Citation: Mengshi Yu, Congwei Tan, Xiaoyin Gao, Junchuan Tang, Hailin Peng. Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230604. doi: 10.3866/PKU.WHXB202306043 shu

Chemical Vapor Deposition Growth of High-Mobility 2D Semiconductor Bi2O2Se: Controllability and Material Quality

  • Corresponding author: Hailin Peng, hlpeng@pku.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 26 June 2023
    Revised Date: 19 July 2023
    Accepted Date: 21 July 2023
    Available Online: 7 August 2023

    Fund Project: the National Natural Science Foundation of China 21920102004the National Natural Science Foundation of China 22205011the National Natural Science Foundation of China 92164205National Key Research & Development Program 2021YFA1202901Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001the Tencent Foundation 探索者奖

  • Two-dimensional (2D) semiconductors offer an atomic thickness that facilitates superior gate field penetration and enables transistors to maintain shrinking with suppressed short-channel effects, thereby being considered as channel materials for future transistors in the post-Moore era. As a member of high-mobility 2D semiconductors, the air-stable Bi2O2Se with a moderate bandgap has drawn significant attention. Distinguished from other 2D materials, Bi2O2Se can be oxidized layer-by-layer to form a high-k native-oxide dielectric, Bi2SeO5, with an atomically sharp interface, similar to Si/SiO2 in the semiconductor industry. These characteristics make Bi2O2Se an ideal material platform for fabricating various devices with excellent performance, such as transistors, thermoelectrics, optoelectronics, sensors, flexible devices and memory devices. To realize advanced applications of 2D Bi2O2Se, it is essential to develop scalable and high-quality preparation methods with relatively low cost. Chemical vapor deposition (CVD) has shown promise in meeting these requirements. Over the past years, CVD has been widely used to synthesize 2D Bi2O2Se despite some remaining challenges. In this review, we summarize the recent progress in the controlled growth of 2D Bi2O2Se via the CVD method. We begin by introducing the crystal structure and properties of Bi2O2Se. Next, we focus on the morphology control of 2D Bi2O2Se, including various nucleation modes and different dimensionalities by carefully manipulating the CVD process. In terms of nucleation modes, in-plane and vertical epitaxial growth of Bi2O2Se, achieved by controlling the interaction between epitaxial layer and substrate, are reviewed. Wafer-scale continuous Bi2O2Se film facilitates the device integration while vertical 2D fins pave the way for fabricating high-performance fin field-effect-transistors (FinFET). As for the dimensionality control, the transition from 2D nanoplates to 1D nanoribbons is investigated. Parameters such as precursor ratio, growth temperature and types of catalyst play a key role in such transition. We then discuss the construction of ordered arrays of Bi2O2Se with the above morphology by selective growth and post treatment for potential device integration. In addition, we highlight the electrical quality improvement of the grown material via defect control and strain release. For example, both the Se poor growth condition and the out-of-plane strain-free growth contribute to higher mobility of Bi2O2Se. Lastly, we propose potential strategies for precise control of Bi2O2Se structures and quality. In order to meet the demands of advanced electronic applications, more efforts are expected to made to achieve uniform, transferable and site-specific preparation of high-quality single-crystal Bi2O2Se on a large scale.
  • 加载中
    1. [1]

      Kang, K.; Lee, K. H.; Han, Y.; Gao, H.; Xie, S.; Muller, D. A.; Park, J. Nature 2017, 550 (7675), 229. doi: 10.1038/nature23905  doi: 10.1038/nature23905

    2. [2]

      Liu, Y.; Duan, X.; Shin, H. -J.; Park, S.; Huang, Y.; Duan, X. Nature 2021, 591 (7848), 43. doi: 10.1038/s41586-021-03339-z  doi: 10.1038/s41586-021-03339-z

    3. [3]

      Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. P.; Koppens, F. H. L. Nature 2019, 573 (7775), 507. doi: 10.1038/s41586-019-1573-9  doi: 10.1038/s41586-019-1573-9

    4. [4]

      Chhowalla, M.; Jena, D.; Zhang, H. Nat. Rev. Mater. 2016, 1 (11), 16052. doi: 10.1038/natrevmats2016.52  doi: 10.1038/natrevmats2016.52

    5. [5]

