Citation:
Qiang Zhang, Yuanbiao Huang, Rong Cao. Imidazolium-Based Materials for CO2 Electroreduction[J]. Acta Physico-Chimica Sinica,
;2024, 40(4): 230604.
doi:
10.3866/PKU.WHXB202306040
-
With the increasing use of fossil energy sources, the concentration of CO2 in the atmosphere is rising, leading to environmental challenges. However, the conversion of CO2 into high value-added chemicals through catalysis presents an opportunity to address these issues and create a new pathway for fuel synthesis, ultimately helping to reduce CO2 emissions and achieve carbon neutrality. Among various methods, the CO2 electroreduction reaction (CO2RR) using renewable clean energy has garnered significant attention due to its mild reaction conditions, controlled reactions progress, environmental friendliness, and numerous value-added products it can yield. In this context, imidazolium-based materials and their derivatives have emerged as promising candidates for CO2RR. These materials have a strong affinity for CO2 and find applications as both electrolytes and electrocatalysts in CO2RR systems. So one of their key advantages, especially Im-ILs, is their ability to enrich CO2 in catalytic systems, effectively preventing the undesired hydrogen evolution reaction (HER) and enhancing the selectivity towards CO2RR products. Understanding the interaction mechanism between imidazolium-based ionic liquids (Im-ILs) and CO2 molecules under electrocatalytic conditions is crucial for gaining deeper insights into why the addition of Im-ILs can improve CO2RR performance from a molecular perspective. Furthermore, Im-ILs can serve as both surface modifier groups and trapping agents in heterogeneous electrocatalysts, which can significantly alter the surface environment and hydrophobicity of the catalysts, leading to improved CO2RR. Notably, the imidazolium groups present in Lehn-type and metal-porphyrin molecular catalysts have been found to have an impact on the performance of these catalysts in CO2RR. Lastly, N-heterocyclic carbene (NHC)-based electrocatalysts, as one of the active forms of imidazolium interaction with CO2, have demonstrated exceptional performance. When introduced into porous heterogeneous catalysts and molecular catalysts, NHC-based electrocatalysts stabilize metal nanoparticles and enhance the ability to capture CO2, thus promoting CO2RR activity. In summary, the utilization of imidazolium-based materials in CO2RR holds great promise for advancing the field of CO2 conversion and achieving more sustainable and efficient processes for high-value chemical synthesis.
-
-
-
[1]
-
[2]
(2) He, C.; Si, D.-H.; Huang, Y.-B.; Cao, R. Angew. Chem. Int. Ed. 2022, 61 (40), e202207478. doi: 10.1002/anie.202207478
-
[3]
(3) Gong, L.-J.; Liu, L.-Y.; Zhao, S.-S.; Yang, S.-L.; Si, D.-H.; Wu, Q.-J.; Wu, Q.; Huang, Y.-B.; Cao, R. Chem. Eng. J. 2023, 458, 141360. doi: 10.1016/j.cej.2023.141360
