二氧化碳转化为氨基甲酸酯的研究进展

郭艳辉 魏丽 温中林 戚朝荣 江焕峰

引用本文: 郭艳辉, 魏丽, 温中林, 戚朝荣, 江焕峰. 二氧化碳转化为氨基甲酸酯的研究进展[J]. 物理化学学报, 2024, 40(4): 230700. doi: 10.3866/PKU.WHXB202307004 shu
Citation:  Yanhui Guo,  Li Wei,  Zhonglin Wen,  Chaorong Qi,  Huanfeng Jiang. Recent Progress on Conversion of Carbon Dioxide into Carbamates[J]. Acta Physico-Chimica Sinica, 2024, 40(4): 230700. doi: 10.3866/PKU.WHXB202307004 shu

二氧化碳转化为氨基甲酸酯的研究进展

    通讯作者: 戚朝荣,Email:crqi@scut.edu.cn; 江焕峰,Email:jianghf@scut.edu.cn
  • 基金项目:

    国家重点研发计划(2022YFB4101800),国家自然科学基金(21971073,22271098),广东省自然科学基金(2019A1515011468)资助项目

摘要: 二氧化碳(CO2)是大气中主要的温室气体,同时也是一种丰富、无毒和可再生的碳一资源。因此,将CO2转化为有价值的化学品对实现可持续发展具有重要意义。然而,由于CO2的热力学稳定性和动力学惰性,其活化转化非常具有挑战性。氨基甲酸酯是一类具有生物活性的重要化合物,广泛存在于天然产物、农用化学品和医药相关分子中,同时也是重要的有机合成中间体。近年来,利用CO2作为光气的替代品用于合成氨基甲酸酯吸引了广泛的关注。本文主要综述了CO2和胺在不同的催化体系下合成氨基甲酸酯的最新研究进展,主要分为无过渡金属催化、过渡金属催化、电催化、光催化四种反应体系来归纳总结,并对CO2转化为氨基甲酸酯的未来研究方向进行了展望。

English

    1. [1]

      (1) Yu, D. Y.; Teong, S. P.; Zhang, Y. G. Coord. Chem. Rev. 2015, 293, 279. doi: 10.1016/j.ccr.2014.09.002(1) Yu, D. Y.; Teong, S. P.; Zhang, Y. G. Coord. Chem. Rev. 2015, 293, 279. doi: 10.1016/j.ccr.2014.09.002

    2. [2]

      (2) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. doi: 10.1021/acscatal.6b02124(2) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. doi: 10.1021/acscatal.6b02124

    3. [3]

      (3) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524. doi: 10.1039/C5CS00895F(3) Sekine, K.; Yamada, T. Chem. Soc. Rev. 2016, 45, 4524. doi: 10.1039/C5CS00895F

    4. [4]

      (4) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861. doi: 10.1039/C7CS00065K(4) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A.; Peshkov, A. A.; van der Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861. doi: 10.1039/C7CS00065K

    5. [5]

      (5) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G. Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439. doi: 10.1016/j.ccr.2018.07.011(5) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G. Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439. doi: 10.1016/j.ccr.2018.07.011

    6. [6]

      (6) Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466. doi: 10.1039/c9cs00047j(6) Grignard, B.; Gennen, S.; Jérôme, C.; Kleij, A. W.; Detrembleur, C. Chem. Soc. Rev. 2019, 48, 4466. doi: 10.1039/c9cs00047j

    7. [7]

      (7) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382. doi: 10.1039/C8CS00281A(7) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382. doi: 10.1039/C8CS00281A

    8. [8]

      (8) Yeung, C. S. Angew. Chem. Int. Ed. 2019, 58, 5492. doi: 10.1002/anie.201806285(8) Yeung, C. S. Angew. Chem. Int. Ed. 2019, 58, 5492. doi: 10.1002/anie.201806285

    9. [9]

      (9) Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. doi: 10.6023/cjoc202004030(9) Chen, K.; Li, H.; He, L. Chin. J. Org. Chem. 2020, 40, 2195. doi: 10.6023/cjoc202004030

    10. [10]

      (10) Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China Chem. 2020, 63, 1336. doi: 10.1007/s11426-020-9788-2(10) Ran, C.-K.; Chen, X.-W.; Gui, Y.-Y.; Liu, J.; Song, L.; Ren, K.; Yu, D.-G. Sci. China Chem. 2020, 63, 1336. doi: 10.1007/s11426-020-9788-2

    11. [11]

