Citation: Hui-Ying Chen,  Hao-Lin Zhu,  Pei-Qin Liao,  Xiao-Ming Chen. Integration of Ru(II)-Bipyridyl and Zinc(II)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230604. doi: 10.3866/PKU.WHXB202306046 shu

Integration of Ru(II)-Bipyridyl and Zinc(II)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction

  • Corresponding author: Hao-Lin Zhu,  Pei-Qin Liao,  Xiao-Ming Chen, 
  • Received Date: 27 June 2023
    Revised Date: 14 July 2023
    Accepted Date: 14 July 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2021YFA1500401), the National Natural Science Foundation of China (21890380 and 21821003), the Local Innovative and Research Teams Project of the Guangdong Pearl River Talents Program, China (2017BT01C161), and the Technology Innovation Strategy Special City and County Science and Technology Innovation Support Project, China (STKJ2023078).

  • Efficiently converting CO2 and H2O into value-added chemicals using solar energy is a viable approach to address global warming and the energy crisis. However, achieving artificial photocatalytic CO2 reduction using H2O as the reductant poses challenges is due to the difficulty in efficient cooperation among multiple functional moieties. Metal-organic frameworks (MOFs) are promising candidates for overall CO2 photoreduction due to their large surface area, diverse active sites, and excellent tailorability. In this study, we designed a metal-organic framework photocatalyst, named PCN-224(Zn)-Bpy(Ru), by integrating photoactive Zn(II)-porphyrin and Ru(II)-bipyridyl moieties. In comparison, two isostructural MOFs just with either Zn(II)-porphyrin or Ru(II)-bipyridyl moiety, namely PCN-224-Bpy(Ru) and PCN-224(Zn)-Bpy were also synthesized. As a result, PCN-224(Zn)-Bpy(Ru) exhibited the highest photocatalytic conversion rate of CO2 to CO, with a production rate of 7.6 µmol·g−1·h−1 in a mixed solvent of CH3CN and H2O, without the need for co-catalysts, photosensitizers, or sacrificial agents. Mass spectrometer analysis detected the signals of 13CO (m/z = 29), 13C18O (m/z = 31), 16O18O (m/z = 34), and 18O2 (m/z = 36), confirming that CO2 and H2O acted as the carbon and oxygen sources for CO and O2, respectively, thereby confirming the coupling of photocatalytic CO2 reduction with H2O oxidation. In contrast, using PCN-224-Bpy(Ru) or PCN-224(Zn)-Bpy as catalysts under the same conditions resulted in significantly lower CO production rates of only 1.5 and 0 µmol·g−1·h−1, respectively. Mechanistic studies revealed that the lowest unoccupied molecular orbital (LUMO) potential of PCN-224(Zn)-Bpy(Ru) is more negative than the redox potentials of CO2/CO, and the highest occupied molecular orbital (HOMO) potential is more positive than that of H2O/O2, satisfying the thermodynamic requirements for overall photocatalytic CO2 reduction. In comparison, the HOMO potential of PCN-224(Zn)-Bpy without Ru(II)-bipyridyl moieties is less positive than that of H2O/O2, indicating that the Ru(II)-bipyridyl moiety is thermodynamically necessary for CO2 reduction coupled with H2O oxidation. Additionally, photoluminescence spectroscopy revealed that the fluorescence of PCN-224(Zn)-Bpy(Ru) was almost completely quenched, and a longer average photoluminescence lifetime compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru) was observed. These suggest a low recombination rate of photogenerated carriers in PCN-224(Zn)-Bpy(Ru), which also supported by the higher photocurrent observed in PCN-224(Zn)-Bpy(Ru) compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru). In summary, the integrated Zn(II)-porphyrin and Ru(II)-bipyridyl moieties in PCN-224(Zn)-Bpy(Ru) play important roles of a photosensitizer and CO2 reduction as well as H2O oxidation sites, and their efficient cooperation optimizes the band structure, thereby facilitating the coupling of CO2 reduction with H2O oxidation and resulting in high-performance artificial photocatalytic CO2 reduction.
  • 加载中
    1. [1]

