Citation: Wenjuan Tan, Yong Ye, Xiujuan Sun, Bei Liu, Jiajia Zhou, Hailong Liao, Xiulin Wu, Rui Ding, Enhui Liu, Ping Gao. 构筑富含阳离子缺陷的贫P-Ni2P和富P-CoP3异质结用于增强尿素/肼电催化氧化反应[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230605. doi: 10.3866/PKU.WHXB202306054
-
废水中存在的肼和尿素会对环境造成严重污染。利用电化学氧化技术处理含肼和尿素的废水,既可以有效处理废水,实现氮循环,又能将肼和尿素作为新型燃料,有助于新能源的发展。然而,目前实现肼氧化(HzOR)和尿素氧化(UOR)的电化学技术仍存在挑战。因此,开发低成本、高效且稳定性好的电催化剂是实现这一技术的先决条件。在本文中,我们采用水热-碱刻蚀-磷化的三步方法,制备了一种富含阳离子缺陷的双金属磷化物Ni2P/CoP3催化剂(简称Ni2P/CoP3-Znvac),并将其应用于肼氧化和尿素氧化。该催化剂由贫磷的Ni2P和富磷的CoP3两种不同性质的磷化物组成。CoP3中富集的磷含有大量的负电荷,有利于吸附带正电荷的中间物种;而Ni2P中磷含量较少,金属含量高,具有良好的导电性,可以确保快速的反应动力学。通过物理表征和电化学测试,证实了Ni2P/CoP3的成功合成和其独特的电子结构。电子顺磁测试(EPR)证明了阳离子空位的存在,大量的阳离子空位缺陷有助于增加活性位点的数量,从而提升催化性能。因此,该催化剂在肼氧化和尿素氧化方面表现出色。仅需-47 mV (HzOR)和1.311 V (UOR)的电位即可产生10 mA·cm-2的电流密度。Tafel斜率分别为54.3 mV·dec-1(HzOR)和37.24 mV·dec-1(UOR)。Ni2P/CoP3-Znvac在HzOR和UOR方面的性能远优于单独的Ni2P和CoP3,也优于未经碱刻蚀的镍钴磷化物。基于以上的测试结果,我们将Ni2P/CoP3-Znvac催化剂应用于直接肼燃料电池(DHzFC)和直接尿素-双氧水燃料电池(DUHPFC)的阳极,测试表明DHzFC和DUHPFC的最大功率密度分别为229.01和16.22 mW·cm-2。更为重要的是,DHzFC和DUHPFC能够稳定工作24 h,性能几乎不衰退。此外,Ni2P/CoP3-Znvac材料还可应用于自制的锌-肼燃料电池,并展示出良好的实际应用潜力。综上所述,本研究通过一系列方法制备了Ni2P/CoP3-Znvac催化剂,该催化剂在肼氧化和尿素氧化方面具有优异性能。这项工作为设计高效且稳定性好的肼氧化和尿素氧化电催化剂提供了新的思路。
-
-
[1]
(1) Huang, K. J.; Li, L.; Olivetti, E. A. Joule 2018, 2, 1642. doi:10.1016/j.joule.2018.07.020
-
[2]
(2) Wang, J. Y.; Ouyang, T.; Li, N.; Ma, T. Y.; Liu, Z. Q. Sci. Bull. 2018, 63, 1130. doi:10.1016/j.scib.2018.07.008
-
[3]
(3) Huang, Y. J.; Li, M.; Pan, F.; Zhu, Z. Y.; Sun, H. M.; Tang, Y. W.; Fu, G. T. Carbon Energy 2022, 5, e279. doi:10.1002/cey2.279
-
[4]
-
[5]
(5) Li, M.; Pan, X. C.; Jiang, M. Q.; Zhang, Y. F.; Tang, Y. W.; Fu, G. T. Chem. Eng. J. 2020, 395, 125160. doi:10.1016/j.cej.2020.125160
-
[6]
(6) Huang, C.; Ouyang, T.; Zou, Y.; Li, N.; Liu, Z. Q. J. Mater. Chem. A 2018, 6, 7420. doi:10.1039/c7ta11364a
-
[7]
(7) Bi, Z. H.; Zhang, H.; Zhao, X.; Wang, Y. W.; Tan, F.; Chen, S. Q.; Feng, L. G.; Zhou, Y. T.; Ma, X.; Su, Z.; et al. Energy Stor. Mater. 2023, 54, 313. doi:10.1016/j.ensm.2022.10.045
-
[8]
-
[9]
(9) Liu, J.; Li, E. L.; Ruan, M. B.; Song, P.; Xu, W. L. Catalysts 2015, 5, 1167. doi:10.3390/catal5031167
-
[10]
(10) Li, J. X.; Sun, S. J.; Yang, Y.; Dai, Y. R.; Zhang, B. G.; Feng, L. G. Chem. Commun. 2022, 58, 9552. doi:10.1039/d2cc03566a
-
[11]
(11) Li, M.; Wang, S. L.; Wang, X. Z.; Tian, X. L.; Wu, X.; Zhou, Y. T.; Hu, G. Z.; Feng, L. G. Chem. Eng. J. 2022, 442, 136165. doi:10.1016/j.cej.2022.136165
-
[12]
(12) Wang, S. L.; Zhu, J. Y.; Wu, X.; Feng, L. G. Chin. Chem. Lett. 2022, 33, 1105. doi:10.1016/j.cclet.2021.08.042