      Wang, S.; Liu, X.; Xu, M.; Liu, L.; Yang, D.; Zhou, P. Nat. Mater. 2022, 21, 1225. doi: 10.1038/s41928-022-00824-9  doi: 10.1038/s41928-022-00824-9

    6. [6]

      Wu, J.; Yuan, H.; Meng, M.; Chen, C.; Sun, Y.; Chen, Z.; Dang, W.; Tan, C.; Liu, Y.; Yin, J.; et al. Nat. Nanotech. 2017, 12, 530. doi: 10.1038/NNANO.2017.43  doi: 10.1038/NNANO.2017.43

    7. [7]

      Tan, C.; Yu, M.; Tang, J.; Gao, X.; Yin, Y.; Zhang, Y.; Wang, J.; Gao, X.; Zhang, C.; Zhou, X.; et al. Nature 2023, 616 (7955), 66. doi: 10.1038/s41586-023-05797-z  doi: 10.1038/s41586-023-05797-z

    8. [8]

      Zhang, Y.; Yu, J.; Zhu, R.; Wang, M.; Tan, C.; Tu, T.; Zhou, X.; Zhang, C.; Yu, M.; Gao, X.; et al. Nat. Electron. 2022, 5 (10), 643. doi: 10.1038/s41928-022-00824-9  doi: 10.1038/s41928-022-00824-9

    9. [9]

      Li, P.; Han, A.; Zhang, C.; He, X.; Zhang, J.; Zheng, D.; Cheng, L.; Li, L. -J.; Miao, G. -X.; Zhang, X. -X. ACS Nano 2020, 14 (9), 11319. doi: 10.1021/acsnano.0c03346  doi: 10.1021/acsnano.0c03346

    10. [10]

      Ying, J.; He, J.; Yang, G.; Liu, M.; Lyu, Z.; Zhang, X.; Liu, H.; Zhao, K.; Jiang, R.; Ji, Z.; et al. Nano Lett. 2020, 20 (4), 2569. doi: 10.1021/acs.nanolett.0c00025  doi: 10.1021/acs.nanolett.0c00025

    11. [11]

      Li, T.; Tu, T.; Sun, Y.; Fu, H.; Yu, J.; Xing, L.; Wang, Z.; Wang, H.; Jia, R.; Wu, J.; et al. Nat. Electron. 2020, 3, 473. doi: 10.1038/s41928-020-0444-6  doi: 10.1038/s41928-020-0444-6

    12. [12]

      Zhang, C.; Tu, T.; Wang, J.; Zhu, Y.; Tan, C.; Chen, L.; Wu, M.; Zhu, R.; Liu, Y.; Fu, H.; et al. Nat. Mater. 2023. doi: 10.1038/s41563-023-01502-7  doi: 10.1038/s41563-023-01502-7

    13. [13]

      Yang, F.; Wu, J.; Suwardi, A.; Zhao, Y.; Liang, B.; Jiang, J.; Xu, J.; Chi, D.; Hippalgaonkar, K.; Lu, J.; Ni, Z. Adv. Mater. 2020, e2004786. doi: 10.1002/adma.202004786  doi: 10.1002/adma.202004786

    14. [14]

      Yin, J.; Tan, Z.; Hong, H.; Wu, J.; Yuan, H.; Liu, Y.; Chen, C.; Tan, C.; Yao, F.; Li, T.; et al. Nat. Commun. 2018, 9 (1), 3311. doi: 10.1038/s41467-018-05874-2  doi: 10.1038/s41467-018-05874-2

    15. [15]

      Chen, Y.; Ma, W.; Tan, C.; Luo, M.; Zhou, W.; Yao, N.; Wang, H.; Zhang, L.; Xu, T.; Tong, T.; et al. Adv. Funct. Mater. 2021, 31 (14). doi: 10.1002/adfm.202009554  doi: 10.1002/adfm.202009554

    16. [16]

      Tian, X.; Luo, H.; Wei, R.; Zhu, C.; Guo, Q.; Yang, D.; Wang, F.; Li, J.; Qiu, J. Adv. Mater. 2018, 30 (31), 1801021. doi: 10.1002/adma.201801021  doi: 10.1002/adma.201801021

    17. [17]

