Citation: Yanhui Guo,  Li Wei,  Zhonglin Wen,  Chaorong Qi,  Huanfeng Jiang. Recent Progress on Conversion of Carbon Dioxide into Carbamates[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230700. doi: 10.3866/PKU.WHXB202307004 shu

Recent Progress on Conversion of Carbon Dioxide into Carbamates

  • Corresponding author: Chaorong Qi,  Huanfeng Jiang, 
  • Received Date: 3 July 2023
    Revised Date: 1 August 2023
    Accepted Date: 1 August 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2022YFB4101800), the National Natural Science Foundation of China (21971073, 22271098), the Natural Science Foundation of Guangdong Province, China (2019A1515011468).

  • Carbon dioxide (CO2) serves as one of the major greenhouse gases in the atmosphere. However, it is also abundant, non-toxic, and renewable, making it a valuable one-carbon source. Therefore, converting CO2 into valuable chemicals holds immense significance as an effective approach towards achieving carbon neutrality. Nevertheless, due to CO2’s thermodynamic stability and kinetic inertness, its activation and conversion present considerable challenges. Organic carbamates, both cyclic and acyclic, represent a crucial class of bioactive compounds found in various natural products, agricultural chemicals, and pharmaceutically relevant molecules. They are also widely used as essential intermediates in organic synthesis. Unfortunately, traditional methods for preparing organic carbamates often rely on highly toxic phosgene and its derivatives as raw materials, posing serious environmental and safety concerns and limiting practical applications. From a cost-effective and sustainable standpoint, substituting CO2 for phosgene in the synthesis of organic carbamates is highly appealing. In recent decades, numerous new reactions, particularly multicomponent reactions involving CO2 and amines, have emerged, providing efficient methods for constructing diverse and valuable carbamates. Some of these reactions can be conducted under transition-metal-free conditions, utilizing organic and inorganic bases, ionic liquids, or small organic molecules as catalysts or promoters. However, in certain cases, transition-metal catalysts, such as those based on copper, palladium, or silver, are required, especially when the reactions involve activating unsaturated hydrocarbons like alkenes and alkynes. Mechanistically, most of these methods involve in situ generation of nucleophilic CO2-amine adducts, such as carbamate salts or carbamic acids, which then react with other electrophiles or coupling partners to yield the desired carbamates. Notably, recent advancements have led to the successful development of several elegant methods for synthesizing specific types of carbamates using electrocatalysis or photocatalysis, which are not achievable through conventional thermal catalysis. This review comprehensively summarizes the recent progress in the synthesis of organic carbamates using CO2 and amines under various catalytic conditions, including transition metal-free conditions, transition metal-catalysis, electrocatalysis, and photocatalysis. Additionally, the review discusses the challenges and future prospects associated with converting CO2 into organic carbamates.
  • 加载中
    1. [1]

      (1) Yu, D. Y.; Teong, S. P.; Zhang, Y. G. Coord. Chem. Rev. 2015, 293, 279. doi: 10.1016/j.ccr.2014.09.002

    2. [2]

      (2) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. doi: 10.1021/acscatal.6b02124

    3. [3]

      (3) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524. doi: 10.1039/C5CS00895F

    4. [4]

      (4) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861. doi: 10.1039/C7CS00065K

    5. [5]

      (5) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G. Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439. doi: 10.1016/j.ccr.2018.07.011

    6. [6]

      (6) Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466. doi: 10.1039/c9cs00047j

    7. [7]

      (7) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382. doi: 10.1039/C8CS00281A

    8. [8]

      (8) Yeung, C. S. Angew. Chem. Int. Ed. 2019, 58, 5492. doi: 10.1002/anie.201806285

    9. [9]

      (9) Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. doi: 10.6023/cjoc202004030

    10. [10]

      (10) Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China Chem. 2020, 63, 1336. doi: 10.1007/s11426-020-9788-2

    11. [11]

      (11) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871. doi: 10.1021/acscatal.0c03127

