Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction
- Corresponding author: Wenshuai Zhu, zhuws@ujs.edu.cn Jiexiang Xia, xjx@ujs.edu.cn Huaming Li, lhm@ujs.edu.cn
 
	            Citation:
	            
		            Gaopeng Liu, Lina Li, Bin Wang, Ningjie Shan, Jintao Dong, Mengxia Ji, Wenshuai Zhu, Paul K. Chu, Jiexiang Xia, Huaming Li. Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction[J]. Acta Physico-Chimica Sinica,
							;2024, 40(7): 230604.
						
							doi:
								10.3866/PKU.WHXB202306041
						
					
				
					
				
	        
	                
				Liang, J. X.; Yu, H.; Shi, J. J.; Li, B.; Wu, L. X.; Wang, M. Adv. Mater.  2023,  35, 2209814. doi: 10.1002/adma.202209814
												 doi: 10.1002/adma.202209814
											
										
				Wang, B.; Zhang, W.; Liu, G. P.; Chen, H. L.; Weng, Y. -X.; Li, H. M.; Chu, P. K.; Xia, J. X. Adv. Funct. Mater.  2022,  32, 2202885. doi: 10.1002/adfm.202202885
												 doi: 10.1002/adfm.202202885
											
										
				Wang, J. -C.; Qiao, X.; Shi, W. N.; He, J.; Chen, J.; Zhang, W. Q. Acta Phys. -Chim. Sin.  2023,  39, 2210003. doi: 10.3866/PKU.WHXB202210003
												 doi: 10.3866/PKU.WHXB202210003
											
										
				Yan, P. C.; Ji, F. W.; Zhang, W.; Mo, Z.; Qian, J. C.; Zhu, L. H.; Xu, L. J. Colloid Interface Sci.  2023,  634, 1005. doi: 10.1016/j.jcis.2022.12.063
												 doi: 10.1016/j.jcis.2022.12.063
											
										
				Li, H.; Li, F.; Yu, J. G.; Cao, S. W. Acta Phys. -Chim. Sin.  2021,  37, 2010073. doi: 10.3866/PKU.WHXB202010073
												 doi: 10.3866/PKU.WHXB202010073
											
										
				Yang, J. M.; Jing, L. Q.; Zhu, X. W.; Zhang, W.; Deng J. J.; She, Y. B.; Nie, K. Q.; Wei, Y. C.; Li, H. M.; Xu, H. Appl. Catal. B 2023,  320, 122005. doi: 10.1016/j.apcatb.2022.122005
												 doi: 10.1016/j.apcatb.2022.122005
											
										
				Das, R.; Paul, R.; Parui, A.; Shrotri, A.; Atzori, C.; Lomachenko, K. A.; Singh, A. K.; Mondal, J.; Peter, S. C. J. Am. Chem. Soc.  2023,  145, 422. doi: 10.1021/jacs.2c10351
												 doi: 10.1021/jacs.2c10351
											
										
				Liu, G. P.; Wang, L.; Chen, X.; Zhu, X. W.; Wang, B.; Xu, X. Y.; Chen, Z. R.; Zhu, W. S.; Li, H. M.; Xia, J. X. Green Chem. Eng.  2022,  3, 157. doi: 10.1016/j.gce.2021.11.007
												 doi: 10.1016/j.gce.2021.11.007
											
										
				Li, J.; Yu, X. M.; Xue, W. J.; Nie, L.; Huang, H. L.; Zhong, C. L. AIChE J.  2023,  69, e17906. doi: 10.1002/aic.17906
												 doi: 10.1002/aic.17906
											
										
				Li, S. G.; Chen, F.; Chu, S. Q.; Zhang, Z. Y.; Huang, J. D.; Wang, S. Y.; Feng, Y. B.; Wang, C.; Huang, H. W. Small 2023,  19, 2203559. doi: 10.1002/smll.202203559
												 doi: 10.1002/smll.202203559
											