-
[4]
(4) Xue, Y.; Zhao, G.; Yang, R.; Chu, F.; Chen, J.; Wang, L.; Huang, X. Nanoscale 2021, 13 (7), 3911. doi: 10.1039/D0NR09064F
-
[5]
(5) Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2020, 49 (11), 3565. doi: 10.1039/D0CS00017E
-
[6]
(6) Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Chem. Soc. Rev. 2017, 46 (1), 126. doi: 10.1039/C6CS00250A
-
[7]
(7) Chalkley, M. J.; Garrido-Barros, P.; Peters, J. C. Science 2020, 369 (6505), 850. doi: 10.1126/science.abc1607
-
[8]
(8) Bourrez, M.; Steinmetz, R.; Ott, S.; Gloaguen, F.; Hammarström, L. Nat. Chem. 2015, 7 (2), 140. doi: 10.1038/nchem.2157
-
[9]
(9) Parada, G. A.; Goldsmith, Z. K.; Kolmar, S.; Pettersson Rimgard, B.; Mercado, B. Q.; Hammarström, L.; Hammes-Schiffer, S.; Mayer, J. M. Science 2019, 364 (6439), 471. doi: 10.1126/science.aaw4675
-
[10]
(10) Neyrizi, S.; Kiewiet, J.; Hempenius, M. A.; Mul, G. ACS Energy Lett. 2022, 7 (10), 3439. doi: 10.1021/acsenergylett.2c01372
-
[11]
(11) Wu, Q.-J.; Si, D.-H.; Wu, Q.; Dong, Y.-L.; Cao, R.; Huang, Y.-B. Angew. Chem. Int. Ed. 2023, 62 (7), e202215687. doi: 10.1002/anie.202215687
-
[12]
(12) Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Chem. Soc. Rev. 2021, 50 (8), 4993. doi: 10.1039/D0CS00071J
-
[13]
-
[14]
(14) Zhang, W.; Huang, C.; Zhu, J.; Zhou, Q.; Yu, R.; Wang, Y.; An, P.; Zhang, J.; Qiu, M.; Zhou, L.; et al. Angew. Chem. Int. Ed. 2022, 61 (3), e202112116. doi: 10.1002/anie.202112116
-
[15]
(15) Li, Q.-X.; Si, D.-H.; Lin, W.; Wang, Y.-B.; Zhu, H.-J.; Huang, Y.-B.; Cao, R. Sci. China Chem. 2022, 65 (8), 1584. doi: 10.1007/s11426-022-1263-5
-
[16]
(16) Mota, F. M.; Kim, D. H. Chem. Soc. Rev. 2019, 48 (1), 205. doi: 10.1039/C8CS00527C
-
[17]
(17) Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Liu, L.; Zhang, F.; Chen, G.; Tan, D.; et al. J. Am. Chem. Soc. 2020, 142 (31), 13606. doi: 10.1021/jacs.0c06420
-
[18]
(18) Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2021, 4 (1), 20. doi: 10.1038/s41929-020-00547-0
-
[19]
(19) Mosali, V. S. S.; Bond, A. M.; Zhang, J. Nanoscale 2022, 14 (42), 15560. doi: 10.1039/D2NR03539A
-
[20]
(20) Du, X.; Qin, Y.; Gao, B.; Jang, J. H.; Xiao, C.; Li, Y.; Ding, S.; Song, Z.; Su, Y.; Nam, K. T. J. Mater. Chem. A 2022, 10 (13), 7082. doi: 10.1039/D2TA00250G
-
[21]
(21) Bagchi, D.; Sarkar, S.; Singh, A. K.; Vinod, C. P.; Peter, S. C. ACS Nano 2022, 16 (4), 6185. doi: 10.1021/acsnano.1c11664
-
[22]
(22) Chen, Z. W.; Gariepy, Z.; Chen, L.; Yao, X.; Anand, A.; Liu, S.-J.; Tetsassi Feugmo, C. G.; Tamblyn, I.; Singh, C. V. ACS Catal. 2022, 12 (24), 14864. doi: 10.1021/acscatal.2c03675
-
[23]
(23) Cao, L.; Wu, X.; Liu, Y.; Mao, F.; Shi, Y.; Li, J.; Zhu, M.; Dai, S.; Chen, A.; Liu, P. F.; et al. J. Mater. Chem. A 2022, 10 (18), 9954. doi: 10.1039/D1TA09482C
-
[24]