      (11) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871. doi: 10.1021/acscatal.0c03127(11) Zhang, Z.; Ye, J.-H.; Ju, T.; Liao, L.-L.; Huang, H.; Gui, Y.-Y.; Zhou, W.-J.; Yu, D.-G. ACS Catal. 2020, 10, 10871. doi: 10.1021/acscatal.0c03127

    12. [12]

      (12) Tortajada, A.; Börjesson, M.; Martin. R. Acc. Chem. Res. 2021, 54, 3941. doi: 10.1021/acs.accounts.1c00480(12) Tortajada, A.; Börjesson, M.; Martin. R. Acc. Chem. Res. 2021, 54, 3941. doi: 10.1021/acs.accounts.1c00480

    13. [13]

      (13) Ghosh, A. K.; Brindisi, M. J. Med. Chem. 2015, 58, 2895. doi: 10.1021/jm501371s(13) Ghosh, A. K.; Brindisi, M. J. Med. Chem. 2015, 58, 2895. doi: 10.1021/jm501371s

    14. [14]

      (14) Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. J. Agric. Food Chem. 2016, 64, 2145. doi: 10.1021/acs.jafc.5b05437(14) Salisaeng, P.; Arnnok, P.; Patdhanagul, N.; Burakham, R. J. Agric. Food Chem. 2016, 64, 2145. doi: 10.1021/acs.jafc.5b05437

    15. [15]

      (15) Hara, S.; Ishikawa, N.; Hara, Y.; Nehira, T.; Sakai, K.; Gonoi, T.; Ishi-bashi, M. J. Nat. Prod. 2017, 80, 565. doi: 10.1021/acs.jnatprod.6b00935(15) Hara, S.; Ishikawa, N.; Hara, Y.; Nehira, T.; Sakai, K.; Gonoi, T.; Ishi-bashi, M. J. Nat. Prod. 2017, 80, 565. doi: 10.1021/acs.jnatprod.6b00935

    16. [16]

      (16) Pandey, G.; Khamrai, J.; Mishra, A. Org. Lett. 2018, 20, 166. doi: 10.1021/acs.orglett.7b03537(16) Pandey, G.; Khamrai, J.; Mishra, A. Org. Lett. 2018, 20, 166. doi: 10.1021/acs.orglett.7b03537

    17. [17]

      (17) Chiacchio, M. A.; Lanza, G.; Chiacchio, U.; Giofrè, S. V.; Romeo, R.; Iannazzo, D.; Legnani, L. Curr. Med. Chem. 2019, 26, 7337. doi: 10.2174/0929867326666181203130402(17) Chiacchio, M. A.; Lanza, G.; Chiacchio, U.; Giofrè, S. V.; Romeo, R.; Iannazzo, D.; Legnani, L. Curr. Med. Chem. 2019, 26, 7337. doi: 10.2174/0929867326666181203130402

    18. [18]

      (18) Marchese, A. D.; Wollenburg, M.; Mirabi, B.; Abel-Snape, X.; Whyte, A.; Glorius, F.; Lautens, M. ACS Catal. 2020, 10, 4780. doi: 10.1021/acscatal.0c00841(18) Marchese, A. D.; Wollenburg, M.; Mirabi, B.; Abel-Snape, X.; Whyte, A.; Glorius, F.; Lautens, M. ACS Catal. 2020, 10, 4780. doi: 10.1021/acscatal.0c00841

    19. [19]

      (19) Wang, Y.; Wu, S.-B.; Shi, W.-J.; Shi, Z.-J. Org. Lett. 2016, 18, 2548. doi: 10.1021/acs.orglett.6b00819(19) Wang, Y.; Wu, S.-B.; Shi, W.-J.; Shi, Z.-J. Org. Lett. 2016, 18, 2548. doi: 10.1021/acs.orglett.6b00819

    20. [20]

      (20) Tobisu, M.; Yasui, K.; Aihara, Y.; Chatani, N. Angew. Chem. Int. Ed. 2017, 56, 1877. doi: 10.1002/anie.201610409(20) Tobisu, M.; Yasui, K.; Aihara, Y.; Chatani, N. Angew. Chem. Int. Ed. 2017, 56, 1877. doi: 10.1002/anie.201610409

    21. [21]

      (21) Guo, W.; Gómez, J. E.; Cristòfol, À.; Xie, J.; Kleij, A. W. Angew. Chem. Int. Ed. 2018, 57, 13735. doi: 10.1002/anie.201805009(21) Guo, W.; Gómez, J. E.; Cristòfol, À.; Xie, J.; Kleij, A. W. Angew. Chem. Int. Ed. 2018, 57, 13735. doi: 10.1002/anie.201805009