-
[13]
(13) Wang, X. H.; Hong, Q. L.; Zhang, Z. N.; Ge, Z. X.; Zhai, Q. G.; Jiang, Y. C.; Chen, Y.; Li, S. N. Appl. Surf. Sci. 2022, 604, 154484. doi:10.1016/j.apsusc.2022.154484
-
[14]
(14) Song, M.; Zhang, Z. J.; Li, Q. W.; Jin, W.; Wu, Z. X.; Fu, G. T.; Liu, X. J. Mater. Chem. A 2019, 7, 3697. doi:10.1039/c8ta10985k
-
[15]
(15) Li, M.; Wu, X. D.; Liu, K.; Zhang, Y. F.; Jiang, X. C.; Sun, D. M.; Tang, Y. W.; Huang, K.; Fu, G. T. J. Energy Chem. 2022, 69, 506. doi:10.1016/j.jechem.2022.01.031
-
[16]
(16) Yu, Z. Y.; Lang, C. C.; Gao, M. R.; Chen, Y.; Fu, Q. Q.; Duan, Y.; Yu, S. H. Energy Environ. Sci. 2018, 11, 1890. doi:10.1039/c8ee00521d
-
[17]
(17) Sun, H. R.; Gao, L. Y.; Kumar, A.; Cao, Z. B.; Chang, Z.; Liu, W.; Sun, X. M. ACS Appl. Energy Mater. 2022, 5, 9455. doi:10.1021/acsaem.2c0100
-
[18]
(18) Li, M.; Gu, Y.; Chang, Y. J.; Gu, X. C.; Tian, J. Q.; Wu, X.; Feng, L. G. Chem. Eng. J. 2021, 425, 130686. doi:10.1016/j.cej.2021.130686
-
[19]
(19) Babar, P.; Lokhande, A.; Karade, V.; Lee, I. J.; Lee, D.; Pawar, S.; Kim, J. H. J. Colloid Interface Sci. 2019, 557, 10. doi:10.1016/j.jcis.2019.09.012
-
[20]
(20) Sun, Q. Q.; Li, Y. B.; Wang, J. F.; Cao, B. Y.; Yu, Y.; Zhou, C. S.; Zhang, G. C.; Wang, Z. L.; Zhao, C. J. Mater. Chem. A 2020, 8, 21084. doi:10.1039/d0ta08078k
-
[21]
(21) Liang, J.; Liu, Q.; Li, T. S.; Luo, Y. L.; Lu, S. Y.; Shi, X. F.; Zhang, F.; Asiri, A. M.; Sun, X. P. Green Chem. 2021, 23, 2834. doi:10.1039/d0gc03994b
-
[22]
(22) Wang, J. M.; Ma, X.; Qu, F. L.; Asiri, A. M.; Sun, X. P. Inorg. Chem. 2017, 56, 1041. doi:10.1021/acs.inorgchem.6b02808
-
[23]
(23) Chen, J. X.; Long, Q. W.; Xiao, K.; Ouyang, T.; Li, N.; Ye, S. Y.; Liu, Z. Q. Sci. Bull. 2021, 66, 1063. doi:10.1016/j.scib.2021.02.03
-
[24]
(24) Li, T. F.; Li, S. L.; Liu, Q. Y.; Tian, Y. C.; Zhang, Y. W.; Fu, G. T.; Tang, Y. W. ACS Sustain. Chem. Eng. 2019, 7, 17950. doi:10.1021/acssuschemeng.9b04699
-
[25]
(25) Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; Xiao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Chem. Eng. J. 2021, 408, 127814. doi:10.1016/j.cej.2020.127814
-
[26]
(26) Fan, C.; Wu, X. D.; Li, M.; Wang, X.; Zhu, Y.; Fu, G. T.; Ma, T. Y.; Tang, Y. W. Chem. Eng. J. 2022, 431, 133829. doi:10.1016/j.cej.2021.133829
-
[27]
(27) Sha, l. N.; Yin, J. L.; Ye, K.; Wang, G.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G. L.; Cao, D. X. J. Mater. Chem. A 2019, 7, 9078. doi:10.1039/c9ta00481e
-
[28]