      Xu, S.; Fu, H.; Tian, Y.; Deng, T.; Cai, J.; Wu, J.; Tu, T.; Li, T.; Tan, C.; Liang, Y.; et al. Angew. Chem. Int. Ed. 2020, 59, 17938. doi: 10.1002/anie.202006745  doi: 10.1002/anie.202006745

    18. [18]

      Zhang, C.; Wu, J.; Sun, Y.; Tan, C.; Li, T.; Tu, T.; Zhang, Y.; Liang, Y.; Zhou, X.; Gao, P.; et al. J. Am. Chem. Soc. 2020, 142 (6), 2726. doi: 10.1021/jacs.9b11668  doi: 10.1021/jacs.9b11668

    19. [19]

      Xia, Y.; Wang, J.; Chen, R.; Wang, H.; Xu, H.; Jiang, C.; Li, W.; Xiao, X. Adv. Electron. Mater. 2022, 8 (9), 2200126. doi: 10.1002/aelm.202200126  doi: 10.1002/aelm.202200126

    20. [20]

      Liu, B.; Zhao, Y.; Verma, D.; Wang, L. A.; Liang, H.; Zhu, H.; Li, L. J.; Hou, T. H.; Lai, C. S. ACS Appl. Mater. Interfaces 2021, 13, 15391. doi: 10.1021/acsami.1c00177  doi: 10.1021/acsami.1c00177

    21. [21]

      Zhang, Z.; Li, T.; Wu, Y.; Jia, Y.; Tan, C.; Xu, X.; Wang, G.; Lv, J.; Zhang, W.; He, Y.; et al. Adv. Mater. 2019, 31 (3), 1805769. doi: 10.1002/adma.201805769  doi: 10.1002/adma.201805769

    22. [22]

      Khan, U.; Luo, Y.; Tang, L.; Teng, C.; Liu, J.; Liu, B.; Cheng, H. M. Adv. Funct. Mater. 2019, 29 (14), 1807979. doi: 10.1002/adfm.201807979  doi: 10.1002/adfm.201807979

    23. [23]

      Tan, C.; Tang, M.; Wu, J.; Liu, Y.; Li, T.; Liang, Y.; Deng, B.; Tan, Z.; Tu, T.; Zhang, Y.; et al. Nano Lett. 2019, 19 (3), 2148. doi: 10.1021/acs.nanolett.9b00381  doi: 10.1021/acs.nanolett.9b00381

    24. [24]

      Liang, Y.; Chen, Y.; Sun, Y.; Xu, S.; Wu, J.; Tan, C.; Xu, X.; Yuan, H.; Yang, L.; Chen, Y.; et al. Adv. Mater. 2019, 31 (39), 1901964. doi: 10.1002/adma.201901964  doi: 10.1002/adma.201901964

    25. [25]

      Song, Y.; Li, Z.; Li, H.; Tang, S.; Mu, G.; Xu, L.; Peng, W.; Shen, D.; Chen, Y.; Xie, X.; et al. Nanotechnology 2020, 31 (16), 165704. doi: 10.1088/1361-6528/ab6686  doi: 10.1088/1361-6528/ab6686

    26. [26]

      Kang, M.; Chai, H. J.; Jeong, H. B.; Park, C.; Jung, I. Y.; Park, E.; Cicek, M. M.; Lee, I.; Bae, B. S.; Durgun, E.; et al. ACS Nano 2021, 15 (5), 8715. doi: 10.1021/acsnano.1c00811  doi: 10.1021/acsnano.1c00811

    27. [27]

      Dang, L. Y.; Liu, M.; Wang, G. G.; Zhao, D. Q.; Han, J. C.; Zhu, J. Q.; Liu, Z. Adv. Funct. Mater. 2022, 32 (31), 2201020. doi: 10.1002/adfm.202201020  doi: 10.1002/adfm.202201020

    28. [28]

      Li, M. Q.; Dang, L. Y.; Wang, G. G.; Li, F.; Han, M.; Wu, Z. P.; Li, G. Z.; Liu, Z.; Han, J. C. Adv. Mater. Technol. 2020, 5 (7), 2000180. doi: 10.1002/admt.202000180  doi: 10.1002/admt.202000180

    29. [29]