    22. [22]

      (22) Yasui, K.; Chatani, N.; Tobisu, M. Org. Lett. 2018, 20, 2108. doi: 10.1021/acs.orglett.8b00674(22) Yasui, K.; Chatani, N.; Tobisu, M. Org. Lett. 2018, 20, 2108. doi: 10.1021/acs.orglett.8b00674

    23. [23]

      (23) Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. ACS Omega 2020, 5, 7406. doi: 10.1021/acsomega.9b04450(23) Dindarloo Inaloo, I.; Majnooni, S.; Eslahi, H.; Esmaeilpour, M. ACS Omega 2020, 5, 7406. doi: 10.1021/acsomega.9b04450

    24. [24]

      (24) Tanaka, J.; Shibata, Y.; Joseph, A.; Nogami, J.; Terasawa, J.; Yoshimura R.; Tanaka, K. Chem.-Eur. J. 2020, 26, 5774. doi: 10.1002/chem.202000253(24) Tanaka, J.; Shibata, Y.; Joseph, A.; Nogami, J.; Terasawa, J.; Yoshimura R.; Tanaka, K. Chem.-Eur. J. 2020, 26, 5774. doi: 10.1002/chem.202000253

    25. [25]

      (25) Tanaka, J.; Nagashima, Y.; Tanaka, K. Org. Lett. 2020, 22, 7181. doi: 10.1021/acs.orglett.0c02499(25) Tanaka, J.; Nagashima, Y.; Tanaka, K. Org. Lett. 2020, 22, 7181. doi: 10.1021/acs.orglett.0c02499

    26. [26]

      (26) Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. doi: 10.1021/ja100783c(26) Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837. doi: 10.1021/ja100783c

    27. [27]

      (27) Lo, H.-J.; Lin, C.-Y.; Tseng, M.-C.; Chein, R.-J. Angew. Chem. Int. Ed. 2014, 53, 9026. doi: 10.1002/anie.201404495(27) Lo, H.-J.; Lin, C.-Y.; Tseng, M.-C.; Chein, R.-J. Angew. Chem. Int. Ed. 2014, 53, 9026. doi: 10.1002/anie.201404495

    28. [28]

      (28) Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262. doi: 10.1039/C3CC47431C(28) Sun, X.; Sun, Y.; Zhang, C.; Rao, Y. Chem. Commun. 2014, 50, 1262. doi: 10.1039/C3CC47431C

    29. [29]

      (29) Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52. doi: 10.1002/cssc.201402837(29) Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52. doi: 10.1002/cssc.201402837

    30. [30]

      (30) Vessally, E.; Mohammadi, R.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. J. CO2 Util. 2018, 24, 361. doi: 10.1016/j.jcou.2018.01.015(30) Vessally, E.; Mohammadi, R.; Hosseinian, A.; Edjlali, L.; Babazadeh, M. J. CO2 Util. 2018, 24, 361. doi: 10.1016/j.jcou.2018.01.015

    31. [31]

      (31) Schilling, W.; Das, S. ChemSusChem 2020, 13, 6246. doi: 10.1002/cssc.202002073(31) Schilling, W.; Das, S. ChemSusChem 2020, 13, 6246. doi: 10.1002/cssc.202002073

    32. [32]

      (32) Xiong, T.-K.; Li, X.-J.; Zhang, M.; Liang, Y. Org. Biomol. Chem. 2020, 18, 7774. doi: 10.1039/D0OB01590C(32) Xiong, T.-K.; Li, X.-J.; Zhang, M.; Liang, Y. Org. Biomol. Chem. 2020, 18, 7774. doi: 10.1039/D0OB01590C

    33. [33]

      (33) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. doi: 10.1016/S1872-2067(21)64029-9(33) Wang, L.; Qi, C.; Xiong, W.; Jiang, H. Chin. J. Catal. 2022, 43, 1598. doi: 10.1016/S1872-2067(21)64029-9

    34. [34]

      (34) Leino, E.; Mäki-Arvela, P.; Eränen, K.; Tenho, M.; Murzina, D. Y.; Salmi, T.; Mikkolaa, J.-P. Chem. Eng. J. 2011, 176, 124. doi: 10.1016/j.cej.2011.07.054(34) Leino, E.; Mäki-Arvela, P.; Eränen, K.; Tenho, M.; Murzina, D. Y.; Salmi, T.; Mikkolaa, J.-P. Chem. Eng. J. 2011, 176, 124. doi: 10.1016/j.cej.2011.07.054

    35. [35]

