Citation:
Hui-Ying Chen, Hao-Lin Zhu, Pei-Qin Liao, Xiao-Ming Chen. Integration of Ru(II)-Bipyridyl and Zinc(II)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction[J]. Acta Physico-Chimica Sinica,
;2024, 40(4): 230604.
doi:
10.3866/PKU.WHXB202306046
-
Efficiently converting CO2 and H2O into value-added chemicals using solar energy is a viable approach to address global warming and the energy crisis. However, achieving artificial photocatalytic CO2 reduction using H2O as the reductant poses challenges is due to the difficulty in efficient cooperation among multiple functional moieties. Metal-organic frameworks (MOFs) are promising candidates for overall CO2 photoreduction due to their large surface area, diverse active sites, and excellent tailorability. In this study, we designed a metal-organic framework photocatalyst, named PCN-224(Zn)-Bpy(Ru), by integrating photoactive Zn(II)-porphyrin and Ru(II)-bipyridyl moieties. In comparison, two isostructural MOFs just with either Zn(II)-porphyrin or Ru(II)-bipyridyl moiety, namely PCN-224-Bpy(Ru) and PCN-224(Zn)-Bpy were also synthesized. As a result, PCN-224(Zn)-Bpy(Ru) exhibited the highest photocatalytic conversion rate of CO2 to CO, with a production rate of 7.6 µmol·g−1·h−1 in a mixed solvent of CH3CN and H2O, without the need for co-catalysts, photosensitizers, or sacrificial agents. Mass spectrometer analysis detected the signals of 13CO (m/z = 29), 13C18O (m/z = 31), 16O18O (m/z = 34), and 18O2 (m/z = 36), confirming that CO2 and H2O acted as the carbon and oxygen sources for CO and O2, respectively, thereby confirming the coupling of photocatalytic CO2 reduction with H2O oxidation. In contrast, using PCN-224-Bpy(Ru) or PCN-224(Zn)-Bpy as catalysts under the same conditions resulted in significantly lower CO production rates of only 1.5 and 0 µmol·g−1·h−1, respectively. Mechanistic studies revealed that the lowest unoccupied molecular orbital (LUMO) potential of PCN-224(Zn)-Bpy(Ru) is more negative than the redox potentials of CO2/CO, and the highest occupied molecular orbital (HOMO) potential is more positive than that of H2O/O2, satisfying the thermodynamic requirements for overall photocatalytic CO2 reduction. In comparison, the HOMO potential of PCN-224(Zn)-Bpy without Ru(II)-bipyridyl moieties is less positive than that of H2O/O2, indicating that the Ru(II)-bipyridyl moiety is thermodynamically necessary for CO2 reduction coupled with H2O oxidation. Additionally, photoluminescence spectroscopy revealed that the fluorescence of PCN-224(Zn)-Bpy(Ru) was almost completely quenched, and a longer average photoluminescence lifetime compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru) was observed. These suggest a low recombination rate of photogenerated carriers in PCN-224(Zn)-Bpy(Ru), which also supported by the higher photocurrent observed in PCN-224(Zn)-Bpy(Ru) compared to PCN-224(Zn)-Bpy and PCN-224-Bpy(Ru). In summary, the integrated Zn(II)-porphyrin and Ru(II)-bipyridyl moieties in PCN-224(Zn)-Bpy(Ru) play important roles of a photosensitizer and CO2 reduction as well as H2O oxidation sites, and their efficient cooperation optimizes the band structure, thereby facilitating the coupling of CO2 reduction with H2O oxidation and resulting in high-performance artificial photocatalytic CO2 reduction.