      (1) Hansen, J.; Johnson, D.; Lacis, A.; Lebedeff, S.; Lee, P.; Rind, D.; Russell, G. Science 1981, 213, 957. doi: 10.1126/science.213.4511.957

    2. [2]

      (2) Mercer, J. H. Nature 1978, 271, 321. doi: 10.1038/271321a0

    3. [3]

      (3) Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Science 2010, 330, 356. doi: 10.1126/science.1190653

    4. [4]

      (4) Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512. doi: 10.1002/adma.201705512

    5. [5]

      (5) Mertens, J.; Breyer, C.; Arning, K.; Bardow, A.; Belmans, R.; Dibenedetto, A.; Erkman, S.; Gripekoven, J.; Léonard, G.; Nizou, S.; et al. Joule 2023, 7, 442. doi: 10.1016/j.joule.2023.01.005

    6. [6]

      (6) Tooru, I.; Akira, F.; Satoshi, K.; Kenichi, H. Nature 1979, 277, 637. doi: 10.1038/277637a0

    7. [7]

    8. [8]

      (8) Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Adv. Energy Mater. 2020, 10, 2002928. doi: 10.1002/aenm.202002928

    9. [9]

      (9) Lan, G. X.; Fan, Y. J.; Shi, W. J.; You, E.; Veroneau, S. S.; Lin, W. B. Nat. Catal. 2022, 5, 1006. doi: 10.1038/s41929-022-00865-5

    10. [10]

      (10) Sun, K.; Qian, Y.; Jiang, H. L. Angew. Chem. Int. Ed. 2023, 62, e202217565. doi: 10.1002/anie.202217565

    11. [11]

      (11) Dong, L. Z.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W. X.; Lan, Y. Q. Angew. Chem. Int. Ed. 2020, 59, 2659. doi: 10.1002/anie.201913284

    12. [12]

      (12) Fang, Z. B.; Liu, T. T.; Liu, J.; Jin, S.; Wu, X. P.; Gong, X. Q.; Wang, K.; Yin, Q.; Liu, T. F.; Cao, R.; et al. J. Am. Chem. Soc. 2020, 142, 12515. doi: 10.1021/jacs.0c05530

    13. [13]

      (13) Huang, N. Y.; Shen, J. Q.; Zhang, X. W.; Liao, P. Q.; Zhang, J. P.; Chen, X. M. J. Am. Chem. Soc. 2022, 144, 8676. doi: 10.1021/jacs.2c01640

    14. [14]

      (14) Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Nature 2020, 586, 549. doi: 10.1038/s41586-020-2738-2

    15. [15]

      (15) Li, X. X.; Zhang, L.; Liu, J.; Yuan, L.; Wang, T.; Wang, J. Y.; Dong, L. Z.; Huang, K.; Lan, Y. Q. JACS Au 2021, 1, 1288. doi: 10.1021/jacsau.1c00186

    16. [16]

      (16) Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. J. Am. Chem. Soc. 2022, 144, 1861. doi: 10.1021/jacs.1c11987

    17. [17]

      (17) Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Chem. Eng. J. 2017, 308, 248. doi: 10.1016/j.cej.2016.09.050

    18. [18]

      (18) Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Angew. Chem. Int. Ed. 2019, 58, 9491. doi: 10.1002/anie.201904537

    19. [19]

      (19) Zhang, L.; Li, R. H.; Li, X. X.; Liu, J.; Guan, W.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2210550119. doi: 10.1073/pnas.2210550119

    20. [20]

      (20) Zhao, C.; Jiang, Z.; Liu, Y.; Zhou, Y.; Yin, P.; Ke, Y.; Deng, H. J. Am. Chem. Soc. 2022, 144, 23560. doi: 10.1021/jacs.2c10687

    21. [21]

      (21) Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y.; Liu, J.; Li, S. L.; Lan, Y. Q. Nat. Commun. 2022, 13, 4681. doi: 10.1038/s41467-022-32449-z

    22. [22]

      (22) Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Ferrer, B.; Garcia, H. Chem. Rev. 2023, 123, 445. doi: 10.1021/acs.chemrev.2c00460

    23. [23]