      (35) Ma, J.; Song, J. L.; Liu, H. Z.; Liu, J. L.; Zhang, Z. F.; Jiang, T.; Fan, H. L.; Han, B. X. Green Chem. 2012, 14, 1743. doi: 10.1039/C2GC35150A(35) Ma, J.; Song, J. L.; Liu, H. Z.; Liu, J. L.; Zhang, Z. F.; Jiang, T.; Fan, H. L.; Han, B. X. Green Chem. 2012, 14, 1743. doi: 10.1039/C2GC35150A

    36. [36]

      (36) Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519. doi: 10.1039/C2GC16039K(36) Yang, Z.-Z.; Zhao, Y.-N.; He, L.-N.; Gao, J.; Yin, Z.-S. Green Chem. 2012, 14, 519. doi: 10.1039/C2GC16039K

    37. [37]

      (37) Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem 2012, 5, 1793. doi: 10.1002/cssc.201200091(37) Roeser, J.; Kailasam, K.; Thomas, A. ChemSusChem 2012, 5, 1793. doi: 10.1002/cssc.201200091

    38. [38]

      (38) Wang, B. S.; Elageed, E. H. M.; Zhang, D.; Yang, S. J.; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278. doi: 10.1002/cctc.201300801(38) Wang, B. S.; Elageed, E. H. M.; Zhang, D.; Yang, S. J.; Wu, S.; Zhang, G. R.; Gao, G. H. ChemCatChem 2014, 6, 278. doi: 10.1002/cctc.201300801

    39. [39]

      (39) Wang, B.; Luo, Z.; Elageed, E. H.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830. doi: 10.1002/cctc.201500928(39) Wang, B.; Luo, Z.; Elageed, E. H.; Wu, S.; Zhang, Y.; Wu, X.; Xia, F.; Zhang, G.; Gao, G. ChemCatChem 2016, 8, 830. doi: 10.1002/cctc.201500928

    40. [40]

      (40) Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119. doi: 10.1007/s10562-017-2217-z(40) Sadeghzadeh, S. M.; Zhiani, R.; Emrani, S. Catal. Lett. 2018, 148, 119. doi: 10.1007/s10562-017-2217-z

    41. [41]

      (41) Zhang, W.; Xia, T.; Yang, X.; Lu, X. Chem. Commun. 2015, 51, 6175. doi: 10.1039/C5CC01530H(41) Zhang, W.; Xia, T.; Yang, X.; Lu, X. Chem. Commun. 2015, 51, 6175. doi: 10.1039/C5CC01530H

    42. [42]

      (42) Niemi, T.; Fernandez, I.; Steadman, B.; Mannisto, J. K.; Repo, T. Chem. Commun. 2018, 54, 3166. doi: 10.1039/C8CC00636A(42) Niemi, T.; Fernandez, I.; Steadman, B.; Mannisto, J. K.; Repo, T. Chem. Commun. 2018, 54, 3166. doi: 10.1039/C8CC00636A

    43. [43]

      (43) Yousefi, R.; Struble, T. J.; Payne, J. L.; Vishe, M.; Schley, N. D.; Johnston, J. N. J. Am. Chem. Soc. 2019, 141, 618. doi: 10.1021/jacs.8b11793(43) Yousefi, R.; Struble, T. J.; Payne, J. L.; Vishe, M.; Schley, N. D.; Johnston, J. N. J. Am. Chem. Soc. 2019, 141, 618. doi: 10.1021/jacs.8b11793

    44. [44]

      (44) Kumar, N.; Kulsoom, M.; Shukla, V.; Kumar, D.; Kumar, S.; Tiwari, J.; Dwivedi, N. Environ. Sci. Pollut. Res. 2018, 25, 29505. doi: 10.1007/s11356-018-2993-z(44) Kumar, N.; Kulsoom, M.; Shukla, V.; Kumar, D.; Kumar, S.; Tiwari, J.; Dwivedi, N. Environ. Sci. Pollut. Res. 2018, 25, 29505. doi: 10.1007/s11356-018-2993-z

    45. [45]

      (45) Kovaleva, E. L.; Belanova, A. I.; Panova, L. I.; Zakharchenko, A. A. Pharm. Chem. J. 2018, 52, 84. doi: 10.1007/s11094-018-1769-6(45) Kovaleva, E. L.; Belanova, A. I.; Panova, L. I.; Zakharchenko, A. A. Pharm. Chem. J. 2018, 52, 84. doi: 10.1007/s11094-018-1769-6

    46. [46]

