Citation: Qiang Zhang,  Yuanbiao Huang,  Rong Cao. Imidazolium-Based Materials for CO2 Electroreduction[J]. Acta Physico-Chimica Sinica, ;2024, 40(4): 230604. doi: 10.3866/PKU.WHXB202306040 shu

Imidazolium-Based Materials for CO2 Electroreduction

  • Corresponding author: Yuanbiao Huang,  Rong Cao, 
  • Received Date: 26 June 2023
    Revised Date: 28 July 2023
    Accepted Date: 28 July 2023

    Fund Project: This project was supported by the National Key Research and Development Program of China (2018YFA0704502), the National Natural Science Foundation of China (U22A20436, 2071245, 22033008, 22220102005), and the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (2021ZZ103).

  • With the increasing use of fossil energy sources, the concentration of CO2 in the atmosphere is rising, leading to environmental challenges. However, the conversion of CO2 into high value-added chemicals through catalysis presents an opportunity to address these issues and create a new pathway for fuel synthesis, ultimately helping to reduce CO2 emissions and achieve carbon neutrality. Among various methods, the CO2 electroreduction reaction (CO2RR) using renewable clean energy has garnered significant attention due to its mild reaction conditions, controlled reactions progress, environmental friendliness, and numerous value-added products it can yield. In this context, imidazolium-based materials and their derivatives have emerged as promising candidates for CO2RR. These materials have a strong affinity for CO2 and find applications as both electrolytes and electrocatalysts in CO2RR systems. So one of their key advantages, especially Im-ILs, is their ability to enrich CO2 in catalytic systems, effectively preventing the undesired hydrogen evolution reaction (HER) and enhancing the selectivity towards CO2RR products. Understanding the interaction mechanism between imidazolium-based ionic liquids (Im-ILs) and CO2 molecules under electrocatalytic conditions is crucial for gaining deeper insights into why the addition of Im-ILs can improve CO2RR performance from a molecular perspective. Furthermore, Im-ILs can serve as both surface modifier groups and trapping agents in heterogeneous electrocatalysts, which can significantly alter the surface environment and hydrophobicity of the catalysts, leading to improved CO2RR. Notably, the imidazolium groups present in Lehn-type and metal-porphyrin molecular catalysts have been found to have an impact on the performance of these catalysts in CO2RR. Lastly, N-heterocyclic carbene (NHC)-based electrocatalysts, as one of the active forms of imidazolium interaction with CO2, have demonstrated exceptional performance. When introduced into porous heterogeneous catalysts and molecular catalysts, NHC-based electrocatalysts stabilize metal nanoparticles and enhance the ability to capture CO2, thus promoting CO2RR activity. In summary, the utilization of imidazolium-based materials in CO2RR holds great promise for advancing the field of CO2 conversion and achieving more sustainable and efficient processes for high-value chemical synthesis.
  • 加载中
    1. [1]

    2. [2]

      (2) He, C.; Si, D.-H.; Huang, Y.-B.; Cao, R. Angew. Chem. Int. Ed. 2022, 61 (40), e202207478. doi: 10.1002/anie.202207478

    3. [3]

      (3) Gong, L.-J.; Liu, L.-Y.; Zhao, S.-S.; Yang, S.-L.; Si, D.-H.; Wu, Q.-J.; Wu, Q.; Huang, Y.-B.; Cao, R. Chem. Eng. J. 2023, 458, 141360. doi: 10.1016/j.cej.2023.141360

    4. [4]

      (4) Xue, Y.; Zhao, G.; Yang, R.; Chu, F.; Chen, J.; Wang, L.; Huang, X. Nanoscale 2021, 13 (7), 3911. doi: 10.1039/D0NR09064F

    5. [5]

      (5) Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Chem. Soc. Rev. 2020, 49 (11), 3565. doi: 10.1039/D0CS00017E

    6. [6]

      (6) Huang, Y.-B.; Liang, J.; Wang, X.-S.; Cao, R. Chem. Soc. Rev. 2017, 46 (1), 126. doi: 10.1039/C6CS00250A

    7. [7]

      (7) Chalkley, M. J.; Garrido-Barros, P.; Peters, J. C. Science 2020, 369 (6505), 850. doi: 10.1126/science.abc1607

    8. [8]

      (8) Bourrez, M.; Steinmetz, R.; Ott, S.; Gloaguen, F.; Hammarström, L. Nat. Chem. 2015, 7 (2), 140. doi: 10.1038/nchem.2157