(24) Zhang, Y.; Zhou, Q.; Qiu, Z.-F.; Zhang, X.-Y.; Chen, J.-Q.; Zhao, Y.; Gong, F.; Sun, W.-Y. Adv. Funct. Mater. 2022, 32 (36), 2203677. doi: 10.1002/adfm.202203677
-
[25]
(25) Cho, J. H.; Lee, C.; Hong, S. H.; Jang, H. Y.; Back, S.; Seo, M.; Lee, M.; Min, H.-K.; Choi, Y.; Jang, Y. J.;et al. Adv. Mater. 2022, 2208224. doi: 10.1002/adma.202208224
-
[26]
(26) Shimoni, R.; Shi, Z.; Binyamin, S.; Yang, Y.; Liberman, I.; Ifraemov, R.; Mukhopadhyay, S.; Zhang, L.; Hod, I. Angew. Chem. Int. Ed. 2022, 61 (32), e202206085. doi: 10.1002/anie.202206085
-
[27]
(27) Yu, A.; Ma, G.; Zhu, L.; Zhang, R.; Li, Y.; Yang, S.; Hsu, H.-Y.; Peng, P.; Li, F.-F. Appl. Catal. B Environ. 2022, 307, 121161. doi: 10.1016/j.apcatb.2022.121161
-
[28]
(28) Chi, S.-Y.; Chen, Q.; Zhao, S.-S.; Si, D.-H.; Wu, Q.-J.; Huang, Y.-B.; Cao, R. J. Mater. Chem. A 2022, 10 (9), 4653. doi: 10.1039/D1TA10991J
-
[29]
(29) Derrick, J. S.; Loipersberger, M.; Nistanaki, S. K.; Rothweiler, A. V.; Head-Gordon, M.; Nichols, E. M.; Chang, C. J. J. Am. Chem. Soc. 2022, 144 (26), 11656. doi: 10.1021/jacs.2c02972
-
[30]
(30) Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. J. Am. Chem. Soc. 2022, 144 (17), 7551. doi: 10.1021/jacs.1c13024
-
[31]
(31) Grammatico, D.; Bagnall, A. J.; Riccardi, L.; Fontecave, M.; Su, B.-L.; Billon, L. Angew. Chem. Int. Ed. 2022, 61 (38), e202206399. doi: 10.1002/anie.202206399
-
[32]
(32) Yu, P.; Lv, X.; Wang, Q.; Huang, H.; Weng, W.; Peng, C.; Zhang, L.; Zheng, G. Small 2023, 19 (4), 2205730. doi: 10.1002/smll.202205730
-
[33]
(33) Cui, Y.; He, B.; Liu, X.; Sun, J. Ind. Eng. Chem. Res. 2020, 59 (46), 20235. doi: 10.1021/acs.iecr.0c04037
-
[34]
(34) Sun, Q.; Zhao, Y.; Ren, W.; Zhao, C. Appl. Catal. B Environ. 2022, 304, 120963. doi: 10.1016/j.apcatb.2021.120963
-
[35]
(35) Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11 (4), 893. doi: 10.1039/c7ee03245e
-
[36]
-
[37]
(37) Hailu, A.; Shaw, S. K. Energy Fuels 2018, 32 (12), 12695. doi: 10.1021/acs.energyfuels.8b02750
-
[38]
(38) Welch, L. M.; Vijayaraghavan, M.; Greenwell, F.; Satherley, J.; Cowan, A. J. Faraday Discuss. 2021, 230 (0), 331. doi: 10.1039/D0FD00140F
-
[39]
(39) Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Chem. Rev. 2017, 117 (10), 6755. doi: 10.1021/acs.chemrev.6b00509
-
[40]
(40) Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2015, 137 (15), 5021. doi: 10.1021/ja5121088
-
[41]
(41) Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4 (1), 2819. doi: 10.1038/ncomms3819
-
[42]
(42) Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126 (16), 5300. doi: 10.1021/ja039615x
-
[43]
(43) Zhu, Q.; Ma, J.; Kang, X.; Sun, X.; Liu, H.; Hu, J.; Liu, Z.; Han, B. Angew. Chem. Int. Ed. 2016, 55 (31), 9012. doi: 10.1002/anie.201601974
-
[44]
(44) Niu, D.; Wang, H.; Li, H.; Wu, Z.; Zhang, X. Electrochim. Acta 2015, 158, 138. doi: 10.1016/j.electacta.2015.01.096
-
[45]
