qi, C.; Jiang, H. Org. Lett. 2018, 20, 672. doi: 10.1021/acs.orglett.7b03808
-
[70]
(70) Zhou, C.; Dong, Y.; Yu, J.-T.; Sun, S.; Cheng, J. Chem. Commun. 2019, 55, 13685. doi: 10.1039/C9CC07027C
-
[71]
(71) Xiong, W.; Cheng, R.; Wu, B.; Wu, W.; Qi, C.; Jiang, H. Sci. China Chem. 2020, 63, 331. doi: 10.1007/s11426-019-9679-6
-
[72]
(72) Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967. doi: 10.1002/cssc.201501176
-
[73]
(73) Sekine, K.; Kobayashi, R.; Yamada, T. Chem. Lett. 2015, 44, 1407. doi: 10.1246/cl.150584
-
[74]
(74) Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588. doi: 10.1021/acscatal.7b03370
-
[75]
(75) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. Chin. J. Chem. 2018, 36, 399. doi: 10.1002/cjoc.201700808
-
[76]
(76) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. J. CO2 Util. 2018, 24, 120. doi: 10.1016/j.jcou.2017.12.013
-
[77]
(77) Zhang, M.; Zhao, X.; Zheng, S. Chem. Commun. 2014, 50, 4455. doi: 10.1039/C4CC00413B
-
[78]
(78) Watile, R.A.; Bhanage, B.M. RSC Adv. 2014, 4, 23022. doi: 10.1039/C4RA03836C
-
[79]
(79) Shang, J.; Guo, X.; Li, Z.; Deng, Y. Green Chem. 2016, 18, 3082. doi: 10.1039/C5GC02772A
-
[80]
(80) Jiang, H.; Zhang, H.; Xiong, W.; Qi, C.; Wu, W.; Wang, L.; Cheng, R. Org. Lett. 2019, 21, 1125. doi: 10.1021/acs.orglett.9b00072
-
[81]
(81) Wang, J.; Quian, P.; Hu, K.; Zha, Z.; Wang, Z. ChemElectroChem 2019, 6, 4292. doi: 10.1002/celc.201801724
-
[82]
(82) Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328. doi: 10.1039/D1GC00949D
-
[83]
(83) Fu, Z. Y.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F. B.; Xie, T.; Wang, D. B.; Li, J.; Li, X. M.; Zeng, G. M.; et al. J. CO2 Util. 2019, 34, 63. doi: 10.1016/j.jcou.2019.05.032
-
[84]
(84) Wang, C. L.; Sun, Z. X.; Zheng, Y.; Hu, Y. H. J. Mater. Chem. A 2019, 7, 865. doi: 10.1039/c8ta09865d
-
[85]
(85) Schwalbe, M.; Huang, H.; Li, G. H. ChemPhotoChem 2022, 6, e20210021. doi: 10.1002/cptc.202100217
-
[86]
(86) Huang, W.; Lin, J. Y.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220. doi: 10.1002/ajoc.202200220
-
[87]
(87) Qiu, L.-Q.; Yao, X. Y.; Zhang, Y.-K.; Li, H.-R.; He, L.-N. J. Org. Chem. 2023, 88, 4942. doi: 10.1021/acs.joc.2c02179
-
[88]
(88) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H.; Green Chem. 2017, 19, 1240. doi: 10.1039/C6GC03200A
-
[89]
(89) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190. doi: 10.1021/acs.orglett.7b03551
-
[90]
(90) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049. doi: 10.1021/acs.orglett.8b01079
-
[91]
(91) Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579. doi: 10.1021/acs.orglett.9b02700
-
[92]
(92) Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890. doi: 10.1039/D0GC00910E
-
[93]
(93) Wang, L.; Shi, F.; Qi, C.; Xu, W.; Xiong, W.; Kang, B.; Jiang, H. Chem. Sci. 2021, 12, 11821. doi: 10.1039/D1SC03366B
-
[94]
(94) Guo, Y. H.; Wei, L.; Wen, Z. L.; Jiang, H.; Qi, C. Chem. Commun. 2023, 59, 764. doi: 10.1039/D2CC06033G
-
[95]
(95) Sahari, A.; Puumi, J.; Mannisto, J. K.; Repo, T. J. Org. Chem. 2023, 88, 3822. doi: 10.1021/acs.joc.3c00023
-
[1]
-
-
[1]
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
-
[2]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[3]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[4]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[5]
Yan Li , Xinze Wang , Xue Yao , Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene E→Z Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053
-
[6]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[7]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[8]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[9]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[10]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[11]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[12]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[13]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[14]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[15]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[16]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[17]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[18]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[19]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[20]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(411)
- HTML views(37)