      Wei, Q.; Li, R.; Lin, C.; Han, A.; Nie, A.; Li, Y.; Li, L. J.; Cheng, Y.; Huang, W. ACS Nano 2019, 13 (11), 13439. doi: 10.1021/acsnano.9b07000  doi: 10.1021/acsnano.9b07000

    30. [30]

      Chen, C.; Wang, M.; Wu, J.; Fu, H.; Yang, H.; Tian, Z.; Tu, T.; Peng, H.; Sun, Y.; Xu, X.; et al. Sci. Adv. 2018, 4 (9), eaat8355. doi: 10.1126/sciadv.aat8355  doi: 10.1126/sciadv.aat8355

    31. [31]

      Eremeev, S. V.; Koroteev, Y. M.; Chulkov, E. V. Phys. Rev. B 2019, 100 (11). doi: 10.1103/PhysRevB.100.115417  doi: 10.1103/PhysRevB.100.115417

    32. [32]

      Meng, M.; Huang, S.; Tan, C.; Wu, J.; Jing, Y.; Peng, H.; Xu, H. Nanoscale 2018, 10, 2704. doi: 10.1039/C7NR08874D  doi: 10.1039/C7NR08874D

    33. [33]

      Zhou, X.; Liang, Y.; Fu, H.; Zhu, R.; Wang, J.; Cong, X.; Tan, C.; Zhang, C.; Zhang, Y.; Wang, Y.; et al. Adv. Mater. 2022, 34 (42), e2202754. doi: 10.1002/adma.202202754  doi: 10.1002/adma.202202754

    34. [34]

      Li, X.; Yu, Z.; Xiong, X.; Li, T.; Gao, T.; Wang, R.; Huang, R.; Wu, Y. Sci. Adv. 2019, 5 (6), eaau3194. doi: doi: 10.1126/sciadv.aau3194

    35. [35]

      Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Nat. Nanotechnol. 2011, 6 (3), 147. doi: 10.1038/nnano.2010.279  doi: 10.1038/nnano.2010.279

    36. [36]

      Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Nano Lett. 2012, 12 (11), 5576. doi: 10.1021/nl302584w  doi: 10.1021/nl302584w

    37. [37]

      Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Phys. Rev. B 2012, 85 (3), 033305. doi: 10.1103/PhysRevB.85.033305  doi: 10.1103/PhysRevB.85.033305

    38. [38]

      Zhao, Y.; Qiao, J.; Yu, P.; Hu, Z.; Lin, Z.; Lau, S. P.; Liu, Z.; Ji, W.; Chai, Y. Adv. Mater. 2016, 28 (12), 2399. doi: 10.1002/adma.201504572  doi: 10.1002/adma.201504572

    39. [39]

      Iqbal, M. W.; Iqbal, M. Z.; Khan, M. F.; Shehzad, M. A.; Seo, Y.; Park, J. H.; Hwang, C.; Eom, J. Sci. Rep. 2015, 5, 10699. doi: 10.1038/srep10699  doi: 10.1038/srep10699

    40. [40]

      Yang, C. -x.; Zhao, X.; Wei, S. -y. Solid State Commun. 2016, 245, 70. doi: 10.1016/j.ssc.2016.07.003  doi: 10.1016/j.ssc.2016.07.003

    41. [41]

      Brotons-Gisbert, M.; Andres-Penares, D.; Suh, J.; Hidalgo, F.; Abargues, R.; Rodriguez-Canto, P. J.; Segura, A.; Cros, A.; Tobias, G.; Canadell, E.; et al. Nano Lett. 2016, 16 (5), 3221. doi: 10.1021/acs.nanolett.6b00689  doi: 10.1021/acs.nanolett.6b00689

    42. [42]

      Gonzalez, J. M.; Oleynik, I. I. Phys. Rev. B 2016, 94 (12), 125443. doi: 10.1103/PhysRevB.94.125443  doi: 10.1103/PhysRevB.94.125443

    43. [43]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438 (7065), 197. doi: 10.1038/nature04233  doi: 10.1038/nature04233

    44. [44]

      Ni, Z.; Liu, Q.; Tang, K.; Zheng, J.; Zhou, J.; Qin, R.; Gao, Z.; Yu, D.; Lu, J. Nano Lett. 2012, 12 (1), 113. doi: 10.1021/nl203065e  doi: 10.1021/nl203065e

    45. [45]

      Zhao, Q.; Guo, Y.; Si, K.; Ren, Z.; Bai, J.; Xu, X. Phys. Status. Solidi. (b) 2017, 254 (9), 1700033. doi: 10.1002/pssb.201700033  doi: 10.1002/pssb.201700033

    46. [46]

      Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices. John Wiley & Sons: New Jersey, USA; 2006; pp. 5–75.