(45) Zou, Y.-H.; Huang, Y.-B.; Si, D.-H.; Yin, Q.; Wu, Q.-J.; Weng, Z.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (38), 20915. doi: 10.1002/anie.202107156
-
[46]
(46) Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal. Gen. 2010, 373 (1), 1. doi: 10.1016/j.apcata.2009.10.008
-
[47]
(47) Kemna, A.; García Rey, N.; Braunschweig, B. ACS Catal. 2019, 9 (7), 6284. doi: 10.1021/acscatal.9b01033
-
[48]
(48) Pankhurst, J. R.; Iyengar, P.; Okatenko, V.; Buonsanti, R. Inorg. Chem. 2021, 60 (10), 6939. doi: 10.1021/acs.inorgchem.1c00287
-
[49]
(49) Zhao, G.; Jiang, T.; Han, B.; Li, Z.; Zhang, J.; Liu, Z.; He, J.; Wu, W. J. Supercrit. Fluid. 2004, 32 (1–3), 287. doi: 10.1016/j.supflu.2003.12.015
-
[50]
(50) Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334 (6056), 643. doi: 10.1126/science.1209786
-
[51]
(51) Vasilyev, D. V.; Dyson, P. J. ACS Catal. 2021, 11 (3), 1392. doi: 10.1021/acscatal.0c04283
-
[52]
(52) Zhang, X.; Xia, T.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. J. Solid State Chem. 2017, 253, 277. doi: 10.1016/j.jssc.2017.06.008
-
[53]
(53) Huan, T. N.; Simon, P.; Rousse, G.; Génois, I.; Artero, V.; Fontecave, M. Chem. Sci. 2016, 8 (1), 742. doi: 10.1039/C6SC03194C
-
[54]
(54) Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R.; et al. Science 2016, 353 (6298), 467. doi: 10.1126/science.aaf4767
-
[55]
(55) Zeng, M.; Liu, Y.; Hu, Y.; Zhang, X. Chem. Eng. J. 2021, 425, 131663. doi: 10.1016/j.cej.2021.131663
-
[56]
(56) Luo, H.; Li, B.; Ma, J.-G.; Cheng, P. Angew. Chem. Int. Ed. 2022, 61 (11), e202116736. doi: 10.1002/anie.202116736
-
[57]
(57) Liu, Y.; Tian, D.; Biswas, A. N.; Xie, Z.; Hwang, S.; Lee, J. H.; Meng, H.; Chen, J. G. Angew. Chem. Int. Ed. 2020, 59 (28), 11345. doi: 10.1002/anie.202003625
-
[58]
(58) Min, Z.; Chang, B.; Shao, C.; Su, X.; Wang, N.; Li, Z.; Wang, H.; Zhao, Y.; Fan, M.; Wang, J. Appl. Catal. B Environ. 2023, 326, 122185. doi: 10.1016/j.apcatb.2022.122185
-
[59]
(59) Ma, L.; Liu, N.; Mei, B.; Yang, K.; Liu, B.; Deng, K.; Zhang, Y.; Feng, H.; Liu, D.; Duan, J.; et al. ACS Catal. 2022, 12 (14), 8601. doi: 10.1021/acscatal.2c01434
-
[60]
(60) Jiang, M.; Zhu, M.; Wang, H.; Song, X.; Liang, J.; Lin, D.; Li, C.; Cui, J.; Li, F.; Zhang, X. L.; et al. Nano Lett. 2023, 23 (1), 291. doi: 10.1021/acs.nanolett.2c04335
-
[61]
(61) Guo, W.; Tan, X.; Bi, J.; Xu, L.; Yang, D.; Chen, C.; Zhu, Q.; Ma, J.; Tayal, A.; Ma, J.; et al. J. Am. Chem. Soc. 2021, 143 (18), 6877. doi: 10.1021/jacs.1c00151
-
[62]
(62) Tan, X.; Sun, X.; Han, B. Natl. Sci. Rev. 2022, 9 (4), nwab022. doi: 10.1093/nsr/nwab022
-
[63]
(63) Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Guo, W.; Yang, G.; Han, B. Angew. Chem. 2020, 132 (6), 2374. doi: 10.1002/ange.201914831
-
[64]
(64) Sharifi Golru, S.; Biddinger, E. J. Electrochim. Acta 2020, 361, 136787. doi: 10.1016/j.electacta.2020.136787