    9. [9]

      (9) Parada, G. A.; Goldsmith, Z. K.; Kolmar, S.; Pettersson Rimgard, B.; Mercado, B. Q.; Hammarström, L.; Hammes-Schiffer, S.; Mayer, J. M. Science 2019, 364 (6439), 471. doi: 10.1126/science.aaw4675

    10. [10]

      (10) Neyrizi, S.; Kiewiet, J.; Hempenius, M. A.; Mul, G. ACS Energy Lett. 2022, 7 (10), 3439. doi: 10.1021/acsenergylett.2c01372

    11. [11]

      (11) Wu, Q.-J.; Si, D.-H.; Wu, Q.; Dong, Y.-L.; Cao, R.; Huang, Y.-B. Angew. Chem. Int. Ed. 2023, 62 (7), e202215687. doi: 10.1002/anie.202215687

    12. [12]

      (12) Wang, G.; Chen, J.; Ding, Y.; Cai, P.; Yi, L.; Li, Y.; Tu, C.; Hou, Y.; Wen, Z.; Dai, L. Chem. Soc. Rev. 2021, 50 (8), 4993. doi: 10.1039/D0CS00071J

    13. [13]

    14. [14]

      (14) Zhang, W.; Huang, C.; Zhu, J.; Zhou, Q.; Yu, R.; Wang, Y.; An, P.; Zhang, J.; Qiu, M.; Zhou, L.; et al. Angew. Chem. Int. Ed. 2022, 61 (3), e202112116. doi: 10.1002/anie.202112116

    15. [15]

      (15) Li, Q.-X.; Si, D.-H.; Lin, W.; Wang, Y.-B.; Zhu, H.-J.; Huang, Y.-B.; Cao, R. Sci. China Chem. 2022, 65 (8), 1584. doi: 10.1007/s11426-022-1263-5

    16. [16]

      (16) Mota, F. M.; Kim, D. H. Chem. Soc. Rev. 2019, 48 (1), 205. doi: 10.1039/C8CS00527C

    17. [17]

      (17) Zhang, B.; Zhang, J.; Hua, M.; Wan, Q.; Su, Z.; Tan, X.; Liu, L.; Zhang, F.; Chen, G.; Tan, D.; et al. J. Am. Chem. Soc. 2020, 142 (31), 13606. doi: 10.1021/jacs.0c06420

    18. [18]

      (18) Chen, X.; Chen, J.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Nat. Catal. 2021, 4 (1), 20. doi: 10.1038/s41929-020-00547-0

    19. [19]

      (19) Mosali, V. S. S.; Bond, A. M.; Zhang, J. Nanoscale 2022, 14 (42), 15560. doi: 10.1039/D2NR03539A

    20. [20]

      (20) Du, X.; Qin, Y.; Gao, B.; Jang, J. H.; Xiao, C.; Li, Y.; Ding, S.; Song, Z.; Su, Y.; Nam, K. T. J. Mater. Chem. A 2022, 10 (13), 7082. doi: 10.1039/D2TA00250G

    21. [21]

      (21) Bagchi, D.; Sarkar, S.; Singh, A. K.; Vinod, C. P.; Peter, S. C. ACS Nano 2022, 16 (4), 6185. doi: 10.1021/acsnano.1c11664

    22. [22]

      (22) Chen, Z. W.; Gariepy, Z.; Chen, L.; Yao, X.; Anand, A.; Liu, S.-J.; Tetsassi Feugmo, C. G.; Tamblyn, I.; Singh, C. V. ACS Catal. 2022, 12 (24), 14864. doi: 10.1021/acscatal.2c03675

    23. [23]

      (23) Cao, L.; Wu, X.; Liu, Y.; Mao, F.; Shi, Y.; Li, J.; Zhu, M.; Dai, S.; Chen, A.; Liu, P. F.; et al. J. Mater. Chem. A 2022, 10 (18), 9954. doi: 10.1039/D1TA09482C

    24. [24]

      (24) Zhang, Y.; Zhou, Q.; Qiu, Z.-F.; Zhang, X.-Y.; Chen, J.-Q.; Zhao, Y.; Gong, F.; Sun, W.-Y. Adv. Funct. Mater. 2022, 32 (36), 2203677. doi: 10.1002/adfm.202203677

    25. [25]

      (25) Cho, J. H.; Lee, C.; Hong, S. H.; Jang, H. Y.; Back, S.; Seo, M.; Lee, M.; Min, H.-K.; Choi, Y.; Jang, Y. J.;et al. Adv. Mater. 2022, 2208224. doi: 10.1002/adma.202208224