    47. [47]

      Mu, X.; Wang, J.; Sun, M. Mat. Today Phys 2019, 8, 92. doi: 10.1016/j.mtphys.2019.02.003  doi: 10.1016/j.mtphys.2019.02.003

    48. [48]

      Cheng, L.; Liu, Y. J. Am. Chem. Soc. 2018, 140 (51), 17895. doi: 10.1021/jacs.8b07871  doi: 10.1021/jacs.8b07871

    49. [49]

      Caruso, F.; Amsalem, P.; Ma, J.; Aljarb, A.; Schultz, T.; Zacharias, M.; Tung, V.; Koch, N.; Draxl, C. Phys. Rev. B 2021, 103 (20), 205152. doi: 10.1103/PhysRevB.103.205152  doi: 10.1103/PhysRevB.103.205152

    50. [50]

      Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. -H.; Sung, H. -J.; Kan, M.; Kang, H.; Hwang, J. -Y.; Kim, S. W.; Yang, H.; et al. Nat. Phys. 2015, 11 (6), 482. doi: 10.1038/nphys3314  doi: 10.1038/nphys3314

    51. [51]

      Tan, C.; Jiang, J.; Wang, J.; Yu, M.; Tu, T.; Gao, X.; Tang, J.; Zhang, C.; Zhang, Y.; Zhou, X.; et al. Nano Lett. 2022, 22 (9), 3770. doi: 10.1021/acs.nanolett.2c00820  doi: 10.1021/acs.nanolett.2c00820

    52. [52]

      Chen, X.; Chen, C.; Levi, A.; Houben, L.; Deng, B.; Yuan, S.; Ma, C.; Watanabe, K.; Taniguchi, T.; Naveh, D.; et al. ACS Nano 2018, 12 (5), 5003. doi: 10.1021/acsnano.8b02295  doi: 10.1021/acsnano.8b02295

    53. [53]

      Dorgan, V. E.; Bae, M. -H.; Pop, E. Appl. Phys. Lett. 2010, 97 (8), 082112. doi: 10.1063/1.3483130  doi: 10.1063/1.3483130

    54. [54]

      Smithe, K. K. H.; English, C. D.; Suryavanshi, S. V.; Pop, E. Nano Lett. 2018, 18 (7), 4516. doi: 10.1021/acs.nanolett.8b01692  doi: 10.1021/acs.nanolett.8b01692

    55. [55]

      Jin, Z.; Li, X.; Mullen, J. T.; Kim, K. W. Phys. Rev. B 2014, 90 (4), 045422. doi: 10.1103/PhysRevB.90.045422  doi: 10.1103/PhysRevB.90.045422

    56. [56]

      Rengel, R.; Iglesias, J. M.; Hamham, E. M.; Martín, M. J. Semicond. Sci. Tech. 2018, 33 (6), 065011. doi: 10.1088/1361-6641/aac0a2  doi: 10.1088/1361-6641/aac0a2

    57. [57]

      Xu, Y.; Shi, X.; Zhang, Y.; Zhang, H.; Zhang, Q.; Huang, Z.; Xu, X.; Guo, J.; Zhang, H.; Sun, L.; et al. Nat. Commun. 2020, 11 (1), 1330. doi: 10.1038/s41467-020-14902-z  doi: 10.1038/s41467-020-14902-z

    58. [58]

      Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nat. Nanotechnol. 2014, 9 (5), 372. doi: 10.1038/nnano.2014.35  doi: 10.1038/nnano.2014.35

    59. [59]

      Chang, W. H.; Irisawa, T.; Ishii, H.; Hattori, H.; Uchida, N.; Maeda, T. In HEtero-layer-lift-off (HELLO) technology for enhanced hole mobility in UTB GeOI pMOSFETs, 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 16–19 April 2018; 2018; pp. 1–2.