(28) Zhang, S. C.; Zhang, C. H.; Zheng, X. S.; Su, G.; Wang, H. L.; Huang, M. H. Appl. Catal. B 2022, 324, 122207. doi:10.1016/j.apcatb.2022.122207
-
[29]
(29) Wu, D.; Wei, Y. C.; Ren, X.; Ji, X. Q.; Liu, Y. W.; Guo, X. D.; Liu, Z.; Asiri, A. M.; Wei, Q.; Sun, X. P. Adv. Mater. 2018, 30, 1705366. doi:10.1002/adma.201705366
-
[30]
(30) Wang, Y. B.; Jiang, Y.; Zhao, Y. X.; Ge, X. L.; Lu, Q.; Zhang, T.; Xie, D. S.; Li, M.; Bu, Y. F. Chem. Eng. J. 2023, 451, 138710. doi:10.1016/j.cej.2022.138710
-
[31]
(31) Xu, S. R.; Zhao, H. T.; Li, T. S.; Liang, J.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Asiri, A. M.; Wu, Q.; Sun, X. P. J. Mater. Chem. A 2020, 8, 19729. doi:10.1039/d0ta05628f
-
[32]
(32) Shi, Z. P.; Wang, Y.; Li, J.; Wang, X.; Wang, Y. B.; Li, Y.; Xu, W. L.; Jiang, Z.; Liu, C. P.; Xing, W.; Ge, J. J. Joule 2021, 5, 2164. doi:10.1016/j.joule.2021.05.018
-
[33]
(33) Wang, S. L.; Xu, P. X.; Tian, J. Q.; Liu, Z.; Feng, L. G. Electrochim. Acta 2021, 370, 137755. doi:10.1016/j.electacta.2021.137755
-
[34]
(34) Li, J. X.; Wang, S. L.; Sun, S. J.; Wu, X.; Zhang, B. G.; Feng, L. G. J. Mater. Chem. A 2022, 10, 9308. doi:10.1039/d2ta00120a
-
[35]
(35) Yang, L.; Liu, Z.; Zhu, S.; Feng, L.; Xing, W. Mater. Today Phys. 2021, 16, 100292. doi:10.1016/j.mtphys.2020.100292
-
[36]
(36) Liu, X. J.; He, J.; Zhao, S. Z.; Liu, Y. P.; Zhao, Z.; Luo, J.; Hu, G. Z.; Sun, X. M.; Ding, Y. Nat. Commun. 2018, 9, 4365. doi:10.1038/s41467-018-06815-9
-
[37]
(37) Yin, X.; Feng, L. G.; Yang, W.; Zhang, Y. X.; Wu, H. Y.; Yang, L.; Zhou, L.; Gan, L.; Sun, S. R. Nano Res. 2022, 15, 2138. doi:10.1007/s12274-021-3850-9
-
[38]
(38) Li, X. Y.; Zhang, R.; Luo, Y. S.; Liu, Q.; Lu, S. Y.; Chen, G.; Gao, S. Y.; Chen, S.; Sun, X. P. Sustain. Energy Fuel. 2020, 4, 3884. doi:10.1039/d0se00240b
-
[39]
(39) Zhang, Y.; Liu, Y. W.; Ma, M.; Ren, X.; Liu, Z.; Du, G.; Asiri, A. M.; Sun, X. P. Chem. Commun. 2017, 53, 11048. doi:10.1039/c7cc06278h
-
[40]
(40) Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M.; et al. Adv. Energy Mater. 2017, 7, 1700020. doi:10.1002/aenm.201700020
-
[41]
(41) Feng, L. G.; Ding, R. F.; Chen, Y. W.; Wang, J. W.; Xu, L. J. Power Sources 2020, 452, 227837. doi:10.1016/j.jpowsour.2020.227837
-
[42]
(42) Liu, H.; Liu, Z.; Feng, L. G. Nanoscale 2019, 11, 16017. doi:10.1039/c9nr05204f
-
[43]
(43) Liu, H.; Yang, D. W.; Bao, Y. F.; Yu, X.; Feng, L. G. J. Power Sources 2019, 434, 226754. doi:10.1016/j.jpowsour.2019.226754
-
[44]
(44) Pei, C. G.; Ding, R. F.; Yu, X.; Feng, L. G. ChemCatChem 2019, 11, 4617. doi:10.1002/cctc.201900886