    26. [26]

      (26) Shimoni, R.; Shi, Z.; Binyamin, S.; Yang, Y.; Liberman, I.; Ifraemov, R.; Mukhopadhyay, S.; Zhang, L.; Hod, I. Angew. Chem. Int. Ed. 2022, 61 (32), e202206085. doi: 10.1002/anie.202206085

    27. [27]

      (27) Yu, A.; Ma, G.; Zhu, L.; Zhang, R.; Li, Y.; Yang, S.; Hsu, H.-Y.; Peng, P.; Li, F.-F. Appl. Catal. B Environ. 2022, 307, 121161. doi: 10.1016/j.apcatb.2022.121161

    28. [28]

      (28) Chi, S.-Y.; Chen, Q.; Zhao, S.-S.; Si, D.-H.; Wu, Q.-J.; Huang, Y.-B.; Cao, R. J. Mater. Chem. A 2022, 10 (9), 4653. doi: 10.1039/D1TA10991J

    29. [29]

      (29) Derrick, J. S.; Loipersberger, M.; Nistanaki, S. K.; Rothweiler, A. V.; Head-Gordon, M.; Nichols, E. M.; Chang, C. J. J. Am. Chem. Soc. 2022, 144 (26), 11656. doi: 10.1021/jacs.2c02972

    30. [30]

      (30) Siritanaratkul, B.; Forster, M.; Greenwell, F.; Sharma, P. K.; Yu, E. H.; Cowan, A. J. J. Am. Chem. Soc. 2022, 144 (17), 7551. doi: 10.1021/jacs.1c13024

    31. [31]

      (31) Grammatico, D.; Bagnall, A. J.; Riccardi, L.; Fontecave, M.; Su, B.-L.; Billon, L. Angew. Chem. Int. Ed. 2022, 61 (38), e202206399. doi: 10.1002/anie.202206399

    32. [32]

      (32) Yu, P.; Lv, X.; Wang, Q.; Huang, H.; Weng, W.; Peng, C.; Zhang, L.; Zheng, G. Small 2023, 19 (4), 2205730. doi: 10.1002/smll.202205730

    33. [33]

      (33) Cui, Y.; He, B.; Liu, X.; Sun, J. Ind. Eng. Chem. Res. 2020, 59 (46), 20235. doi: 10.1021/acs.iecr.0c04037

    34. [34]

      (34) Sun, Q.; Zhao, Y.; Ren, W.; Zhao, C. Appl. Catal. B Environ. 2022, 304, 120963. doi: 10.1016/j.apcatb.2021.120963

    35. [35]

      (35) Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; et al. Energy Environ. Sci. 2018, 11 (4), 893. doi: 10.1039/c7ee03245e

    36. [36]

    37. [37]

      (37) Hailu, A.; Shaw, S. K. Energy Fuels 2018, 32 (12), 12695. doi: 10.1021/acs.energyfuels.8b02750

    38. [38]

      (38) Welch, L. M.; Vijayaraghavan, M.; Greenwell, F.; Satherley, J.; Cowan, A. J. Faraday Discuss. 2021, 230 (0), 331. doi: 10.1039/D0FD00140F

    39. [39]

      (39) Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Chem. Rev. 2017, 117 (10), 6755. doi: 10.1021/acs.chemrev.6b00509

    40. [40]

      (40) Medina-Ramos, J.; Pupillo, R. C.; Keane, T. P.; DiMeglio, J. L.; Rosenthal, J. J. Am. Chem. Soc. 2015, 137 (15), 5021. doi: 10.1021/ja5121088

    41. [41]

      (41) Kumar, B.; Asadi, M.; Pisasale, D.; Sinha-Ray, S.; Rosen, B. A.; Haasch, R.; Abiade, J.; Yarin, A. L.; Salehi-Khojin, A. Nat. Commun. 2013, 4 (1), 2819. doi: 10.1038/ncomms3819

    42. [42]

      (42) Cadena, C.; Anthony, J. L.; Shah, J. K.; Morrow, T. I.; Brennecke, J. F.; Maginn, E. J. J. Am. Chem. Soc. 2004, 126 (16), 5300. doi: 10.1021/ja039615x

    43. [43]

      (43) Zhu, Q.; Ma, J.; Kang, X.; Sun, X.; Liu, H.; Hu, J.; Liu, Z.; Han, B. Angew. Chem. Int. Ed. 2016, 55 (31), 9012. doi: 10.1002/anie.201601974