										
				Dong, Y. -L.; Liu, H. -R.; Wang, S. -M.; Guan, G. -W.; Yang, Q. -Y. ACS Catal.  2023, 13,  2547. doi: 10.1021/acscatal.2c04588
												 doi: 10.1021/acscatal.2c04588
											
										
				Ni, M. M.; Zhu, Y. J.; Guo, C. F.; Chen, D. -L.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. ACS Catal.  2023,  13, 2502. doi: 10.1021/acscatal.2c05577
												 doi: 10.1021/acscatal.2c05577
											
										
				Wei, J. J.; Dong, H. L.; Gao, Y. X.; Su, X.; Tan, H. W.; Li, J. J.; Zhao, Q.; Guan, X. W.; Lu, Z. L.; Ouyang, J.; et al. J. Mater. Chem. A 2023,  11, 4057. doi: 10.1039/d2ta08812f
												 doi: 10.1039/d2ta08812f
											
										
				Cheng, S. W.; Sun, Z. H.; Lim, K. H.; Zhang, T. X.; Hondo, E.; Du, T.; Liu, L. Y.; Judd, M.; Cox, N.; Yin, Z. Y.; et al. ACS Appl. Nano Mater.  2023,  6, 3608. doi: 10.1021/acsanm.2c05364
												 doi: 10.1021/acsanm.2c05364
											
										
				Kong, B.; Zeng, T. X.; Wang, W. T. Phys. Chem. Chem. Phys.  2021,  23, 19841. doi: 10.1039/d1cp02794h
												 doi: 10.1039/d1cp02794h
											
										
				Chen, C. Y.; Jiang, T.; Hou, J. H.; Zhang, T. T.; Zhang, G. S.; Zhang, Y. C.; Wang, X. Z. J. Mater. Sci. Technol.  2022,  114, 240. doi: 10.1016/j.jmst.2021.12.006
												 doi: 10.1016/j.jmst.2021.12.006
											
										
				Song, Y.; Ye, C. C.; Yu, X.; Tang, J. Y.; Zhao, Y. X.; Cai, W. Appl. Surf. Sci.  2022,  583, 152463. doi: 10.1016/j.apsusc.2022.152463
												 doi: 10.1016/j.apsusc.2022.152463
											
										
				Wang, S. -S.; Liang, X.; Lv, Y. -K.; Li, Y. -Y.; Zhou, R. -H.; Yao, H. -C.; Li, Z. -J. ACS Appl. Energy Mater.  2022,  5, 1149. doi: 10.1021/acsaem.1c03531
												 doi: 10.1021/acsaem.1c03531
											
										
				Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B 2019,  243, 734. doi: 10.1016/j.apcatb.2018.11.020
												 doi: 10.1016/j.apcatb.2018.11.020
											
										
				Zhang, L.; Wang, W. Z.; Jiang, D.; Gao, E. P.; Sun, S. M. Nano Res.  2015,  8, 821. doi: 10.1007/s12274-014-0564-2
												 doi: 10.1007/s12274-014-0564-2
											
										
				Gong, S. W.; Rao, F.; Zhang, W. B.; Hassan, Q. -U.; Liu, Z. Q.; Gao, J. Z.; Lu, J. B.; Hojamberdiev, M.; Zhu, G. Q. Chin. Chem. Lett.  2022,  33, 4385. doi: 10.1016/j.cclet.2021.12.039
												 doi: 10.1016/j.cclet.2021.12.039
											
										
				Yao, D. F.; Liang, K. J.; Chen, G. L.; Qu, Y. D.; Liu, J. Y.; Chilivery, R.; Li, S.; Ji, M. W.; Li, Z.; Zhong, Z. Y.; et al. J. Catal.  2023,  422, 56. doi: 10.1016/j.jcat.2023.04.004
												 doi: 10.1016/j.jcat.2023.04.004
											