    12. [12]

      (12) Tortajada, A.; Börjesson, M.; Martin. R. Acc. Chem. Res. 2021, 54, 3941. doi: 10.1021/acs.accounts.1c00480

    13. [13]

      (13) Ghosh, A. K.; Brindisi, M. J. Med. Chem. 2015, 58, 2895. doi: 10.1021/jm501371s

    14. [14]

      (14) Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. J. Agric. Food Chem. 2016, 64, 2145. doi: 10.1021/acs.jafc.5b05437

    15. [15]

      (15) Hara, S.; Ishikawa, N.; Hara, Y.; Nehira, T.; Sakai, K.; Gonoi, T.; Ishi-bashi, M. J. Nat. Prod. 2017, 80, 565. doi: 10.1021/acs.jnatprod.6b00935

    16. [16]

      (16) Pandey, G.; Khamrai, J.; Mishra, A. Org. Lett. 2018, 20, 166. doi: 10.1021/acs.orglett.7b03537

    17. [17]

      (17) Chiacchio, M. A.; Lanza, G.; Chiacchio, U.; Giofrè, S. V.; Romeo, R.; Iannazzo, D.; Legnani, L. Curr. Med. Chem. 2019, 26, 7337. doi: 10.2174/0929867326666181203130402

    18. [18]

      (18) Marchese, A. D.; Wollenburg, M.; Mirabi, B.; Abel-Snape, X.; Whyte, A.; Glorius, F.; Lautens, M. ACS Catal. 2020, 10, 4780. doi: 10.1021/acscatal.0c00841

    19. [19]

      (19) Wang, Y.; Wu, S.-B.; Shi, W.-J.; Shi, Z.-J. Org. Lett. 2016, 18, 2548. doi: 10.1021/acs.orglett.6b00819

    20. [20]

      (20) Tobisu, M.; Yasui, K.; Aihara, Y.; Chatani, N. Angew. Chem. Int. Ed. 2017, 56, 1877. doi: 10.1002/anie.201610409

    21. [21]

      (21) Guo, W.; Gómez, J. E.; Cristòfol, À.; Xie, J.; Kleij, A. W. Angew. Chem. Int. Ed. 2018, 57, 13735. doi: 10.1002/anie.201805009

    22. [22]

      (22) Yasui, K.; Chatani, N.; Tobisu, M. Org. Lett. 2018, 20, 2108. doi: 10.1021/acs.orglett.8b00674

    23. [23]

      (23) Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. ACS Omega 2020, 5, 7406. doi: 10.1021/acsomega.9b04450

    24. [24]

      (24) Tanaka, J.; Shibata, Y.; Joseph, A.; Nogami, J.; Terasawa, J.; Yoshimura R.; Tanaka, K. Chem.-Eur. J. 2020, 26, 5774. doi: 10.1002/chem.202000253

    25. [25]

      (25) Tanaka, J.; Nagashima, Y.; Tanaka, K. Org. Lett. 2020, 22, 7181. doi: 10.1021/acs.orglett.0c02499

    26. [26]

      (26) Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. doi: 10.1021/ja100783c

    27. [27]

      (27) Lo, H.-J.; Lin, C.-Y.; Tseng, M.-C.; Chein, R.-J. Angew. Chem. Int. Ed. 2014, 53, 9026. doi: 10.1002/anie.201404495

    28. [28]

      (28) Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262. doi: 10.1039/C3CC47431C

    29. [29]

      (29) Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52. doi: 10.1002/cssc.201402837

    30. [30]

      (30) Vessally, E.; Mohammadi, R.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. J. CO2 Util. 2018, 24, 361. doi: 10.1016/j.jcou.2018.01.015

    31. [31]

      (31) Schilling, W.; Das, S. ChemSusChem 2020, 13, 6246. doi: 10.1002/cssc.202002073

    32. [32]

      (32) Xiong, T.-K.; Li, X.-J.; Zhang, M.; Liang, Y. Org. Biomol. Chem. 2020, 18, 7774. doi: 10.1039/D0OB01590C