    44. [44]

      (44) Niu, D.; Wang, H.; Li, H.; Wu, Z.; Zhang, X. Electrochim. Acta 2015, 158, 138. doi: 10.1016/j.electacta.2015.01.096

    45. [45]

      (45) Zou, Y.-H.; Huang, Y.-B.; Si, D.-H.; Yin, Q.; Wu, Q.-J.; Weng, Z.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (38), 20915. doi: 10.1002/anie.202107156

    46. [46]

      (46) Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal. Gen. 2010, 373 (1), 1. doi: 10.1016/j.apcata.2009.10.008

    47. [47]

      (47) Kemna, A.; García Rey, N.; Braunschweig, B. ACS Catal. 2019, 9 (7), 6284. doi: 10.1021/acscatal.9b01033

    48. [48]

      (48) Pankhurst, J. R.; Iyengar, P.; Okatenko, V.; Buonsanti, R. Inorg. Chem. 2021, 60 (10), 6939. doi: 10.1021/acs.inorgchem.1c00287

    49. [49]

      (49) Zhao, G.; Jiang, T.; Han, B.; Li, Z.; Zhang, J.; Liu, Z.; He, J.; Wu, W. J. Supercrit. Fluid. 2004, 32 (1–3), 287. doi: 10.1016/j.supflu.2003.12.015

    50. [50]

      (50) Rosen, B. A.; Salehi-Khojin, A.; Thorson, M. R.; Zhu, W.; Whipple, D. T.; Kenis, P. J. A.; Masel, R. I. Science 2011, 334 (6056), 643. doi: 10.1126/science.1209786

    51. [51]

      (51) Vasilyev, D. V.; Dyson, P. J. ACS Catal. 2021, 11 (3), 1392. doi: 10.1021/acscatal.0c04283

    52. [52]

      (52) Zhang, X.; Xia, T.; Jiang, K.; Cui, Y.; Yang, Y.; Qian, G. J. Solid State Chem. 2017, 253, 277. doi: 10.1016/j.jssc.2017.06.008

    53. [53]

      (53) Huan, T. N.; Simon, P.; Rousse, G.; Génois, I.; Artero, V.; Fontecave, M. Chem. Sci. 2016, 8 (1), 742. doi: 10.1039/C6SC03194C

    54. [54]

      (54) Asadi, M.; Kim, K.; Liu, C.; Addepalli, A. V.; Abbasi, P.; Yasaei, P.; Phillips, P.; Behranginia, A.; Cerrato, J. M.; Haasch, R.; et al. Science 2016, 353 (6298), 467. doi: 10.1126/science.aaf4767

    55. [55]

      (55) Zeng, M.; Liu, Y.; Hu, Y.; Zhang, X. Chem. Eng. J. 2021, 425, 131663. doi: 10.1016/j.cej.2021.131663

    56. [56]

      (56) Luo, H.; Li, B.; Ma, J.-G.; Cheng, P. Angew. Chem. Int. Ed. 2022, 61 (11), e202116736. doi: 10.1002/anie.202116736

    57. [57]

      (57) Liu, Y.; Tian, D.; Biswas, A. N.; Xie, Z.; Hwang, S.; Lee, J. H.; Meng, H.; Chen, J. G. Angew. Chem. Int. Ed. 2020, 59 (28), 11345. doi: 10.1002/anie.202003625

    58. [58]

      (58) Min, Z.; Chang, B.; Shao, C.; Su, X.; Wang, N.; Li, Z.; Wang, H.; Zhao, Y.; Fan, M.; Wang, J. Appl. Catal. B Environ. 2023, 326, 122185. doi: 10.1016/j.apcatb.2022.122185

    59. [59]

      (59) Ma, L.; Liu, N.; Mei, B.; Yang, K.; Liu, B.; Deng, K.; Zhang, Y.; Feng, H.; Liu, D.; Duan, J.; et al. ACS Catal. 2022, 12 (14), 8601. doi: 10.1021/acscatal.2c01434

    60. [60]

      (60) Jiang, M.; Zhu, M.; Wang, H.; Song, X.; Liang, J.; Lin, D.; Li, C.; Cui, J.; Li, F.; Zhang, X. L.; et al. Nano Lett. 2023, 23 (1), 291. doi: 10.1021/acs.nanolett.2c04335

    61. [61]