    60. [60]

      Zhu, W.; Perebeinos, V.; Freitag, M.; Avouris, P. Phys. Rev. B 2009, 80 (23), 235402. doi: 10.1103/PhysRevB.80.235402  doi: 10.1103/PhysRevB.80.235402

    61. [61]

      Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Sci. Rep. 2016, 6, 22277. doi: 10.1038/srep22277  doi: 10.1038/srep22277

    62. [62]

      Mleczko, M. J.; Zhang, C.; Lee, H. R.; Kuo, H. -H.; Magyari-Köpe, B.; Moore, R. G.; Shen, Z. -X.; Fisher, I. R.; Nishi, Y.; Pop, E. Sci. Adv. 2017, 3 (8), e1700481. doi: 10.1126/sciadv.1700481  doi: 10.1126/sciadv.1700481

    63. [63]

      English, C. D.; Shine, G.; Dorgan, V. E.; Saraswat, K. C.; Pop, E. Nano Lett. 2016, 16 (6), 3824. doi: 10.1021/acs.nanolett.6b01309  doi: 10.1021/acs.nanolett.6b01309

    64. [64]

      Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. Nat. Commun. 2014, 5, 5143. doi: 10.1038/ncomms6143  doi: 10.1038/ncomms6143

    65. [65]

      Li, T.; Guo, W.; Ma, L.; Li, W.; Yu, Z.; Han, Z.; Gao, S.; Liu, L.; Fan, D.; Wang, Z.; et al. Nat. Nanotechnol. 2021, 16 (11), 1201. doi: 10.1038/s41565-021-00963-8  doi: 10.1038/s41565-021-00963-8

    66. [66]

      Liu, L.; Li, T.; Ma, L.; Li, W.; Gao, S.; Sun, W.; Dong, R.; Zou, X.; Fan, D.; Shao, L.; et al. Nature 2022, 605 (7908), 69. doi: 10.1038/s41586-022-04523-5  doi: 10.1038/s41586-022-04523-5

    67. [67]

      Larentis, S.; Fallahazad, B.; Tutuc, E. Appl. Phys. Lett. 2012, 101 (22), 223104. doi: 10.1063/1.4768218  doi: 10.1063/1.4768218

    68. [68]

      Ji, H.; Joo, M. K.; Yi, H.; Choi, H.; Gul, H. Z.; Ghimire, M. K.; Lim, S. C. ACS Appl. Mater. Interfaces 2017, 9 (34), 29185. doi: 10.1021/acsami.7b05865  doi: 10.1021/acsami.7b05865

    69. [69]

      Zhao, Y.; Qiao, J.; Yu, Z.; Yu, P.; Xu, K.; Lau, S. P.; Zhou, W.; Liu, Z.; Wang, X.; Ji, W.; et al. Adv. Mater. 2017, 29 (5), 1604230. doi: 10.1002/adma.201604230  doi: 10.1002/adma.201604230

    70. [70]

      Uchida, K.; Watanabe, H.; Kinoshita, A.; Koga, J.; Numata, T.; Takagi, S. In Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI n- and p-MOSFETs with SOI Thickness Less Than 5 nm. International Electron Devices Meeting, San Francisco, CA, USA, 8–11 Dec. 2002; 2002; pp. 47–50.

    71. [71]

      Irisawa, T.; Numata, T.; Tezuka, T.; Sugiyama, N.; Takagi, S. I. In Electron Transport Properties of Ultrathin-body and Tri-gate SOI nMOSFETs with Biaxial and Uniaxial Strain, International Electron Devices Meeting, San Francisco, CA, USA, 11–13 Dec. 2006; 2006; pp. 1–4.