-
[65]
(65) Li, P.; Bi, J.; Liu, J.; Zhu, Q.; Chen, C.; Sun, X.; Zhang, J.; Han, B. Nat. Commun. 2022, 13 (1), 1965. doi: 10.1038/s41467-022-29698-3
-
[66]
(66) Motobayashi, K.; Maeno, Y.; Ikeda, K. J. Phys. Chem. C 2022, 126 (29), 11981. doi: 10.1021/acs.jpcc.2c03012
-
[67]
(67) Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D. D.; Masel, R. I. J. Phys. Chem. C 2012, 116 (29), 15307. doi: 10.1021/jp210542v
-
[68]
(68) de Robillard, G.; Devillers, C. H.; Kunz, D.; Cattey, H.; Digard, E.; Andrieu, J. Org. Lett. 2013, 15 (17), 4410. doi: 10.1021/ol401949f
-
[69]
(69) A. Duong, H.; N. Tekavec, T.; M. Arif, A.; Louie, J. Chem. Commun. 2004, No. 1, 112. doi: 10.1039/B311350G
-
[70]
(70) Michez, R.; Doneux, T.; Buess-Herman, C.; Luhmer, M. ChemPhysChem 2017, 18 (16), 2208. doi: 10.1002/cphc.201700421
-
[71]
(71) Sun, L.; Ramesha, G. K.; Kamat, P. V.; Brennecke, J. F. Langmuir 2014, 30 (21), 6302. doi: 10.1021/la5009076
-
[72]
(72) Zhao, S.-F.; Horne, M.; Bond, A. M.; Zhang, J. J. Phys. Chem. C 2016, 120 (42), 23989. doi: 10.1021/acs.jpcc.6b08182
-
[73]
(73) Wang, Y.; Hatakeyama, M.; Ogata, K.; Wakabayashi, M.; Jin, F.; Nakamura, S. Phys. Chem. Chem. Phys. 2015, 17 (36), 23521. doi: 10.1039/C5CP02008E
-
[74]
(74) Barrosse-Antle, L. E.; Compton, R. G. Chem. Commun. 2009, 25, 3744. doi: 10.1039/B906320J
-
[75]
(75) Snuffin, L. L.; Whaley, L. W.; Yu, L. J. Electrochem. Soc. 2011, 158 (9), F155. doi: 10.1149/1.3606487
-
[76]
(76) Feroci, M.; Chiarotto, I.; Orsini, M.; Sotgiu, G.; Inesi, A. Electrochim. Acta 2011, 56 (16), 5823. doi: 10.1016/j.electacta.2011.04.067
-
[77]
(77) Matsubara, Y.; Grills, D. C.; Kuwahara, Y. ACS Catal. 2015, 5 (11), 6440. doi: 10.1021/acscatal.5b00656
-
[78]
(78) Lau, G. P. S.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J. J. Am. Chem. Soc. 2016, 138 (25), 7820. doi: 10.1021/jacs.6b03366
-
[79]
(79) Parada, W. A.; Vasilyev, D. V.; Mayrhofer, K. J. J.; Katsunaros, I. ACS Appl. Mater. Interfaces 2022, 14 (12), 14193. doi: 10.1021/acsami.1c24386
-
[80]
(80) Mehnert, C. P. Chem. -Eur. J. 2005, 11 (1), 50. doi: 10.1002/chem.200400683
-
[81]
(81) Zhang, G.-R.; Straub, S.-D.; Shen, L.-L.; Hermans, Y.; Schmatz, P.; Reichert, A. M.; Hofmann, J. P.; Katsounaros, I.; Etzold, B. J. M. Angew. Chem. Int. Ed. 2020, 59 (41), 18095. doi: 10.1002/anie.202009498
-
[82]
(82) Cheng, B.; Du, J.; Yuan, H.; Tao, Y.; Chen, Y.; Lei, J.; Han, Z. ACS Appl. Mater. Interfaces 2022, 14 (24), 27823. doi: 10.1021/acsami.2c03748
-
[83]
(83) Wang, J.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernández, A.; Ko, J. H.; Gan, Q.; Goddard III, W. A.; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143 (7), 2857. doi: 10.1021/jacs.0c12478
-
[84]
(84) Kim, C.; Bui, J. C.; Luo, X.; Cooper, J. K.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Nat. Energy 2021, 6 (11), 1026. doi: 10.1038/s41560-021-00920-8