      (61) Guo, W.; Tan, X.; Bi, J.; Xu, L.; Yang, D.; Chen, C.; Zhu, Q.; Ma, J.; Tayal, A.; Ma, J.; et al. J. Am. Chem. Soc. 2021, 143 (18), 6877. doi: 10.1021/jacs.1c00151

    62. [62]

      (62) Tan, X.; Sun, X.; Han, B. Natl. Sci. Rev. 2022, 9 (4), nwab022. doi: 10.1093/nsr/nwab022

    63. [63]

      (63) Yang, D.; Zhu, Q.; Sun, X.; Chen, C.; Guo, W.; Yang, G.; Han, B. Angew. Chem. 2020, 132 (6), 2374. doi: 10.1002/ange.201914831

    64. [64]

      (64) Sharifi Golru, S.; Biddinger, E. J. Electrochim. Acta 2020, 361, 136787. doi: 10.1016/j.electacta.2020.136787

    65. [65]

      (65) Li, P.; Bi, J.; Liu, J.; Zhu, Q.; Chen, C.; Sun, X.; Zhang, J.; Han, B. Nat. Commun. 2022, 13 (1), 1965. doi: 10.1038/s41467-022-29698-3

    66. [66]

      (66) Motobayashi, K.; Maeno, Y.; Ikeda, K. J. Phys. Chem. C 2022, 126 (29), 11981. doi: 10.1021/acs.jpcc.2c03012

    67. [67]

      (67) Rosen, B. A.; Haan, J. L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D. D.; Masel, R. I. J. Phys. Chem. C 2012, 116 (29), 15307. doi: 10.1021/jp210542v

    68. [68]

      (68) de Robillard, G.; Devillers, C. H.; Kunz, D.; Cattey, H.; Digard, E.; Andrieu, J. Org. Lett. 2013, 15 (17), 4410. doi: 10.1021/ol401949f

    69. [69]

      (69) A. Duong, H.; N. Tekavec, T.; M. Arif, A.; Louie, J. Chem. Commun. 2004, No. 1, 112. doi: 10.1039/B311350G

    70. [70]

      (70) Michez, R.; Doneux, T.; Buess-Herman, C.; Luhmer, M. ChemPhysChem 2017, 18 (16), 2208. doi: 10.1002/cphc.201700421

    71. [71]

      (71) Sun, L.; Ramesha, G. K.; Kamat, P. V.; Brennecke, J. F. Langmuir 2014, 30 (21), 6302. doi: 10.1021/la5009076

    72. [72]

      (72) Zhao, S.-F.; Horne, M.; Bond, A. M.; Zhang, J. J. Phys. Chem. C 2016, 120 (42), 23989. doi: 10.1021/acs.jpcc.6b08182

    73. [73]

      (73) Wang, Y.; Hatakeyama, M.; Ogata, K.; Wakabayashi, M.; Jin, F.; Nakamura, S. Phys. Chem. Chem. Phys. 2015, 17 (36), 23521. doi: 10.1039/C5CP02008E

    74. [74]

      (74) Barrosse-Antle, L. E.; Compton, R. G. Chem. Commun. 2009, 25, 3744. doi: 10.1039/B906320J

    75. [75]

      (75) Snuffin, L. L.; Whaley, L. W.; Yu, L. J. Electrochem. Soc. 2011, 158 (9), F155. doi: 10.1149/1.3606487

    76. [76]

      (76) Feroci, M.; Chiarotto, I.; Orsini, M.; Sotgiu, G.; Inesi, A. Electrochim. Acta 2011, 56 (16), 5823. doi: 10.1016/j.electacta.2011.04.067

    77. [77]

      (77) Matsubara, Y.; Grills, D. C.; Kuwahara, Y. ACS Catal. 2015, 5 (11), 6440. doi: 10.1021/acscatal.5b00656

    78. [78]

      (78) Lau, G. P. S.; Schreier, M.; Vasilyev, D.; Scopelliti, R.; Grätzel, M.; Dyson, P. J. J. Am. Chem. Soc. 2016, 138 (25), 7820. doi: 10.1021/jacs.6b03366

    79. [79]

      (79) Parada, W. A.; Vasilyev, D. V.; Mayrhofer, K. J. J.; Katsunaros, I. ACS Appl. Mater. Interfaces 2022, 14 (12), 14193. doi: 10.1021/acsami.1c24386

    80. [80]

      (80) Mehnert, C. P. Chem. -Eur. J. 2005, 11 (1), 50. doi: 10.1002/chem.200400683

    81. [81]