    72. [72]

      Song, H. S.; Li, S. L.; Gao, L.; Xu, Y.; Ueno, K.; Tang, J.; Cheng, Y. B.; Tsukagoshi, K. Nanoscale 2013, 5 (20), 9666. doi: 10.1039/c3nr01899g  doi: 10.1039/c3nr01899g

    73. [73]

      Aji, A. S.; Solís-Fernández, P.; Ji, H. G.; Fukuda, K.; Ago, H. Adv. Funct. Mater. 2017, 27 (47), 1703448. doi: 10.1002/adfm.201703448  doi: 10.1002/adfm.201703448

    74. [74]

      Pudasaini, P. R.; Oyedele, A.; Zhang, C.; Stanford, M. G.; Cross, N.; Wong, A. T.; Hoffman, A. N.; Xiao, K.; Duscher, G.; Mandrus, D. G.; et al. Nano Res. 2017, 11 (2), 722. doi: 10.1007/s12274-017-1681-5  doi: 10.1007/s12274-017-1681-5

    75. [75]

      Pradhan, N. R.; Rhodes, D.; Memaran, S.; Poumirol, J. M.; Smirnov, D.; Talapatra, S.; Feng, S.; Perea-Lopez, N.; Elias, A. L.; Terrones, M.; et al. Sci. Rep. 2015, 5, 8979. doi: 10.1038/srep08979  doi: 10.1038/srep08979

    76. [76]

      Ji, H. G.; Solis-Fernandez, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Adv. Mater. 2019, 31 (42), 1903613. doi: 10.1002/adma.201903613  doi: 10.1002/adma.201903613

    77. [77]

      Khan, U.; Tang, L.; Ding, B.; Yuting, L.; Feng, S.; Chen, W.; Khan, M. J.; Liu, B.; Cheng, H. M. Adv. Funct. Mater. 2021, 31 (31), 2101170. doi: 10.1002/adfm.202101170  doi: 10.1002/adfm.202101170

    78. [78]

      Wei, Y.; Chen, C.; Tan, C.; He, L.; Ren, Z.; Zhang, C.; Peng, S.; Han, J.; Zhou, H.; Wang, J. Adv. Opt. Mater. 2022, 10 (23), 2201396. doi: 10.1002/adom.202201396  doi: 10.1002/adom.202201396

    79. [79]

      Wu, J.; Qiu, C.; Fu, H.; Chen, S.; Zhang, C.; Dou, Z.; Tan, C.; Tu, T.; Li, T.; Zhang, Y.; et al. Nano Lett 2019, 19 (1), 197. doi: 10.1021/acs.nanolett.8b03696  doi: 10.1021/acs.nanolett.8b03696

    80. [80]

      Wu, J.; Tan, C.; Tan, Z.; Liu, Y.; Yin, J.; Dang, W.; Wang, M.; Peng, H. Nano Lett. 2017, 17, 3021. doi: 10.1021/acs.nanolett.7b00335  doi: 10.1021/acs.nanolett.7b00335

    81. [81]

      Yang, X.; Zhang, Q.; Song, Y.; Fan, Y.; He, Y.; Zhu, Z.; Bai, Z.; Luo, Q.; Wang, G.; Peng, G.; et al. ACS Appl. Mater. Interfaces 2021, 13 (41), 49153. doi: 10.1021/acsami.1c13491  doi: 10.1021/acsami.1c13491

    82. [82]

      Qin, B.; Saeed, M. Z.; Li, Q.; Zhu, M.; Feng, Y.; Zhou, Z.; Fang, J.; Hossain, M.; Zhang, Z.; Zhou, Y.; et al. Nat. Commun. 2023, 14 (1), 304. doi: 10.1038/s41467-023-35983-6  doi: 10.1038/s41467-023-35983-6

    83. [83]

      Wu, Z.; Liu, G.; Wang, Y.; Yang, X.; Wei, T.; Wang, Q.; Liang, J.; Xu, N.; Li, Z.; Zhu, B.; et al. Adv. Funct. Mater. 2019, 29 (50), 1906639. doi: 10.1002/adfm.201906639  doi: 10.1002/adfm.201906639

    84. [84]

      Li, J.; Wang, Z.; Chu, J.; Cheng, Z.; He, P.; Wang, J.; Yin, L.; Cheng, R.; Li, N.; Wen, Y.; et al. Appl. Phys. Lett. 2019, 114 (15), 151104. doi: 10.1063/1.5094192  doi: 10.1063/1.5094192

    85. [85]

      Ying, J.; Yang, G.; Lyu, Z.; Liu, G.; Ji, Z.; Fan, J.; Yang, C.; Jing, X.; Yang, H.; Lu, L.; et al. Phys. Rev. B 2019, 100 (23), 235307. doi: 10.1103/PhysRevB.100.235307  doi: 10.1103/PhysRevB.100.235307