-
[85]
(85) Hansen, K. U.; Jiao, F. Nat. Energy 2021, 6 (11), 1005. doi: 10.1038/s41560-021-00930-6
-
[86]
(86) Tamura, J.; Ono, A.; Sugano, Y.; Huang, C.; Nishizawa, H.; Mikoshiba, S. Phys. Chem. Chem. Phys. 2015, 17 (39), 26072. doi: 10.1039/C5CP03028E
-
[87]
(87) Pankhurst, J. R.; Guntern, Y. T.; Mensi, M.; Buonsanti, R. Chem. Sci. 2019, 10 (44), 10356. doi: 10.1039/C9SC04439F
-
[88]
(88) Koshy, D. M.; Akhade, S. A.; Shugar, A.; Abiose, K.; Shi, J.; Liang, S.; Oakdale, J. S.; Weitzner, S. E.; Varley, J. B.; Duoss, E. B.; et al. J. Am. Chem. Soc. 2021, 143 (36), 14712. doi: 10.1021/jacs.1c06212
-
[89]
(89) Li, N.; Si, D.-H.; Wu, Q.; Wu, Q.; Huang, Y.-B.; Cao, R. CCS Chem. 2022, 5 (5), 1130. doi: 10.31635/ccschem.022.202201943
-
[90]
(90) Yi, J.-D.; Si, D.-H.; Xie, R.; Yin, Q.; Zhang, M.-D.; Wu, Q.; Chai, G.-L.; Huang, Y.-B.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (31), 17108. doi: 10.1002/anie.202104564
-
[91]
(91) Zhang, M.-D.; Si, D.-H.; Yi, J.-D.; Zhao, S.-S.; Huang, Y.-B.; Cao, R. Small 2020, 16 (52), 2005254. doi: 10.1002/smll.202005254
-
[92]
(92) Wu, Q.; Mao, M.-J.; Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Small 2021, 17 (22), 2004933. doi: 10.1002/smll.202004933
-
[93]
(93) Ma, C.; Hou, P.; Wang, X.; Wang, Z.; Li, W.; Kang, P. Appl. Catal. B Environ. 2019, 250, 347. doi: 10.1016/j.apcatb.2019.03.041
-
[94]
(94) Lamaison, S.; Wakerley, D.; Kracke, F.; Moore, T.; Zhou, L.; Lee, D. U.; Wang, L.; Hubert, M. A.; Aviles Acosta, J. E.; Gregoire, J. M.; et al. Adv. Mater. 2022, 34 (1), 2103963. doi: 10.1002/adma.202103963
-
[95]
(95) Lee, J.; Lim, J.; Roh, C.-W.; Whang, H. S.; Lee, H. J. CO2 Util. 2019, 31, 244. doi: 10.1016/j.jcou.2019.03.022
-
[96]
(96) Han, M. H.; Kim, D.; Kim, S.; Yu, S.-H.; Won, D. H.; Min, B. K.; Chae, K. H.; Lee, W. H.; Oh, H.-S. Adv. Energy Mater. 2022, 12 (35), 2201843. doi: 10.1002/aenm.202201843
-
[97]
(97) Sha, Y.; Zhang, J.; Cheng, X.; Xu, M.; Su, Z.; Wang, Y.; Hu, J.; Han, B.; Zheng, L. Angew. Chem. Int. Ed. 2022, 61 (13), e202200039. doi: 10.1002/anie.202200039
-
[98]
(98) Ren, W.; Tan, X.; Chen, X.; Zhang, G.; Zhao, K.; Yang, W.; Jia, C.; Zhao, Y.; Smith, S. C.; Zhao, C. ACS Catal. 2020, 10 (22), 13171. doi: 10.1021/acscatal.0c03873
-
[99]
(99) Delmo, E. P.; Wang, Y.; Wang, J.; Zhu, S.; Li, T.; Qin, X.; Tian, Y.; Zhao, Q.; Jang, J.; Wang, Y.; et al. Chin. J. Catal. 2022, 43 (7), 1687. doi: 10.1016/S1872-2067(21)63970-0
-
[100]
(100) Ding, M.; Jiang, H.-L. ACS Catal. 2018, 8 (4), 3194. doi: 10.1021/acscatal.7b03404
-
[101]
(101) Johnson, B. A.; Maji, S.; Agarwala, H.; White, T. A.; Mijangos, E.; Ott, S. Angew. Chem. Int. Ed. 2016, 55 (5), 1825. doi: 10.1002/anie.201508490
-
[102]
(102) Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J. J. Am. Chem. Soc. 2011, 133 (24), 9212. doi: 10.1021/ja202743r
-
[103]