      (46) Bezrodnykh, E. A.; Vyshivannaya, O. V.; Polezhaev, A. V.; Abramchuk, S. S.; Blagodatskikh, I. V.; Tikhonov, V. E. Int. J. Biol. Macromol. 2020, 155, 979. doi: 10.1016/j.ijbiomac.2019.11.059(46) Bezrodnykh, E. A.; Vyshivannaya, O. V.; Polezhaev, A. V.; Abramchuk, S. S.; Blagodatskikh, I. V.; Tikhonov, V. E. Int. J. Biol. Macromol. 2020, 155, 979. doi: 10.1016/j.ijbiomac.2019.11.059

    47. [47]

      (47) Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12, 1340. doi: 10.1021/ol100259j(47) Peterson, S. L.; Stucka, S. M.; Dinsmore, C. J. Org. Lett. 2010, 12, 1340. doi: 10.1021/ol100259j

    48. [48]

      (48) Zhang, W.-Z.; Ren, X.; Lu, X.-B. Chin. J. Chem. 2015, 33, 610. doi: 10.1002/cjoc.201500011(48) Zhang, W.-Z.; Ren, X.; Lu, X.-B. Chin. J. Chem. 2015, 33, 610. doi: 10.1002/cjoc.201500011

    49. [49]

      (49) Xiong, W.; Qi, C.; Peng, Y.; Guo, T.; Zhang, M.; Jiang, H. Chem. Eur. J. 2015, 21, 14314. doi: 10.1002/chem.201502689(49) Xiong, W.; Qi, C.; Peng, Y.; Guo, T.; Zhang, M.; Jiang, H. Chem. Eur. J. 2015, 21, 14314. doi: 10.1002/chem.201502689

    50. [50]

      (50) Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem. Int. Ed. 2015, 54, 3084. doi: 10.1002/anie.201410605(50) Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem. Int. Ed. 2015, 54, 3084. doi: 10.1002/anie.201410605

    51. [51]

      (51) Riemer, D.; Hirapara, P.; Das, S. ChemSusChem 2016, 9, 1916. doi: 10.1002/cssc.201600521(51) Riemer, D.; Hirapara, P.; Das, S. ChemSusChem 2016, 9, 1916. doi: 10.1002/cssc.201600521

    52. [52]

      (52) Peng, Y.; Liu, J.; Qi, C.; Yuan, G.; Li, J.; Jiang, H. Chem. Commun. 2017, 53, 2665. doi: 10.1039/C6CC09762F(52) Peng, Y.; Liu, J.; Qi, C.; Yuan, G.; Li, J.; Jiang, H. Chem. Commun. 2017, 53, 2665. doi: 10.1039/C6CC09762F

    53. [53]

      (53) Wang, S.; Zhang, X.; Cao, C.; Chen, C.; Xi, C. Green Chem. 2017, 19, 4515. doi: 10.1039/c7gc01992k(53) Wang, S.; Zhang, X.; Cao, C.; Chen, C.; Xi, C. Green Chem. 2017, 19, 4515. doi: 10.1039/c7gc01992k

    54. [54]

      (54) Zhang, Q.; Yuan, H.-Y.; Fukaya, N.; Choi, J.-C. ACS Sustain. Chem. Eng. 2018, 6, 6675. doi: 10.1021/acssuschemeng.8b00449(54) Zhang, Q.; Yuan, H.-Y.; Fukaya, N.; Choi, J.-C. ACS Sustain. Chem. Eng. 2018, 6, 6675. doi: 10.1021/acssuschemeng.8b00449

    55. [55]

      (55) Xiong, W.; Qi, C.; Cheng, R.; Zhang, H.; Wang, L.; Yan, D.; Jiang, H. Chem. Commun. 2018, 54, 5835. doi: 10.1039/C8CC01732H(55) Xiong, W.; Qi, C.; Cheng, R.; Zhang, H.; Wang, L.; Yan, D.; Jiang, H. Chem. Commun. 2018, 54, 5835. doi: 10.1039/C8CC01732H

    56. [56]

      (56) Franz, M.; Stalling, T.; Steinert, H.; Martens, J. Org. Biomol. Chem. 2018, 16, 8292. doi: 10.1039/C8OB01865K(56) Franz, M.; Stalling, T.; Steinert, H.; Martens, J. Org. Biomol. Chem. 2018, 16, 8292. doi: 10.1039/C8OB01865K

    57. [57]

      (57) Zhang, Q.; Yuan, H.-Y.; Lin, X.-T.; Fukaya, N.; Fujitani, T.; Sato, K.; Choi, J.-C. Green Chem. 2020, 22, 4231. doi: 10.1039/D0GC01402H(57) Zhang, Q.; Yuan, H.-Y.; Lin, X.-T.; Fukaya, N.; Fujitani, T.; Sato, K.; Choi, J.-C. Green Chem. 2020, 22, 4231. doi: 10.1039/D0GC01402H