-
-
-
[1]
(1) Hansen, J.; Johnson, D.; Lacis, A.; Lebedeff, S.; Lee, P.; Rind, D.; Russell, G. Science 1981, 213, 957. doi: 10.1126/science.213.4511.957
-
[2]
(2) Mercer, J. H. Nature 1978, 271, 321. doi: 10.1038/271321a0
-
[3]
(3) Lacis, A. A.; Schmidt, G. A.; Rind, D.; Ruedy, R. A. Science 2010, 330, 356. doi: 10.1126/science.1190653
-
[4]
(4) Li, R.; Zhang, W.; Zhou, K. Adv. Mater. 2018, 30, e1705512. doi: 10.1002/adma.201705512
-
[5]
(5) Mertens, J.; Breyer, C.; Arning, K.; Bardow, A.; Belmans, R.; Dibenedetto, A.; Erkman, S.; Gripekoven, J.; Léonard, G.; Nizou, S.; et al. Joule 2023, 7, 442. doi: 10.1016/j.joule.2023.01.005
-
[6]
(6) Tooru, I.; Akira, F.; Satoshi, K.; Kenichi, H. Nature 1979, 277, 637. doi: 10.1038/277637a0
-
[7]
-
[8]
(8) Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Adv. Energy Mater. 2020, 10, 2002928. doi: 10.1002/aenm.202002928
-
[9]
(9) Lan, G. X.; Fan, Y. J.; Shi, W. J.; You, E.; Veroneau, S. S.; Lin, W. B. Nat. Catal. 2022, 5, 1006. doi: 10.1038/s41929-022-00865-5
-
[10]
(10) Sun, K.; Qian, Y.; Jiang, H. L. Angew. Chem. Int. Ed. 2023, 62, e202217565. doi: 10.1002/anie.202217565
-
[11]
(11) Dong, L. Z.; Zhang, L.; Liu, J.; Huang, Q.; Lu, M.; Ji, W. X.; Lan, Y. Q. Angew. Chem. Int. Ed. 2020, 59, 2659. doi: 10.1002/anie.201913284
-
[12]
(12) Fang, Z. B.; Liu, T. T.; Liu, J.; Jin, S.; Wu, X. P.; Gong, X. Q.; Wang, K.; Yin, Q.; Liu, T. F.; Cao, R.; et al. J. Am. Chem. Soc. 2020, 142, 12515. doi: 10.1021/jacs.0c05530
-
[13]
(13) Huang, N. Y.; Shen, J. Q.; Zhang, X. W.; Liao, P. Q.; Zhang, J. P.; Chen, X. M. J. Am. Chem. Soc. 2022, 144, 8676. doi: 10.1021/jacs.2c01640
-
[14]
(14) Jiang, Z.; Xu, X.; Ma, Y.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J.; et al. Nature 2020, 586, 549. doi: 10.1038/s41586-020-2738-2
-
[15]
(15) Li, X. X.; Zhang, L.; Liu, J.; Yuan, L.; Wang, T.; Wang, J. Y.; Dong, L. Z.; Huang, K.; Lan, Y. Q. JACS Au 2021, 1, 1288. doi: 10.1021/jacsau.1c00186
-
[16]
(16) Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. J. Am. Chem. Soc. 2022, 144, 1861. doi: 10.1021/jacs.1c11987
-
[17]
(17) Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Chem. Eng. J. 2017, 308, 248. doi: 10.1016/j.cej.2016.09.050
-
[18]
(18) Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Angew. Chem. Int. Ed. 2019, 58, 9491. doi: 10.1002/anie.201904537
-
[19]
(19) Zhang, L.; Li, R. H.; Li, X. X.; Liu, J.; Guan, W.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2210550119. doi: 10.1073/pnas.2210550119
-
[20]
(20) Zhao, C.; Jiang, Z.; Liu, Y.; Zhou, Y.; Yin, P.; Ke, Y.; Deng, H. J. Am. Chem. Soc. 2022, 144, 23560. doi: 10.1021/jacs.2c10687
-
[21]
(21) Zhou, J.; Li, J.; Kan, L.; Zhang, L.; Huang, Q.; Yan, Y.; Chen, Y.; Liu, J.; Li, S. L.; Lan, Y. Q. Nat. Commun. 2022, 13, 4681. doi: 10.1038/s41467-022-32449-z
-
[22]
(22) Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Ferrer, B.; Garcia, H. Chem. Rev. 2023, 123, 445. doi: 10.1021/acs.chemrev.2c00460
-
[23]
(23) Qian, Z. P.; Zhang, R.; Xiao, Y.; Huang, H. W.; Sun, Y.; Chen, Y.; Ma, T. Y.; Sun, X. D. Adv. Energy Mater. 2023, 13, 2300086. doi: 10.1002/aenm.202300086
-
[24]
(24) Ezugwu, C. I.; Liu, S. W.; Li, C. H.; Zhuiykov, S.; Roy, S.; Verpoort, F. Coord. Chem. Rev. 2022, 450, 214245. doi: 10.1016/j.ccr.2021.214245
-
[25]
(25) Mo, G. L.; Wang, Q.; Lu, W. Y.; Wang, C.; Li, P. Chin. J. Chem. 2022, 41, 335. doi: 10.1002/cjoc.202200571
-
[26]