    86. [86]

      Tan, C.; Yu, M.; Xu, S.; Wu, J.; Chen, S.; Zhao, Y.; Liu, C.; Zhang, Y.; Tu, T.; Li, T.; et al. Acta Phys. -Chim. Sin. 2020, 36 (1), 1908038.  doi: 10.3866/PKU.WHXB201908038

    87. [87]

      Li, T.; Peng, H. Acc. Mater. Res. 2021, 2 (9), 842. doi: 10.1021/accountsmr.1c00130  doi: 10.1021/accountsmr.1c00130

    88. [88]

      Wu, J.; Liu, Y.; Tan, Z.; Tan, C.; Yin, J.; Li, T.; Tu, T.; Peng, H. Adv. Mater. 2017, 29, 1704060. doi: 10.1002/adma.201704060  doi: 10.1002/adma.201704060

    89. [89]

      Fu, H.; Wu, J.; Peng, H.; Yan, B. Phys. Rev. B 2018, 97 (24), 241203. doi: 10.1103/PhysRevB.97.241203  doi: 10.1103/PhysRevB.97.241203

    90. [90]

      Wei, Q.; Lin, C.; Li, Y.; Zhang, X.; Zhang, Q.; Shen, Q.; Cheng, Y.; Huang, W. J. Appl. Phys. 2018, 124 (5), 055701. doi: 10.1063/1.5040690  doi: 10.1063/1.5040690

    91. [91]

      Hong, C.; Tao, Y.; Nie, A.; Zhang, M.; Wang, N.; Li, R.; Huang, J.; Huang, Y.; Ren, X.; Cheng, Y.; et al. ACS Nano 2020, 14, 16803. doi: 10.1021/acsnano.0c05300  doi: 10.1021/acsnano.0c05300

    92. [92]

      Wang, J.; Wu, J.; Wang, T.; Xu, Z.; Wu, J.; Hu, W.; Ren, Z.; Liu, S.; Behnia, K.; Lin, X. Nat. Commun. 2020, 11 (1), 3846. doi: 10.1038/s41467-020-17692-6  doi: 10.1038/s41467-020-17692-6

    93. [93]

      Khan, U.; Nairan, A.; Khan, K.; Li, S.; Liu, B.; Gao, J. Small 2022, 19 (10), 2206648. doi: 10.1002/smll.202206648  doi: 10.1002/smll.202206648

    94. [94]

      Tong, T.; Chen, Y.; Qin, S.; Li, W.; Zhang, J.; Zhu, C.; Zhang, C.; Yuan, X.; Chen, X.; Nie, Z.; et al. Adv. Funct. Mater. 2019, 29 (50), 1905806. doi: 10.1002/adfm.201905806  doi: 10.1002/adfm.201905806

    95. [95]

      Zhao, K.; Liu, H.; Tan, C.; Xiao, J.; Shen, J.; Liu, G.; Peng, H.; Lu, L.; Qu, F. Appl. Phys. Lett. 2022, 121 (21), 212104. doi: 10.1063/5.0126739  doi: 10.1063/5.0126739

    96. [96]

      Zou, X.; Sun, Y.; Wang, C. Small Methods 2022, 6 (8), 2200347. doi: 10.1002/smtd.202200347  doi: 10.1002/smtd.202200347

    97. [97]

      Sagar, R. U. R.; Khan, U.; Galluzzi, M.; Aslam, S.; Nairan, A.; Anwar, T.; Ahmad, W.; Zhang, M.; Liang, T. ACS Appl. Electron. Mater. 2020, 2 (7), 2123. doi: 10.1021/acsaelm.0c00344  doi: 10.1021/acsaelm.0c00344

  • 加载中
    1. [1]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    2. [2]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    3. [3]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    4. [4]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    5. [5]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    6. [6]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    7. [7]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    8. [8]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Yulong ShiFenbei ChenMengyuan WuXin ZhangRunze MengKun WangYan WangYuheng MeiQionglu DuanYinghong LiRongmei GaoYuhuan LiHongbin DengJiandong JiangYanxiang WangDanqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792

    13. [13]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    14. [14]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    15. [15]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    16. [16]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    17. [17]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

Metrics
  • PDF Downloads(0)
  • Abstract views(119)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return