(103) Sung, S.; Kumar, D.; Gil-Sepulcre, M.; Nippe, M. J. Am. Chem. Soc. 2017, 139 (40), 13993. doi: 10.1021/jacs.7b07709
-
[104]
(104) Li, X.; Panetier, J. A. Phys. Chem. Chem. Phys. 2021, 23 (27), 14940. doi: 10.1039/D1CP01576A
-
[105]
(105) Liang, Y.; Nguyen, M. T.; Holliday, B. J.; Jones, R. A. Inorg. Chem. Commun. 2017, 84, 113. doi: 10.1016/j.inoche.2017.08.002
-
[106]
(106) Hawecker, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1984, No. 6, 328. doi: 10.1039/C39840000328
-
[107]
(107) Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc. Chem. Commun. 1985, No. 20, 1414. doi: 10.1039/C39850001414
-
[108]
(108) Sampson, M. D.; Kubiak, C. P. Inorg. Chem. 2015, 54 (14), 6674. doi: 10.1021/acs.inorgchem.5b01080
-
[109]
(109) Hawecker, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1983, 0 (9), 536. doi: 10.1039/C39830000536
-
[110]
(110) Khadhraoui, A.; Gotico, P.; Boitrel, B.; Leibl, W.; Halime, Z.; Aukauloo, A. Chem. Commun. 2018, 54 (82), 11630. doi: 10.1039/C8CC06475J
-
[111]
(111) Sung, S.; Li, X.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. J. Am. Chem. Soc. 2019, 141 (16), 6569. doi: 10.1021/jacs.8b13657
-
[112]
(112) Li, X.; Panetier, J. A. ACS Catal. 2021, 11 (21), 12989. doi: 10.1021/acscatal.1c02899
-
[113]
(113) Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. J. Am. Chem. Soc. 2016, 138 (51), 16639. doi: 10.1021/jacs.6b07014
-
[114]
(114) Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. J. Phys. Chem. C 2016, 120 (51), 28951. doi: 10.1021/acs.jpcc.6b09947
-
[115]
(115) Yang, Z.-W.; Chen, J.-M.; Qiu, L.-Q.; Xie, W.-J.; He, L.-N. Angew. Chem. Int. Ed. 2022, 61 (44), e202205301. doi: 10.1002/anie.202205301
-
[116]
(116) Warshel, A. Proc. Natl. Acad. Sci. USA 1978, 75 (11), 5250. doi: 10.1073/pnas.75.11.5250
-
[117]
(117) Warshel, A. Acc. Chem. Res. 1981, 14 (9), 284. doi: 10.1021/ar00069a004
-
[118]
(118) Narouz, M. R.; De La Torre, P.; An, L.; Chang, C. J. Angew. Chem. 2022, 134 (37), e202207666. doi: 10.1002/ange.202207666
-
[119]
(119) Saravanan, C.; Muthu Mareeswaran, P. Mater. Today Proc. 2021, 34, 408. doi: 10.1016/j.matpr.2020.02.201
-
[120]
(120) Cao, Z.; Kim, D.; Hong, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; et al. J. Am. Chem. Soc. 2016, 138 (26), 8120. doi: 10.1021/jacs.6b02878
-
[121]
(121) An, Y.-Y.; Yu, J.-G.; Han, Y.-F. Chin. J. Chem. 2019, 37 (1), 76. doi: 10.1002/cjoc.201800450
-
[122]
(122) Luca, O. R.; McCrory, C. C. L.; Dalleska, N. F.; Koval, C. A. J. Electrochem. Soc. 2015, 162 (7), H473. doi: 10.1149/2.0371507jes
-
[123]
(123) Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X.; Copéret, C.;et al. Angew. Chem. Int. Ed. 2018, 57 (18), 4981. doi: 10.1002/anie.201800367
-
[124]
(124) Amit, E.; Dery, L.; Dery, S.; Kim, S.; Roy, A.; Hu, Q.; Gutkin, V.; Eisenberg, H.; Stein, T.; Mandler, D.; et al. Nat. Commun. 2020, 11 (1), 5714. doi: 10.1038/s41467-020-19500-7