    33. [33]

      (33) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. doi: 10.1016/S1872-2067(21)64029-9

    34. [34]

      (34) Leino, E.; Mäki-Arvela, P.; Eränen, K.; Tenho, M.; Murzina, D. Y.; Salmi, T.; Mikkolaa, J.-P. Chem. Eng. J. 2011, 176, 124. doi: 10.1016/j.cej.2011.07.054

    35. [35]

      (35) Ma, J.; Song, J. L.; Liu, H. Z.; Liu, J. L.; Zhang, Z. F.; Jiang, T.; Fan, H. L.; Han, B. X. Green Chem. 2012, 14, 1743. doi: 10.1039/C2GC35150A

    36. [36]

      (36) Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519. doi: 10.1039/C2GC16039K

    37. [37]

      (37) Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem 2012, 5, 1793. doi: 10.1002/cssc.201200091

    38. [38]

      (38) Wang, B. S.; Elageed, E. H. M.; Zhang, D.; Yang, S. J.; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278. doi: 10.1002/cctc.201300801

    39. [39]

      (39) Wang, B.; Luo, Z.; Elageed, E. H.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830. doi: 10.1002/cctc.201500928

    40. [40]

      (40) Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119. doi: 10.1007/s10562-017-2217-z

    41. [41]

      (41) Zhang, W.; Xia, T.; Yang, X.; Lu, X. Chem. Commun. 2015, 51, 6175. doi: 10.1039/C5CC01530H

    42. [42]

      (42) Niemi, T.; Fernandez, I.; Steadman, B.; Mannisto, J. K.; Repo, T. Chem. Commun. 2018, 54, 3166. doi: 10.1039/C8CC00636A

    43. [43]

      (43) Yousefi, R.; Struble, T. J.; Payne, J. L.; Vishe, M.; Schley, N. D.; Johnston, J. N. J. Am. Chem. Soc. 2019, 141, 618. doi: 10.1021/jacs.8b11793

    44. [44]

      (44) Kumar, N.; Kulsoom, M.; Shukla, V.; Kumar, D.; Kumar, S.; Tiwari, J.; Dwivedi, N. Environ. Sci. Pollut. Res. 2018, 25, 29505. doi: 10.1007/s11356-018-2993-z

    45. [45]

      (45) Kovaleva, E. L.; Belanova, A. I.; Panova, L. I.; Zakharchenko, A. A. Pharm. Chem. J. 2018, 52, 84. doi: 10.1007/s11094-018-1769-6

    46. [46]

      (46) Bezrodnykh, E. A.; Vyshivannaya, O. V.; Polezhaev, A. V.; Abramchuk, S. S.; Blagodatskikh, I. V.; Tikhonov, V. E. Int. J. Biol. Macromol. 2020, 155, 979. doi: 10.1016/j.ijbiomac.2019.11.059

    47. [47]

      (47) Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12, 1340. doi: 10.1021/ol100259j

    48. [48]

      (48) Zhang, W.-Z.; Ren, X.; Lu, X.-B. Chin. J. Chem. 2015, 33, 610. doi: 10.1002/cjoc.201500011

    49. [49]

      (49) Xiong, W.; Qi, C.; Peng, Y.; Guo, T.; Zhang, M.; Jiang, H. Chem. Eur. J. 2015, 21, 14314. doi: 10.1002/chem.201502689

    50. [50]

      (50) Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem. Int. Ed. 2015, 54, 3084. doi: 10.1002/anie.201410605

    51. [51]

      (51) Riemer, D.; Hirapara, P.; Das, S. ChemSusChem 2016, 9, 1916. doi: 10.1002/cssc.201600521

    52. [52]

      (52) Peng, Y.; Liu, J.; Qi, C.; Yuan, G.; Li, J.; Jiang, H. Chem. Commun. 2017, 53, 2665. doi: 10.1039/C6CC09762F

    53. [53]