										
				Li, Y. -L.; Liu, Y.; Mu, H. -Y.; Liu, R. -H.; Hao, Y. -J.; Wang, X. -J.; Hildebrandt, D.; Liu, X. Y.; Li, F. -T. Nanoscale 2021,  13, 2585. doi: 10.1039/D0NR08314C
												 doi: 10.1039/D0NR08314C
											
										
				Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. J. Mater. Chem. A 2018,  6, 24245. doi: 10.1039/c8ta09661a
												 doi: 10.1039/c8ta09661a
											
										
				Yan, F. P.; Wu, Y. H.; Jiang, L. Q.; Xue, X. G.; Lv, J. Q.; Lin, L. Y.; Yu, Y. L.; Zhang, J. Y.; Yang, F. G.; Qiu, Y. ChemSusChem 2020,  13, 876. doi: 10.1002/cssc.201903437
												 doi: 10.1002/cssc.201903437
											
										
				Pan, C.; Mao, Z.; Yuan, X.; Zhang, H. J.; Mei, L.; Ji, X. Y. Adv. Sci.  2022,  9, 2105747. doi: 10.1002/advs.202105747
												 doi: 10.1002/advs.202105747
											
										
				Wang, S. M.; Guan, Y.; Lu, L.; Shi, Z.; Yan, S. C.; Zou, Z. G. Appl. Catal. B 2018,  224, 10. doi: 10.1016/j.apcatb.2017.10.043
												 doi: 10.1016/j.apcatb.2017.10.043
											
										
				Li, Z.; Huang, F.; Xu, Y. F.; Yan, A. H.; Dong, H. M.; Xiong, X.; Zhao, X. H. Chem. Eng. J.  2022,  429, 132476. doi: 10.1016/j.cej.2021.132476
												 doi: 10.1016/j.cej.2021.132476
											
										
				Yang, Q.; Luo, M. L.; Liu, K. W.; Cao, H. M.; Yan, H. J. Chem. Commun.  2019,  55, 5728. doi: 10.1039/c9cc01732a
												 doi: 10.1039/c9cc01732a
											
										
				Safardoust-Hojaghan, H.; Salavati-Niasari, M.; Motaghedifard, M. H.; Hosseinpour-Mashkani, S. M. New J. Chem.  2015,  39, 4676. doi: 10.1039/c5nj00532a
												 doi: 10.1039/c5nj00532a
											
										
				Li, X. B.; Hu Y.; Dong, F.; Huang, J. T.; Han, L.; Deng, F.; Luo, Y. D.; Xie, Y.; He, C. Z.; Feng, Z. J.; et al. Appl. Catal. B 2023,  325, 122341. doi: 10.1016/j.apcatb.2022.122341
												 doi: 10.1016/j.apcatb.2022.122341
											
										
				Li, X. B.; Kang, B. B.; Dong, F.; Deng, F.; Han, L.; Gao, X. M.; Xu, J. L.; Hou, X. F.; Feng, Z. J.; Chen, Z.; et al. Appl. Surf. Sci.  2022,  593, 153422. doi: 10.1016/j.apsusc.2022.153422
												 doi: 10.1016/j.apsusc.2022.153422
											
										
				Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Adv. Sci.  2021,  8, 2003626. doi: 10.1002/advs.202003626
												 doi: 10.1002/advs.202003626
											
										
				Gao, F. D.; Zeng, D. W.; Huang, Q. W.; Tian, S. Q.; Xie, C. S. Phys. Chem. Chem. Phys.  2012,  14, 10572. doi: 10.1039/c2cp41045a
												 doi: 10.1039/c2cp41045a
											
										
				Peng, Y.; Mao, Y. G.; Kan, P. F.; Liu, J. Y.; Fang, Z. New J. Chem.  2018,  42, 16911. doi: 10.1039/c8nj03323d
												 doi: 10.1039/c8nj03323d
											