-
[45]
(45) Liao, Y.; Chen, Y. Y.; Li, L.; Luo, S.; Qing, Y.; Tian, C. H.; Xu, H.; Zhang, J. X.; Wu, Y. Q. Adv. Funct. Mater. 2023, doi:10.1002/adfm.202303300
-
[46]
(46) Chi, J. Q.; Guo, L. L.; Mao, J. Y.; Cui, T.; Zhu, J. W.; Xia, Y. N.; Lai, J. P.; Wang, L. Adv. Funct. Mater. 2023, doi:10.1002/adfm.202300625
-
[47]
(47) Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Angew. Chem. Int. Ed. 2021, 60, 24612. doi:10.1002/anie.202109938
-
[48]
(48) Qian, J.; Wang, X. L.; Jiang, H.; Li, S. L.; Li, C. J.; Li, S. J.; Ma, R. G.; Wang, J. C. ACS Appl. Mater. Interfaces 2022, 14, 18607. doi:10.1021/acsami.2c03380
-
[49]
(49) Zhang, L. S.; Wang, L. P.; Lin, H. P.; Liu, Y. X.; Ye, J. Y.; Wen, Y. Z.; Chen, A.; Wang, L.; Ni, F. L.; Zhou, Z. Y.; et al. Angew. Chem. Int. Ed. 2019, 58, 16820. doi:10.1002/anie.201909832
-
[50]
(50) Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C.; et al. Angew. Chem. Int. Ed. 2016, 55, 12465. doi:10.1002/anie.201606313
-
[51]
(51) Zhu, D. D.; Guo, C. X.; Liu, J. L.; Wang, L.; Dub, Y.; Qiao, S. Z. Chem. Commun. 2017, 53, 10906. doi:10.1039/c7cc06378d
-
[52]
(52) Singh, R. K.; Schechter, A. ChemCatChem 2017, 9, 3374. doi:10.1002/cctc.201700451
-
[53]
(53) Xu, W.; Zhang, H. M.; Li, G.; Wu, Z. C. Sci. Rep. 2014, 4, 5863. doi:10.1038/srep05863
-
[54]
(54) Wang, D.; Yan, W.; Vijapur, S. H.; Botte, G. G. Electrochim. Acta 2013, 89, 732. doi:10.1016/j.electacta.2012.11.046
-
[55]
(55) Wang, L.; Ren, L. T.; Wang, X. R.; Feng, X.; Zhou, J. W.; Wang, B. ACS Appl. Mater. Interfaces 2018, 10, 4750. doi:10.1021/acsami.7b18650
-
[56]
(56) He, Q.; Wan, Y. Y.; Jiang, H. L.; Pan, Z. W.; Wu, C. Q.; Wang, M.; Wu, X. J.; Ye, B. J.; Ajayan, P. M.; Song, L. ACS Energy Lett. 2018, 3, 1373. doi:10.1021/acsenergylett.8b00515
-
[57]
(57) Barakat, N. A. M.; Alajami, M.; Al Haj, Y.; Obaid, M.; Al-Meer, S. Catal. Commun. 2017, 97, 32. doi:10.1016/j.catcom.2017.03.027
-
[58]
(58) Shi, Y.; Li, H. R.; Ao, D. N.; Chang, Y.; Xu, A. J.; Jia, M. L.; Jia, J. C. J. Alloys Compd. 2021, 885, 160919. doi:10.1016/j.jallcom.2021.160919
-
[59]
(59) Liu, H. P.; Zhu, S. L.; Cui, Z. D.; Li, Z. Y.; Wu, S. L.; Liang, Y. Q. Nanoscale 2021, 13, 1759. doi:10.1039/d0nr08025j
-
[60]
(60) Ding, R.; Li, X. D.; Shi, W.; Xu, Q. L.; Wang, L.; Jiang, H. X.; Yang, Z.; Liu, E. H. Electrochim. Acta 2016, 222, 455. doi:10.1016/j.electacta.2016.10.198
-
[61]
(61) Ji, Z. J.; Liu, J.; Deng, Y.; Zhang, S. T.; Zhang, Z.; Du, P. Y.; Zhao, Y. L.; Lu, X. Q. J. Mater. Chem. A 2020, 8, 14680. doi:10.1039/d0ta05160h