      (53) Wang, S.; Zhang, X.; Cao, C.; Chen, C.; Xi, C. Green Chem. 2017, 19, 4515. doi: 10.1039/c7gc01992k

    54. [54]

      (54) Zhang, Q.; Yuan, H.-Y.; Fukaya, N.; Choi, J.-C. ACS Sustain. Chem. Eng. 2018, 6, 6675. doi: 10.1021/acssuschemeng.8b00449

    55. [55]

      (55) Xiong, W.; Qi, C.; Cheng, R.; Zhang, H.; Wang, L.; Yan, D.; Jiang, H. Chem. Commun. 2018, 54, 5835. doi: 10.1039/C8CC01732H

    56. [56]

      (56) Franz, M.; Stalling, T.; Steinert, H.; Martens, J. Org. Biomol. Chem. 2018, 16, 8292. doi: 10.1039/C8OB01865K

    57. [57]

      (57) Zhang, Q.; Yuan, H.-Y.; Lin, X.-T.; Fukaya, N.; Fujitani, T.; Sato, K.; Choi, J.-C. Green Chem. 2020, 22, 4231. doi: 10.1039/D0GC01402H

    58. [58]

      (58) Sharma, S.; Singh, A. K.; Singh, D.; Kim, D. Green Chem. 2015, 17, 1404. doi: 10.1039/C4GC02089H

    59. [59]

      (59) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022. doi: 10.1002/anie.201603352

    60. [60]

      (60) Xiong, W.; Qi, C.; Guo, T.; Zhang, M.; Chen, K.; Jiang, H. Green Chem. 2017, 19, 1642. doi: 10.1039/C6GC03465A

    61. [61]

      (61) Bernoud, E.; Company, A.; Ribas, X. J. Organometal. Chem. 2017, 845, 44. doi: 10.1016/j.jorganchem.2017.02.004

    62. [62]

      (62) Luo, X.; Song, X.; Xiong, W.; Li, J.; Li, M.; Zhu, Z.; Wei, S.; Chan, A. S. C.; Zou, Y. Org. Lett. 2019, 21, 2013. doi: 10.1021/acs.orglett.9b00122

    63. [63]

      (63) Wang, L.; Qi, C.; Cheng, R.; Liu, H.; Xiong, W.; Jiang, H. Org. Lett. 2019, 21, 7386. doi: 10.1021/acs.orglett.9b02698

    64. [64]

      (64) Ran, C.-K.; Huang, H.; Li, X.-H.; Wang, W.; Ye, J.-H.; Yan, S.-S.; Wang, B.-Q.; Feng, C.; Yu, D.-G. Chin. J. Chem. 2020, 38, 69. doi: 10.1002/cjoc.201900384

    65. [65]

      (65) Wang, L.; Wang, P.; Guo, T.; Xiong, W.; Kang, B.; Qi, C.; Luo, G.; Luo, Y.; Jiang, H. Org. Chem. Front. 2021, 8, 1851. doi: 10.1039/D0QO01607A

    66. [66]

      (66) Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450. doi: 10.1016/j.tet.2013.09.087

    67. [67]

      (67) Cai, J.; Zhang, M.; Zhao, X. Eur. J. Org. Chem. 2015, 2015, 5925. doi: 10.1002/ejoc.201500769

    68. [68]

      (68) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914. doi: 10.1039/C6SC00419A

    69. [69]

      (69) Xiong, W.; Yan, D.; Qi, C.; Jiang, H. Org. Lett. 2018, 20, 672. doi: 10.1021/acs.orglett.7b03808

    70. [70]

      (70) Zhou, C.; Dong, Y.; Yu, J.-T.; Sun, S.; Cheng, J. Chem. Commun. 2019, 55, 13685. doi: 10.1039/C9CC07027C

    71. [71]

      (71) Xiong, W.; Cheng, R.; Wu, B.; Wu, W.; Qi, C.; Jiang, H. Sci. China Chem. 2020, 63, 331. doi: 10.1007/s11426-019-9679-6