										
				Wang, B.; Zhu, X. W.; Huang, F. C.; Quan, Y.; Liu, G. P.; Zhang, X. L.; Xiong, F. Y.; Huang, C.; Ji, M. X.; Li, H. M.; et al. Appl. Catal. B 2023,  325, 122304. doi: 10.1016/j.apcatb.2022.122304
												 doi: 10.1016/j.apcatb.2022.122304
											
										
				Wang, L.; Lv, D. D.; Yue, Z. J.; Zhu, H.; Wang, L.; Wang, D. F.; Xu, X.; Hao, W. C.; Dou, S. X.; Du, Y. Nano Energy 2019,  57, 398. doi: 10.1016/j.nanoen.2018.12.071
												 doi: 10.1016/j.nanoen.2018.12.071
											
										
				Wu, Z. X.; Wu, H. B.; Cai, W. Q.; Wen, Z. H.; Jia, B. H.; Wang, L.; Jin, W.; Ma, T. Y. Angew. Chem. Int. Ed.  2021,  60, 12554. doi: 10.1002/anie.202102832
												 doi: 10.1002/anie.202102832
											
										
				Dong, J. T.; Ji, S. N.; Zhang, Y.; Ji, M. X.; Wang, B.; Li, Y. J.; Chen, Z. G.; Xia, J. X.; Li, H. M. Acta Phys. -Chim. Sin.  2023,  39, 2212011. [] doi: 10.3866/PKU.WHXB202212011
												 doi: 10.3866/PKU.WHXB202212011
											
										
				Liu, G. P.; Wang, L.; Wang, B.; Zhu, X. W.; Yang, J. M.; Liu, P. J.; Zhu, W. S.; Chen, Z. R.; Xia, J. X. Chin. Chem. Lett.  2023,  34, 107962. doi: 10.1016/j.cclet.2022.107962
												 doi: 10.1016/j.cclet.2022.107962
											
										
				Liu, J. Y.; Zhu, S. M.; Wang, B.; Yang, R. Z.; Wang, R.; Zhu, X. W.; Song, Y. H.; Yuan, J. J.; Xu, H.; Li., H. M. Chin. Chem. Lett.  2023,  34, 107749. doi: 10.1016/j.cclet.2022.107749
												 doi: 10.1016/j.cclet.2022.107749
											
										
				Zan, Z. Q.; Li, X. B.; Gao, X. M.; Huang, J. T.; Luo, Y. D.; Han, L. Acta Phys. -Chim. Sin.  2023,  39, 2209016. doi: 10.3866/PKU.WHXB202209016
												 doi: 10.3866/PKU.WHXB202209016
											
										
				Yan, X. W.; Wang, B.; Ji, M. X.; Jiang, Q.; Liu, G. P.; Liu, P. J.; Yin, S.; Li, H. M.; Xia, J. X. Chin. J. Struct. Chem.  2022,  41, 2208044. doi: 10.14102/j.cnki.0254-5861.2022-0141
												 doi: 10.14102/j.cnki.0254-5861.2022-0141
											
										
				Yang, J. H.; Hou, Y. P.; Sun, J. L.; Liang, J. X.; Yu, Z. B.; Zhu, H. X.; Wang, S. F. Sep. Purif. Technol.  2022,  299, 121701. doi: 10.1016/j.seppur.2022.121701
												 doi: 10.1016/j.seppur.2022.121701
											
										
				Bai, S.; Li, X. Y.; Kong, Q.; Long, R.; Wang, C. M.; Jiang, J.; Xiong, Y. J. Adv. Mater.  2015,  27, 3444. doi: 10.1002/adma.201501200
												 doi: 10.1002/adma.201501200
											
										
				Gong, S. W.; Zhu, G. Q.; Wang, R.; Rao, F.; Shi, X. J.; Gao, J. Z.; Huang, Y.; He, C. Z.; Hojamberdiev, M. Appl. Catal. B 2021,  297, 120413. doi: 10.1016/j.apcatb.2021.120413
												 doi: 10.1016/j.apcatb.2021.120413
											