-
[125]
(125) Mao, M.-J.; Zhang, M.-D.; Meng, D.-L.; Chen, J.-X.; He, C.; Huang, Y.-B.; Cao, R. ChemCatChem 2020, 12 (13), 3530. doi: 10.1002/cctc.202000387
-
[126]
(126) Jiang, Y.; Zhang, X.; Fei, H. Dalton Trans. 2020, 49 (20), 6548. doi: 10.1039/D0DT01022G
-
[127]
(127) Chen, S.; Li, W.-H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. Angew. Chem. Int. Ed. 2022, 61 (4), e202114450. doi: 10.1002/anie.202114450
-
[128]
(128) Zhang, L.; Wei, Z.; Thanneeru, S.; Meng, M.; Kruzyk, M.; Ung, G.; Liu, B.; He, J. Angew. Chem. Int. Ed. 2019, 58 (44), 15834. doi: 10.1002/anie.201909069
-
[129]
(129) Agarwal, J.; Shaw, T. W.; Stanton, C. J.; Majetich, G. F.; Bocarsly, A. B.; Schaefer, H. F. Angew. Chem. Int. Ed. 2014, 53 (20), 5152. doi: 10.1002/anie.201311099
-
[130]
(130) Franco, F.; Cometto, C.; Vallana, F. F.; Sordello, F.; Priola, E.; Minero, C.; Nervi, C.; Gobetto, R. Chem. Commun. 2014, 50 (93), 14670. doi: 10.1039/C4CC05563B
-
[131]
(131) Rao, G. K.; Pell, W.; Korobkov, I.; Richeson, D. Chem. Commun. 2016, 52 (51), 8010. doi: 10.1039/C6CC03827A
-
[132]
(132) Franco, F.; Pinto, M. F.; Royo, B.; Lloret-Fillol, J. Angew. Chem. 2018, 130 (17), 4693. doi: 10.1002/ange.201800705
-
[133]
(133) Stanton, C. J. I.; Vandezande, J. E.; Majetich, G. F.; Schaefer, H. F. I.; Agarwal, J. Inorg. Chem. 2016, 55 (19), 9509. doi: 10.1021/acs.inorgchem.6b01657
-
[1]
-
-
-
[1]
Wenjie SHI , Fan LU , Mengwei CHEN , Jin WANG , Yingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360
-
[2]
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
-
[3]
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
-
[4]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[5]
Yangrui Xu , Yewei Ren , Xinlin Liu , Hongping Li , Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032
-
[6]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[7]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[8]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[9]
Yingran Liang , Fei Wang , Jiabao Sun , Hongtao Zheng , Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024
-
[10]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[11]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[12]
Chengqian Mao , Yanghan Chen , Haotong Bai , Junru Huang , Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014
-
[13]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[14]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[16]
Lubing Qin , Fang Sun , Meiyin Li , Hao Fan , Likai Wang , Qing Tang , Chundong Wang , Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008
-
[17]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[18]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[19]
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
-
[20]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(567)
- HTML views(66)