      (81) Zhang, G.-R.; Straub, S.-D.; Shen, L.-L.; Hermans, Y.; Schmatz, P.; Reichert, A. M.; Hofmann, J. P.; Katsounaros, I.; Etzold, B. J. M. Angew. Chem. Int. Ed. 2020, 59 (41), 18095. doi: 10.1002/anie.202009498

    82. [82]

      (82) Cheng, B.; Du, J.; Yuan, H.; Tao, Y.; Chen, Y.; Lei, J.; Han, Z. ACS Appl. Mater. Interfaces 2022, 14 (24), 27823. doi: 10.1021/acsami.2c03748

    83. [83]

      (83) Wang, J.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernández, A.; Ko, J. H.; Gan, Q.; Goddard III, W. A.; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143 (7), 2857. doi: 10.1021/jacs.0c12478

    84. [84]

      (84) Kim, C.; Bui, J. C.; Luo, X.; Cooper, J. K.; Kusoglu, A.; Weber, A. Z.; Bell, A. T. Nat. Energy 2021, 6 (11), 1026. doi: 10.1038/s41560-021-00920-8

    85. [85]

      (85) Hansen, K. U.; Jiao, F. Nat. Energy 2021, 6 (11), 1005. doi: 10.1038/s41560-021-00930-6

    86. [86]

      (86) Tamura, J.; Ono, A.; Sugano, Y.; Huang, C.; Nishizawa, H.; Mikoshiba, S. Phys. Chem. Chem. Phys. 2015, 17 (39), 26072. doi: 10.1039/C5CP03028E

    87. [87]

      (87) Pankhurst, J. R.; Guntern, Y. T.; Mensi, M.; Buonsanti, R. Chem. Sci. 2019, 10 (44), 10356. doi: 10.1039/C9SC04439F

    88. [88]

      (88) Koshy, D. M.; Akhade, S. A.; Shugar, A.; Abiose, K.; Shi, J.; Liang, S.; Oakdale, J. S.; Weitzner, S. E.; Varley, J. B.; Duoss, E. B.; et al. J. Am. Chem. Soc. 2021, 143 (36), 14712. doi: 10.1021/jacs.1c06212

    89. [89]

      (89) Li, N.; Si, D.-H.; Wu, Q.; Wu, Q.; Huang, Y.-B.; Cao, R. CCS Chem. 2022, 5 (5), 1130. doi: 10.31635/ccschem.022.202201943

    90. [90]

      (90) Yi, J.-D.; Si, D.-H.; Xie, R.; Yin, Q.; Zhang, M.-D.; Wu, Q.; Chai, G.-L.; Huang, Y.-B.; Cao, R. Angew. Chem. Int. Ed. 2021, 60 (31), 17108. doi: 10.1002/anie.202104564

    91. [91]

      (91) Zhang, M.-D.; Si, D.-H.; Yi, J.-D.; Zhao, S.-S.; Huang, Y.-B.; Cao, R. Small 2020, 16 (52), 2005254. doi: 10.1002/smll.202005254

    92. [92]

      (92) Wu, Q.; Mao, M.-J.; Wu, Q.-J.; Liang, J.; Huang, Y.-B.; Cao, R. Small 2021, 17 (22), 2004933. doi: 10.1002/smll.202004933

    93. [93]

      (93) Ma, C.; Hou, P.; Wang, X.; Wang, Z.; Li, W.; Kang, P. Appl. Catal. B Environ. 2019, 250, 347. doi: 10.1016/j.apcatb.2019.03.041

    94. [94]

      (94) Lamaison, S.; Wakerley, D.; Kracke, F.; Moore, T.; Zhou, L.; Lee, D. U.; Wang, L.; Hubert, M. A.; Aviles Acosta, J. E.; Gregoire, J. M.; et al. Adv. Mater. 2022, 34 (1), 2103963. doi: 10.1002/adma.202103963

    95. [95]

      (95) Lee, J.; Lim, J.; Roh, C.-W.; Whang, H. S.; Lee, H. J. CO2 Util. 2019, 31, 244. doi: 10.1016/j.jcou.2019.03.022

    96. [96]

      (96) Han, M. H.; Kim, D.; Kim, S.; Yu, S.-H.; Won, D. H.; Min, B. K.; Chae, K. H.; Lee, W. H.; Oh, H.-S. Adv. Energy Mater. 2022, 12 (35), 2201843. doi: 10.1002/aenm.202201843

    97. [97]