										
				Zhu, X. W.; Wang, Z. L.; Zhong, K.; Li, Q. D.; Ding, P. H.; Feng, Z. Y.; Yang, J. M.; Du, Y. S.; Song, Y. H.; Hua, Y. J.; et al. Chem. Eng. J.  2022,  429, 132204. doi: 10.1016/j.cej.2021.132204
												 doi: 10.1016/j.cej.2021.132204
											
										
				Yang, J. M.; Zhu, X. W.; Yu, Q.; He, M. Q.; Zhang, W.; Mo, Z.; Yuan, J. J.; She, Y. B.; Xu, H.; Li, H. M. Chin. J. Catal.  2022,  43, 1286. doi: 10.1016/s1872-2067[21]63954-2
												 doi: 10.1016/s1872-2067[21]63954-2
											
										
				Cai, X. Y.; Du, J. H.; Zhong, G. M.; Zhang, Y. M.; Mao, L.; Lou, Z. Z. Acta Phys. -Chim. Sin.  2023,  39, 2302017. doi: 10.3866/PKU.WHXB202302017
												 doi: 10.3866/PKU.WHXB202302017
											
										
				Mo, Z.; Miao, Z. H.; Yan, P. C.; Sun, P. P.; Wu, G. Y.; Zhu, X. W.; Ding, C.; Zhu, Q.; Lei, Y. C.; Xu, H. J. Colloid Interface Sci.  2023,  645, 525. doi: 10.1016/j.jcis.2023.04.123
												 doi: 10.1016/j.jcis.2023.04.123
											
										
				Li, X. W.; Wang, B.; Yin, W. X.; Di, J.; Xia, J. X.; Zhu, W. S.; Li, H. M. Acta Phys. -Chim. Sin.  2020,  36, 1902001. doi: 10.3866/PKU.WHXB201902001
												 doi: 10.3866/PKU.WHXB201902001
											
										
				Zhang, Y.; Guo, F. Y.; Wang, K. K.; Di, J.; Min, B.; Zhu, H. Y.; Chen, H. L.; Weng, Y. -X.; Dai, J. Y.; She, Y. B.; et al. Chem. Eng. J.  2023,  465, 142663. doi: 10.1016/j.cej.2023.142663
												 doi: 10.1016/j.cej.2023.142663
											
										
				Yu, Y. Y.; Dong, X. A.; Chen, P.; Geng, Q.; Wang, H.; Li, J. Y.; Zhou, Y.; Dong, F. ACS Nano 2021,  15, 14453. doi: 10.1021/acsnano.1c03961
												 doi: 10.1021/acsnano.1c03961
											
										
				Li, D. S.; Zhu, B. C.; Sun, Z. T.; Liu, Q. Q.; Wang, L. L.; Tang, H. Front. Chem.  2021,  9, 804204. doi: 10.3389/fchem.2021.804204
												 doi: 10.3389/fchem.2021.804204
											
										
				Yu, H. B.; Huang, J. H.; Jiang, L. B.; Leng, L. J.; Yi, K. X.; Zhang, W.; Zhang, C. Y.; Yuan, X. Z. Appl. Catal. 2021,  298, 120618. doi: 10.1016/j.apcatb.2021.120618
												 doi: 10.1016/j.apcatb.2021.120618
											
										
				Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Chem. Eng. J.  2021,  409, 128178. doi: 10.1016/j.cej.2020.128178
												 doi: 10.1016/j.cej.2020.128178
											
										
				Jin, X. L.; Cao, J.; Wang, H. Q.; Lv, C. D.; Xie, H. Q.; Su, F. Y.; Li, X.; Sun, R. X.; Shi, S. K.; Dang, M. F.; et al. Appl. Surf. Sci.  2022,  598, 153758. doi: 10.1016/j.apsusc.2022.153758
												 doi: 10.1016/j.apsusc.2022.153758
											