    72. [72]

      (72) Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967. doi: 10.1002/cssc.201501176

    73. [73]

      (73) Sekine, K.; Kobayashi, R.; Yamada, T. Chem. Lett. 2015, 44, 1407. doi: 10.1246/cl.150584

    74. [74]

      (74) Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588. doi: 10.1021/acscatal.7b03370

    75. [75]

      (75) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. Chin. J. Chem. 2018, 36, 399. doi: 10.1002/cjoc.201700808

    76. [76]

      (76) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. J. CO2 Util. 2018, 24, 120. doi: 10.1016/j.jcou.2017.12.013

    77. [77]

      (77) Zhang, M.; Zhao, X.; Zheng, S. Chem. Commun. 2014, 50, 4455. doi: 10.1039/C4CC00413B

    78. [78]

      (78) Watile, R.A.; Bhanage, B.M. RSC Adv. 2014, 4, 23022. doi: 10.1039/C4RA03836C

    79. [79]

      (79) Shang, J.; Guo, X.; Li, Z.; Deng, Y. Green Chem. 2016, 18, 3082. doi: 10.1039/C5GC02772A

    80. [80]

      (80) Jiang, H.; Zhang, H.; Xiong, W.; Qi, C.; Wu, W.; Wang, L.; Cheng, R. Org. Lett. 2019, 21, 1125. doi: 10.1021/acs.orglett.9b00072

    81. [81]

      (81) Wang, J.; Quian, P.; Hu, K.; Zha, Z.; Wang, Z. ChemElectroChem 2019, 6, 4292. doi: 10.1002/celc.201801724

    82. [82]

      (82) Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328. doi: 10.1039/D1GC00949D

    83. [83]

      (83) Fu, Z. Y.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F. B.; Xie, T.; Wang, D. B.; Li, J.; Li, X. M.; Zeng, G. M.; et al. J. CO2 Util. 2019, 34, 63. doi: 10.1016/j.jcou.2019.05.032

    84. [84]

      (84) Wang, C. L.; Sun, Z. X.; Zheng, Y.; Hu, Y. H. J. Mater. Chem. A 2019, 7, 865. doi: 10.1039/c8ta09865d

    85. [85]

      (85) Schwalbe, M.; Huang, H.; Li, G. H. ChemPhotoChem 2022, 6, e20210021. doi: 10.1002/cptc.202100217

    86. [86]

      (86) Huang, W.; Lin, J. Y.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220. doi: 10.1002/ajoc.202200220

    87. [87]

      (87) Qiu, L.-Q.; Yao, X. Y.; Zhang, Y.-K.; Li, H.-R.; He, L.-N. J. Org. Chem. 2023, 88, 4942. doi: 10.1021/acs.joc.2c02179

    88. [88]

      (88) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H.; Green Chem. 2017, 19, 1240. doi: 10.1039/C6GC03200A

    89. [89]

      (89) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190. doi: 10.1021/acs.orglett.7b03551

    90. [90]

      (90) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049. doi: 10.1021/acs.orglett.8b01079

    91. [91]

      (91) Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579. doi: 10.1021/acs.orglett.9b02700

    92. [92]

      (92) Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890. doi: 10.1039/D0GC00910E

    93. [93]

      (93) Wang, L.; Shi, F.; Qi, C.; Xu, W.; Xiong, W.; Kang, B.; Jiang, H. Chem. Sci. 2021, 12, 11821. doi: 10.1039/D1SC03366B

    94. [94]

      (94) Guo, Y. H.; Wei, L.; Wen, Z. L.; Jiang, H.; Qi, C. Chem. Commun. 2023, 59, 764. doi: 10.1039/D2CC06033G

    95. [95]

      (95) Sahari, A.; Puumi, J.; Mannisto, J. K.; Repo, T. J. Org. Chem. 2023, 88, 3822. doi: 10.1021/acs.joc.3c00023

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    5. [5]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(0)
  • Abstract views(411)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return