      (97) Sha, Y.; Zhang, J.; Cheng, X.; Xu, M.; Su, Z.; Wang, Y.; Hu, J.; Han, B.; Zheng, L. Angew. Chem. Int. Ed. 2022, 61 (13), e202200039. doi: 10.1002/anie.202200039

    98. [98]

      (98) Ren, W.; Tan, X.; Chen, X.; Zhang, G.; Zhao, K.; Yang, W.; Jia, C.; Zhao, Y.; Smith, S. C.; Zhao, C. ACS Catal. 2020, 10 (22), 13171. doi: 10.1021/acscatal.0c03873

    99. [99]

      (99) Delmo, E. P.; Wang, Y.; Wang, J.; Zhu, S.; Li, T.; Qin, X.; Tian, Y.; Zhao, Q.; Jang, J.; Wang, Y.; et al. Chin. J. Catal. 2022, 43 (7), 1687. doi: 10.1016/S1872-2067(21)63970-0

    100. [100]

      (100) Ding, M.; Jiang, H.-L. ACS Catal. 2018, 8 (4), 3194. doi: 10.1021/acscatal.7b03404

    101. [101]

      (101) Johnson, B. A.; Maji, S.; Agarwala, H.; White, T. A.; Mijangos, E.; Ott, S. Angew. Chem. Int. Ed. 2016, 55 (5), 1825. doi: 10.1002/anie.201508490

    102. [102]

      (102) Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.; Chang, C. J. J. Am. Chem. Soc. 2011, 133 (24), 9212. doi: 10.1021/ja202743r

    103. [103]

      (103) Sung, S.; Kumar, D.; Gil-Sepulcre, M.; Nippe, M. J. Am. Chem. Soc. 2017, 139 (40), 13993. doi: 10.1021/jacs.7b07709

    104. [104]

      (104) Li, X.; Panetier, J. A. Phys. Chem. Chem. Phys. 2021, 23 (27), 14940. doi: 10.1039/D1CP01576A

    105. [105]

      (105) Liang, Y.; Nguyen, M. T.; Holliday, B. J.; Jones, R. A. Inorg. Chem. Commun. 2017, 84, 113. doi: 10.1016/j.inoche.2017.08.002

    106. [106]

      (106) Hawecker, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1984, No. 6, 328. doi: 10.1039/C39840000328

    107. [107]

      (107) Sullivan, B. P.; Bolinger, C. M.; Conrad, D.; Vining, W. J.; Meyer, T. J. J. Chem. Soc. Chem. Commun. 1985, No. 20, 1414. doi: 10.1039/C39850001414

    108. [108]

      (108) Sampson, M. D.; Kubiak, C. P. Inorg. Chem. 2015, 54 (14), 6674. doi: 10.1021/acs.inorgchem.5b01080

    109. [109]

      (109) Hawecker, J.; Lehn, J.-M.; Ziessel, R. J. Chem. Soc. Chem. Commun. 1983, 0 (9), 536. doi: 10.1039/C39830000536

    110. [110]

      (110) Khadhraoui, A.; Gotico, P.; Boitrel, B.; Leibl, W.; Halime, Z.; Aukauloo, A. Chem. Commun. 2018, 54 (82), 11630. doi: 10.1039/C8CC06475J

    111. [111]

      (111) Sung, S.; Li, X.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. J. Am. Chem. Soc. 2019, 141 (16), 6569. doi: 10.1021/jacs.8b13657

    112. [112]

      (112) Li, X.; Panetier, J. A. ACS Catal. 2021, 11 (21), 12989. doi: 10.1021/acscatal.1c02899

    113. [113]

      (113) Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. J. Am. Chem. Soc. 2016, 138 (51), 16639. doi: 10.1021/jacs.6b07014

    114. [114]

      (114) Azcarate, I.; Costentin, C.; Robert, M.; Savéant, J.-M. J. Phys. Chem. C 2016, 120 (51), 28951. doi: 10.1021/acs.jpcc.6b09947

    115. [115]

      (115) Yang, Z.-W.; Chen, J.-M.; Qiu, L.-Q.; Xie, W.-J.; He, L.-N. Angew. Chem. Int. Ed. 2022, 61 (44), e202205301. doi: 10.1002/anie.202205301

    116. [116]

      (116) Warshel, A. Proc. Natl. Acad. Sci. USA 1978, 75 (11), 5250. doi: 10.1073/pnas.75.11.5250

    117. [117]

      (117) Warshel, A. Acc. Chem. Res. 1981, 14 (9), 284. doi: 10.1021/ar00069a004

    118. [118]