										
				Meng, J. Z.; Duan, Y. Y.; Jing, S. J.; Ma, J. P.; Wang, K. W.; Zhou, K.; Ban, C. G.; Wang, Y.; Hu, B. H.; Yu, D. M.; et al. Nano Energy 2022,  92, 106671. doi: 10.1016/j.nanoen.2021.106671
												 doi: 10.1016/j.nanoen.2021.106671
											
										
				Sun, Z.; Liu, T. W.; Shen, Q. Q.; Li, H. M.; Liu, X. G.; Jia, H. S.; Xue, J. B. Appl. Surf. Sci.  2023,  616, 156530. doi: 10.1016/j.apsusc.2023.156530
												 doi: 10.1016/j.apsusc.2023.156530
											
										
				Li, X. F.; Li, K. M.; Ding, D.; Yan, J. T.; Wang, C. L.; Carabineiro, S. A. C.; Liu, Y.; Lv, K. L. Sep. Purif. Technol.  2023,  309, 123054. doi: 10.1016/j.seppur.2022.123054
												 doi: 10.1016/j.seppur.2022.123054
											
										
				Di, J.; Zhao, X. X.; Lian, C.; Ji, M. X.; Xia, J. X.; Xiong, J.; Zhou, W.; Cao, X. Z.; She, Y. B.; Liu, H. L.; et al. Nano Energy 2019,  61, 54. doi: 10.1016/j.nanoen.2019.04.029
												 doi: 10.1016/j.nanoen.2019.04.029
											
										
				Wang, J. Q.; Cheng, H.; Wei, D. Q.; Li, Z. H. Chin. J. Catal.  2022,  43, 2606. doi: 10.1016/S1872-2067[22]64091-9
												 doi: 10.1016/S1872-2067[22]64091-9
											
										
				Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K.; et al. Angew. Chem. Int. Ed.  2022,  61, e202209446. doi: 10.1002/anie.202209446
												 doi: 10.1002/anie.202209446
											
										
				Ji, M. X.; Feng, J.; Zhao, J. Z.; Zhang, Y.; Wang, B.; Di, J.; Xu, X. Y.; Chen, Z. R.; Xia, J. X.; Li, H. M. ACS Appl. Nano Mater.  2022,  5, 17226. doi: 10.1021/acsanm.2c04232
												 doi: 10.1021/acsanm.2c04232
											
										
				Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Nat. Energy 2019,  4, 690. doi: 10.1038/s41560-019-0431-1
												 doi: 10.1038/s41560-019-0431-1
											
										
				Wang, J. Y.; Bo, T. T.; Shao, B. Y.; Zhang, Y. Z.; Jia, L. X.; Tan, X.; Zhou, W.; Yu, T. Appl. Catal. B 2021,  297, 120498. doi: 10.1016/j.apcatb.2021.120498
												 doi: 10.1016/j.apcatb.2021.120498
											
										
				Xu, J. Q.; Ju, Z. Y.; Zhang, W.; Pan, Y.; Zhu, J. F.; Mao, J. W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H.; et al. Angew. Chem. Int. Ed.  2021,  60, 8705. doi:10.1002/anie.202017041
												 doi: 10.1002/anie.202017041
											
										
						
						
						
	                Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
Lina Liu , Xiaolan Wei , Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112
Haoyu Sun , Dun Li , Yuanyuan Min , Yingying Wang , Yanyun Ma , Yiqun Zheng , Hongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Hui Li , Chunlang Gao , Guo Yang , Lu Xia , Wulyu Jiang , Cheng Wu , Kaiwen Wang , Yingtang Zhou , Xiaodong Han . Enhanced photocatalytic CO2 reduction of Bi2WO6-BiOCl heterostructure with coherent interface for charge utilization. Chinese Chemical Letters, 2025, 36(9): 110547-. doi: 10.1016/j.cclet.2024.110547
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Zehao Zhang , Zheng Wang , Haibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Huanhuan XIE , Yingnan SONG , Lei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019