(26) Zhu, L. X.; Hu, F. L.; Sun, B.; Gu, S. N.; Gao, T. T.; Zhou, G. W. Adv. Sustain. Syst. 2022, 7, 2200394. doi: 10.1002/adsu.202200394
-
[27]
(27) Bonin, J.; Robert, M.; Routier, M. J. Am. Chem. Soc. 2014, 136, 16768. doi: 10.1021/ja510290t
-
[28]
(28) Nikoloudakis, E.; Lopez-Duarte, I.; Charalambidis, G.; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Chem. Soc. Rev. 2022, 51, 6965. doi: 10.1039/d2cs00183g
-
[29]
(29) Jing, J.; Yang, J.; Li, W.; Wu, Z.; Zhu, Y. Adv. Mater. 2022, 34, e2106807. doi: 10.1002/adma.202106807
-
[30]
(30) Qian, Y.; Li, D.; Han, Y.; Jiang, H. L. J. Am. Chem. Soc. 2020, 142, 20763. doi: 10.1021/jacs.0c09727
-
[31]
(31) Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Sci. Bull. 2020, 65, 987. doi: 10.1016/j.scib.2020.03.032
-
[32]
(32) Limburg, B.; Bouwman, E.; Bonnet, S. ACS Catal. 2016, 6, 5273. doi: 10.1021/acscatal.6b00107
-
[33]
(33) Xie, Y.; Shaffer, D. W.; Lewandowska-Andralojc, A.; Szalda, D. J.; Concepcion, J. J. Angew. Chem. Int. Ed. 2016, 55, 8067. doi: 10.1002/anie.201601943
-
[34]
(34) Zhang, L.; Yuan, S.; Fan, W.; Pang, J.; Li, F.; Guo, B.; Zhang, P.; Sun, D.; Zhou, H. C. ACS Appl. Mater. Interfaces 2019, 11, 22390. doi: 10.1021/acsami.9b05091
-
[35]
(35) Sullivan, B. P.; Salmon, D. J.; Meyer, T. J. Inorg. Chem. 1977, 17, 3335. doi: 10.1021/ic50190a006
-
[36]
(36) Xie, P. H.; Hou, Y. J.; Zhang, B. W.; Cao, Y.; Wu, F.; Tian, W. J.; Shen, J. C. J. Chem. Soc., Dalton Trans. 1999, 4217. doi: 10.1039/A907621B
-
[37]
(37) Zhang, Z. J.; Liu, H.; Xu, J. Y.; Zeng, H. B. J. Photochem. Photobiol. A 2017, 336, 25. doi: 10.1016/j.jphotochem.2016.12.020
-
[38]
(38) Akl, A. A.; Kamal, H.; Abdel-Hady, K. Appl. Surf. Sci. 2006, 252, 8651. doi: 10.1016/j.apsusc.2005.12.001
-
[39]
(39) Jiao, X.; Zheng, K.; Hu, Z.; Sun, Y.; Xie, Y. ACS Cent. Sci. 2020, 6, 653. doi: 10.1021/acscentsci.0c00325
-
[40]
(40) Joshi, U. A.; Maggard, P. A. J. Phys. Chem. Lett. 2012, 3, 1577. doi: 10.1021/jz300477r
-
[41]
(41) Wang, C.; Wang, S. J.; Kong, F. G. Inorg. Chem. 2021, 60, 5034. doi: 10.1021/acs.inorgchem.1c00063
-
[1]
-
-
-
[1]
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393
-
[2]
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
-
[3]
Jianding LI , Junyang FENG , Huimin REN , Gang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464
-
[4]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[5]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[6]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[7]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
-
[8]
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
-
[9]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[10]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[11]
.
CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级
. CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -. -
[12]
Tian TIAN , Meng ZHOU , Jiale WEI , Yize LIU , Yifan MO , Yuhan YE , Wenzhi JIA , Bin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298
-
[13]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[14]
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
-
[15]
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
-
[16]
Lewang Yuan , Yaoyao Peng , Zong-Jie Guan , Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086
-
[17]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[18]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[19]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[20]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(745)
- HTML views(120)