-
[62]
(62) Ye, K.; Wang, G.; Cao, D. X.; Wang, G. X. Top. Curr. Chem. 2018, 376, 3905. doi:10.1007/s41061-018-0219-y
-
[63]
(63) Vedharathinam, V.; Botte, G. G. Electrochim. Acta 2013, 108, 660. doi:10.1016/j.electacta.2013.06.137
-
[64]
(64) Vedharathinam, V.; Botte, G. G. Electrochim. Acta 2012, 81, 292. doi:10.1016/j.electacta.2012.07.007
-
[65]
(65) Vedharathinam, V.; Botte, G. G. J. Phys. Chem. C 2014, 118, 21806. doi:10.1021/jp5052529
-
[66]
(66) Wang, S. L.; Yang, X. D.; Liu, Z.; Yang, D. W.; Feng, L. G. Nanoscale 2020, 12, 10827. doi:10.1039/d0nr01386b
-
[67]
(67) Xu, Z. Y.; Chen, Q.; Chen, Q. X.; Wang, P.; Wang, J. X.; Guo, C.; Qiu, X. Y.; Han, X.; Hao, J. H. J. Mater. Chem. A 2022, 10, 24137. doi:10.1039/d2ta05494a
-
[68]
(68) Wang, K. L.; Hou, M. M.; Huang, W.; Cao, Q. H.; Zhao, Y. J.; Sun, X. J.; Ding, R.; Lin, W. W.; Liu, E. H.; Gao, P. J. Colloid Interface Sci. 2022, 615, 309. doi:10.1016/j.jcis.2022.01.151
-
[69]
(69) Wang, K.; Li, Y. Z.; Hu, J. D.; Lu, Z. J.; Xie, J.; Hao, A. Z.; Cao, Y. L. Chem. Eng. J. 2022, 447, 137540. doi:10.1016/j.cej.2022.137540
-
[70]
(70) Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Appl. Catal. B 2021, 298, 120494. doi:10.1016/j.apcatb.2021.120494
-
[71]
(71) Feng, Y. Y.; Shi, Q. M.; Lin, J.; Chai, E. C.; Zhang, X.; Liu, Z. L.; Jiao, L.; Wang, Y. B. Adv. Mater. 2022, 34, 2207747. doi:10.1002/adma.202207747
-
[1]
-
-
[1]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[2]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[3]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[5]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[6]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[7]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[8]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[9]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[10]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[11]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[12]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[13]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[14]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[15]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[16]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[17]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[18]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[19]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[20]
Hui Shi , Shuangyan Huan , Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(380)
- HTML views(35)