      (23) Qian, Z. P.; Zhang, R.; Xiao, Y.; Huang, H. W.; Sun, Y.; Chen, Y.; Ma, T. Y.; Sun, X. D. Adv. Energy Mater. 2023, 13, 2300086. doi: 10.1002/aenm.202300086

    24. [24]

      (24) Ezugwu, C. I.; Liu, S. W.; Li, C. H.; Zhuiykov, S.; Roy, S.; Verpoort, F. Coord. Chem. Rev. 2022, 450, 214245. doi: 10.1016/j.ccr.2021.214245

    25. [25]

      (25) Mo, G. L.; Wang, Q.; Lu, W. Y.; Wang, C.; Li, P. Chin. J. Chem. 2022, 41, 335. doi: 10.1002/cjoc.202200571

    26. [26]

      (26) Zhu, L. X.; Hu, F. L.; Sun, B.; Gu, S. N.; Gao, T. T.; Zhou, G. W. Adv. Sustain. Syst. 2022, 7, 2200394. doi: 10.1002/adsu.202200394

    27. [27]

      (27) Bonin, J.; Robert, M.; Routier, M. J. Am. Chem. Soc. 2014, 136, 16768. doi: 10.1021/ja510290t

    28. [28]

      (28) Nikoloudakis, E.; Lopez-Duarte, I.; Charalambidis, G.; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Chem. Soc. Rev. 2022, 51, 6965. doi: 10.1039/d2cs00183g

    29. [29]

      (29) Jing, J.; Yang, J.; Li, W.; Wu, Z.; Zhu, Y. Adv. Mater. 2022, 34, e2106807. doi: 10.1002/adma.202106807

    30. [30]

      (30) Qian, Y.; Li, D.; Han, Y.; Jiang, H. L. J. Am. Chem. Soc. 2020, 142, 20763. doi: 10.1021/jacs.0c09727

    31. [31]

      (31) Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Sci. Bull. 2020, 65, 987. doi: 10.1016/j.scib.2020.03.032

    32. [32]

      (32) Limburg, B.; Bouwman, E.; Bonnet, S. ACS Catal. 2016, 6, 5273. doi: 10.1021/acscatal.6b00107

    33. [33]

      (33) Xie, Y.; Shaffer, D. W.; Lewandowska-Andralojc, A.; Szalda, D. J.; Concepcion, J. J. Angew. Chem. Int. Ed. 2016, 55, 8067. doi: 10.1002/anie.201601943

    34. [34]

      (34) Zhang, L.; Yuan, S.; Fan, W.; Pang, J.; Li, F.; Guo, B.; Zhang, P.; Sun, D.; Zhou, H. C. ACS Appl. Mater. Interfaces 2019, 11, 22390. doi: 10.1021/acsami.9b05091

    35. [35]

      (35) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Inorg. Chem. 1977, 17, 3335. doi: 10.1021/ic50190a006

    36. [36]

      (36) Xie, P. H.; Hou, Y. J.; Zhang, B. W.; Cao, Y.; Wu, F.; Tian, W. J.; Shen, J. C. J. Chem. Soc., Dalton Trans. 1999, 4217. doi: 10.1039/A907621B

    37. [37]

      (37) Zhang, Z. J.; Liu, H.; Xu, J. Y.; Zeng, H. B. J. Photochem. Photobiol. A 2017, 336, 25. doi: 10.1016/j.jphotochem.2016.12.020

    38. [38]

      (38) Akl, A. A.; Kamal, H.; Abdel-Hady, K. Appl. Surf. Sci. 2006, 252, 8651. doi: 10.1016/j.apsusc.2005.12.001

    39. [39]

      (39) Jiao, X.; Zheng, K.; Hu, Z.; Sun, Y.; Xie, Y. ACS Cent. Sci. 2020, 6, 653. doi: 10.1021/acscentsci.0c00325

    40. [40]

      (40) Joshi, U. A.; Maggard, P. A. J. Phys. Chem. Lett. 2012, 3, 1577. doi: 10.1021/jz300477r

    41. [41]

      (41) Wang, C.; Wang, S. J.; Kong, F. G. Inorg. Chem. 2021, 60, 5034. doi: 10.1021/acs.inorgchem.1c00063

  • 加载中
    1. [1]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    19. [19]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(1)
  • Abstract views(608)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return