    58. [58]

      (58) Sharma, S.; Singh, A. K.; Singh, D.; Kim, D. Green Chem. 2015, 17, 1404. doi: 10.1039/C4GC02089H(58) Sharma, S.; Singh, A. K.; Singh, D.; Kim, D. Green Chem. 2015, 17, 1404. doi: 10.1039/C4GC02089H

    59. [59]

      (59) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022. doi: 10.1002/anie.201603352(59) Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022. doi: 10.1002/anie.201603352

    60. [60]

      (60) Xiong, W.; Qi, C.; Guo, T.; Zhang, M.; Chen, K.; Jiang, H. Green Chem. 2017, 19, 1642. doi: 10.1039/C6GC03465A(60) Xiong, W.; Qi, C.; Guo, T.; Zhang, M.; Chen, K.; Jiang, H. Green Chem. 2017, 19, 1642. doi: 10.1039/C6GC03465A

    61. [61]

      (61) Bernoud, E.; Company, A.; Ribas, X. J. Organometal. Chem. 2017, 845, 44. doi: 10.1016/j.jorganchem.2017.02.004(61) Bernoud, E.; Company, A.; Ribas, X. J. Organometal. Chem. 2017, 845, 44. doi: 10.1016/j.jorganchem.2017.02.004

    62. [62]

      (62) Luo, X.; Song, X.; Xiong, W.; Li, J.; Li, M.; Zhu, Z.; Wei, S.; Chan, A. S. C.; Zou, Y. Org. Lett. 2019, 21, 2013. doi: 10.1021/acs.orglett.9b00122(62) Luo, X.; Song, X.; Xiong, W.; Li, J.; Li, M.; Zhu, Z.; Wei, S.; Chan, A. S. C.; Zou, Y. Org. Lett. 2019, 21, 2013. doi: 10.1021/acs.orglett.9b00122

    63. [63]

      (63) Wang, L.; Qi, C.; Cheng, R.; Liu, H.; Xiong, W.; Jiang, H. Org. Lett. 2019, 21, 7386. doi: 10.1021/acs.orglett.9b02698(63) Wang, L.; Qi, C.; Cheng, R.; Liu, H.; Xiong, W.; Jiang, H. Org. Lett. 2019, 21, 7386. doi: 10.1021/acs.orglett.9b02698

    64. [64]

      (64) Ran, C.-K.; Huang, H.; Li, X.-H.; Wang, W.; Ye, J.-H.; Yan, S.-S.; Wang, B.-Q.; Feng, C.; Yu, D.-G. Chin. J. Chem. 2020, 38, 69. doi: 10.1002/cjoc.201900384(64) Ran, C.-K.; Huang, H.; Li, X.-H.; Wang, W.; Ye, J.-H.; Yan, S.-S.; Wang, B.-Q.; Feng, C.; Yu, D.-G. Chin. J. Chem. 2020, 38, 69. doi: 10.1002/cjoc.201900384

    65. [65]

      (65) Wang, L.; Wang, P.; Guo, T.; Xiong, W.; Kang, B.; Qi, C.; Luo, G.; Luo, Y.; Jiang, H. Org. Chem. Front. 2021, 8, 1851. doi: 10.1039/D0QO01607A(65) Wang, L.; Wang, P.; Guo, T.; Xiong, W.; Kang, B.; Qi, C.; Luo, G.; Luo, Y.; Jiang, H. Org. Chem. Front. 2021, 8, 1851. doi: 10.1039/D0QO01607A

    66. [66]

      (66) Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450. doi: 10.1016/j.tet.2013.09.087(66) Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450. doi: 10.1016/j.tet.2013.09.087

    67. [67]

      (67) Cai, J.; Zhang, M.; Zhao, X. Eur. J. Org. Chem. 2015, 2015, 5925. doi: 10.1002/ejoc.201500769(67) Cai, J.; Zhang, M.; Zhao, X. Eur. J. Org. Chem. 2015, 2015, 5925. doi: 10.1002/ejoc.201500769

    68. [68]

      (68) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914. doi: 10.1039/C6SC00419A(68) García-Domínguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914. doi: 10.1039/C6SC00419A

    69. [69]