      (118) Narouz, M. R.; De La Torre, P.; An, L.; Chang, C. J. Angew. Chem. 2022, 134 (37), e202207666. doi: 10.1002/ange.202207666

    119. [119]

      (119) Saravanan, C.; Muthu Mareeswaran, P. Mater. Today Proc. 2021, 34, 408. doi: 10.1016/j.matpr.2020.02.201

    120. [120]

      (120) Cao, Z.; Kim, D.; Hong, D.; Yu, Y.; Xu, J.; Lin, S.; Wen, X.; Nichols, E. M.; Jeong, K.; Reimer, J. A.; et al. J. Am. Chem. Soc. 2016, 138 (26), 8120. doi: 10.1021/jacs.6b02878

    121. [121]

      (121) An, Y.-Y.; Yu, J.-G.; Han, Y.-F. Chin. J. Chem. 2019, 37 (1), 76. doi: 10.1002/cjoc.201800450

    122. [122]

      (122) Luca, O. R.; McCrory, C. C. L.; Dalleska, N. F.; Koval, C. A. J. Electrochem. Soc. 2015, 162 (7), H473. doi: 10.1149/2.0371507jes

    123. [123]

      (123) Cao, Z.; Derrick, J. S.; Xu, J.; Gao, R.; Gong, M.; Nichols, E. M.; Smith, P. T.; Liu, X.; Wen, X.; Copéret, C.;et al. Angew. Chem. Int. Ed. 2018, 57 (18), 4981. doi: 10.1002/anie.201800367

    124. [124]

      (124) Amit, E.; Dery, L.; Dery, S.; Kim, S.; Roy, A.; Hu, Q.; Gutkin, V.; Eisenberg, H.; Stein, T.; Mandler, D.; et al. Nat. Commun. 2020, 11 (1), 5714. doi: 10.1038/s41467-020-19500-7

    125. [125]

      (125) Mao, M.-J.; Zhang, M.-D.; Meng, D.-L.; Chen, J.-X.; He, C.; Huang, Y.-B.; Cao, R. ChemCatChem 2020, 12 (13), 3530. doi: 10.1002/cctc.202000387

    126. [126]

      (126) Jiang, Y.; Zhang, X.; Fei, H. Dalton Trans. 2020, 49 (20), 6548. doi: 10.1039/D0DT01022G

    127. [127]

      (127) Chen, S.; Li, W.-H.; Jiang, W.; Yang, J.; Zhu, J.; Wang, L.; Ou, H.; Zhuang, Z.; Chen, M.; Sun, X.; et al. Angew. Chem. Int. Ed. 2022, 61 (4), e202114450. doi: 10.1002/anie.202114450

    128. [128]

      (128) Zhang, L.; Wei, Z.; Thanneeru, S.; Meng, M.; Kruzyk, M.; Ung, G.; Liu, B.; He, J. Angew. Chem. Int. Ed. 2019, 58 (44), 15834. doi: 10.1002/anie.201909069

    129. [129]

      (129) Agarwal, J.; Shaw, T. W.; Stanton, C. J.; Majetich, G. F.; Bocarsly, A. B.; Schaefer, H. F. Angew. Chem. Int. Ed. 2014, 53 (20), 5152. doi: 10.1002/anie.201311099

    130. [130]

      (130) Franco, F.; Cometto, C.; Vallana, F. F.; Sordello, F.; Priola, E.; Minero, C.; Nervi, C.; Gobetto, R. Chem. Commun. 2014, 50 (93), 14670. doi: 10.1039/C4CC05563B

    131. [131]

      (131) Rao, G. K.; Pell, W.; Korobkov, I.; Richeson, D. Chem. Commun. 2016, 52 (51), 8010. doi: 10.1039/C6CC03827A

    132. [132]

      (132) Franco, F.; Pinto, M. F.; Royo, B.; Lloret-Fillol, J. Angew. Chem. 2018, 130 (17), 4693. doi: 10.1002/ange.201800705

    133. [133]

      (133) Stanton, C. J. I.; Vandezande, J. E.; Majetich, G. F.; Schaefer, H. F. I.; Agarwal, J. Inorg. Chem. 2016, 55 (19), 9509. doi: 10.1021/acs.inorgchem.6b01657

  • 加载中
    1. [1]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    2. [2]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    3. [3]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    4. [4]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

Metrics
  • PDF Downloads(1)
  • Abstract views(392)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return