      (69) Xiong, W.; Yan, D.; Qi, C.; Jiang, H. Org. Lett. 2018, 20, 672. doi: 10.1021/acs.orglett.7b03808(69) Xiong, W.; Yan, D.; Qi, C.; Jiang, H. Org. Lett. 2018, 20, 672. doi: 10.1021/acs.orglett.7b03808

    70. [70]

      (70) Zhou, C.; Dong, Y.; Yu, J.-T.; Sun, S.; Cheng, J. Chem. Commun. 2019, 55, 13685. doi: 10.1039/C9CC07027C(70) Zhou, C.; Dong, Y.; Yu, J.-T.; Sun, S.; Cheng, J. Chem. Commun. 2019, 55, 13685. doi: 10.1039/C9CC07027C

    71. [71]

      (71) Xiong, W.; Cheng, R.; Wu, B.; Wu, W.; Qi, C.; Jiang, H. Sci. China Chem. 2020, 63, 331. doi: 10.1007/s11426-019-9679-6(71) Xiong, W.; Cheng, R.; Wu, B.; Wu, W.; Qi, C.; Jiang, H. Sci. China Chem. 2020, 63, 331. doi: 10.1007/s11426-019-9679-6

    72. [72]

      (72) Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967. doi: 10.1002/cssc.201501176(72) Song, Q.-W.; Zhou, Z.-H.; Yin, H.; He, L.-N. ChemSusChem 2015, 8, 3967. doi: 10.1002/cssc.201501176

    73. [73]

      (73) Sekine, K.; Kobayashi, R.; Yamada, T. Chem. Lett. 2015, 44, 1407. doi: 10.1246/cl.150584(73) Sekine, K.; Kobayashi, R.; Yamada, T. Chem. Lett. 2015, 44, 1407. doi: 10.1246/cl.150584

    74. [74]

      (74) Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588. doi: 10.1021/acscatal.7b03370(74) Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588. doi: 10.1021/acscatal.7b03370

    75. [75]

      (75) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. Chin. J. Chem. 2018, 36, 399. doi: 10.1002/cjoc.201700808(75) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. Chin. J. Chem. 2018, 36, 399. doi: 10.1002/cjoc.201700808

    76. [76]

      (76) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. J. CO2 Util. 2018, 24, 120. doi: 10.1016/j.jcou.2017.12.013(76) Qi, C.; Yan, D.; Xiong, W.; Jiang, H. J. CO2 Util. 2018, 24, 120. doi: 10.1016/j.jcou.2017.12.013

    77. [77]

      (77) Zhang, M.; Zhao, X.; Zheng, S. Chem. Commun. 2014, 50, 4455. doi: 10.1039/C4CC00413B(77) Zhang, M.; Zhao, X.; Zheng, S. Chem. Commun. 2014, 50, 4455. doi: 10.1039/C4CC00413B

    78. [78]

      (78) Watile, R.A.; Bhanage, B.M. RSC Adv. 2014, 4, 23022. doi: 10.1039/C4RA03836C(78) Watile, R.A.; Bhanage, B.M. RSC Adv. 2014, 4, 23022. doi: 10.1039/C4RA03836C

    79. [79]

      (79) Shang, J.; Guo, X.; Li, Z.; Deng, Y. Green Chem. 2016, 18, 3082. doi: 10.1039/C5GC02772A(79) Shang, J.; Guo, X.; Li, Z.; Deng, Y. Green Chem. 2016, 18, 3082. doi: 10.1039/C5GC02772A

    80. [80]

      (80) Jiang, H.; Zhang, H.; Xiong, W.; Qi, C.; Wu, W.; Wang, L.; Cheng, R. Org. Lett. 2019, 21, 1125. doi: 10.1021/acs.orglett.9b00072(80) Jiang, H.; Zhang, H.; Xiong, W.; Qi, C.; Wu, W.; Wang, L.; Cheng, R. Org. Lett. 2019, 21, 1125. doi: 10.1021/acs.orglett.9b00072

    81. [81]

      (81) Wang, J.; Quian, P.; Hu, K.; Zha, Z.; Wang, Z. ChemElectroChem 2019, 6, 4292. doi: 10.1002/celc.201801724(81) Wang, J.; Quian, P.; Hu, K.; Zha, Z.; Wang, Z. ChemElectroChem 2019, 6, 4292. doi: 10.1002/celc.201801724

    82. [82]

      (82) Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328. doi: 10.1039/D1GC00949D(82) Xiong, T.-K.; Zhou, X.-Q.; Zhang, M.; Tang, H.-T.; Pan, Y.-M.; Liang, Y. Green Chem. 2021, 23, 4328. doi: 10.1039/D1GC00949D

    83. [83]

      (83) Fu, Z. Y.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F. B.; Xie, T.; Wang, D. B.; Li, J.; Li, X. M.; Zeng, G. M.; et al. J. CO2 Util. 2019, 34, 63. doi: 10.1016/j.jcou.2019.05.032(83) Fu, Z. Y.; Yang, Q.; Liu, Z.; Chen, F.; Yao, F. B.; Xie, T.; Wang, D. B.; Li, J.; Li, X. M.; Zeng, G. M.; et al. J. CO2 Util. 2019, 34, 63. doi: 10.1016/j.jcou.2019.05.032

    84. [84]

      (84) Wang, C. L.; Sun, Z. X.; Zheng, Y.; Hu, Y. H. J. Mater. Chem. A 2019, 7, 865. doi: 10.1039/c8ta09865d(84) Wang, C. L.; Sun, Z. X.; Zheng, Y.; Hu, Y. H. J. Mater. Chem. A 2019, 7, 865. doi: 10.1039/c8ta09865d

    85. [85]

      (85) Schwalbe, M.; Huang, H.; Li, G. H. ChemPhotoChem 2022, 6, e20210021. doi: 10.1002/cptc.202100217(85) Schwalbe, M.; Huang, H.; Li, G. H. ChemPhotoChem 2022, 6, e20210021. doi: 10.1002/cptc.202100217

    86. [86]

      (86) Huang, W.; Lin, J. Y.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220. doi: 10.1002/ajoc.202200220(86) Huang, W.; Lin, J. Y.; Deng, F.; Zhong, H. Asian J. Org. Chem. 2022, 11, e202200220. doi: 10.1002/ajoc.202200220

    87. [87]

      (87) Qiu, L.-Q.; Yao, X. Y.; Zhang, Y.-K.; Li, H.-R.; He, L.-N. J. Org. Chem. 2023, 88, 4942. doi: 10.1021/acs.joc.2c02179(87) Qiu, L.-Q.; Yao, X. Y.; Zhang, Y.-K.; Li, H.-R.; He, L.-N. J. Org. Chem. 2023, 88, 4942. doi: 10.1021/acs.joc.2c02179

    88. [88]

      (88) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H.; Green Chem. 2017, 19, 1240. doi: 10.1039/C6GC03200A(88) Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H.; Green Chem. 2017, 19, 1240. doi: 10.1039/C6GC03200A

    89. [89]

      (89) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190. doi: 10.1021/acs.orglett.7b03551(89) Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190. doi: 10.1021/acs.orglett.7b03551

    90. [90]

      (90) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049. doi: 10.1021/acs.orglett.8b01079(90) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Org. Lett. 2018, 20, 3049. doi: 10.1021/acs.orglett.8b01079

    91. [91]

      (91) Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579. doi: 10.1021/acs.orglett.9b02700(91) Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J. Org. Lett. 2019, 21, 6579. doi: 10.1021/acs.orglett.9b02700

    92. [92]

      (92) Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890. doi: 10.1039/D0GC00910E(92) Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Green Chem. 2020, 22, 4890. doi: 10.1039/D0GC00910E

    93. [93]

      (93) Wang, L.; Shi, F.; Qi, C.; Xu, W.; Xiong, W.; Kang, B.; Jiang, H. Chem. Sci. 2021, 12, 11821. doi: 10.1039/D1SC03366B(93) Wang, L.; Shi, F.; Qi, C.; Xu, W.; Xiong, W.; Kang, B.; Jiang, H. Chem. Sci. 2021, 12, 11821. doi: 10.1039/D1SC03366B

    94. [94]

      (94) Guo, Y. H.; Wei, L.; Wen, Z. L.; Jiang, H.; Qi, C. Chem. Commun. 2023, 59, 764. doi: 10.1039/D2CC06033G(94) Guo, Y. H.; Wei, L.; Wen, Z. L.; Jiang, H.; Qi, C. Chem. Commun. 2023, 59, 764. doi: 10.1039/D2CC06033G

    95. [95]

      (95) Sahari, A.; Puumi, J.; Mannisto, J. K.; Repo, T. J. Org. Chem. 2023, 88, 3822. doi: 10.1021/acs.joc.3c00023(95) Sahari, A.; Puumi, J.; Mannisto, J. K.; Repo, T. J. Org. Chem. 2023, 88, 3822. doi: 10.1021/acs.joc.3c00023

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  486
  • HTML全文浏览量:  40
文章相关
  • 发布日期:  2023-08-07
  • 收稿日期:  2023-07-03
  • 接受日期:  2023-08-01
  • 修回日期:  2023-08-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章