Citation: Jiandong Liu,  Xin Li,  Daxiong Wu,  Huaping Wang,  Junda Huang,  Jianmin Ma. 优化Li||NCM811电池电解液溶剂化和电极电解液界面的阴离子受体添加剂策略[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230603. doi: 10.3866/PKU.WHXB202306039 shu

优化Li||NCM811电池电解液溶剂化和电极电解液界面的阴离子受体添加剂策略

  • Corresponding author: Jianmin Ma, nanoelechem@hnu.edu.cn
  • Received Date: 26 June 2023
    Revised Date: 1 August 2023
    Accepted Date: 16 August 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (51971090, U21A20311).

  • 锂金属电池的循环稳定性和倍率能力受制于多个因素,如阳极/阴极电解液界面的品质和电解液溶剂化特性。在该工作中,我们提出了阴离子受体电解液添加剂策略,通过六氟苯添加剂对Li+溶剂化结构进行调控,实现了PF6-的稳定性并提高了电解液的导电性,优化了阳极/阴极电解液界面中间相的组分/结构特征,有效抑制了锂枝晶的生长和提升了阴极表面的Li+传输,Li||Li对称电池在1 mA·cm-2的电流密度下实现超过400 h的稳定循环,并且Li||NCM811电池在200 mA·g-1的电流密度下经过100次循环后的容量保持率达到75%。
  • 加载中
    1. [1]

    2. [2]

      (2) Shi, P.; Liu, Z.-Y.; Zhang, X.-Q.; Chen, X.; Yao, N.; Xie, J.; Jin, C.-B.; Zhan, Y.-X.; Ye, G.; Huang, J.-Q.; et al. J. Energy Chem. 2022, 64, 172. doi:10.1016/j.jechem.2021.04.045

    3. [3]

      (3) Li, X.; Liu, J.; He, J.; Wang, H.; Qi, S.; Wu, D.; Huang, J.; Li, F.; Hu, W.; Ma, J. Adv. Funct. Mater. 2021, 31, 2104395. doi:10.1002/adfm.202104395

    4. [4]

      (4) Li, D.; Luo, L.; Zhu, J.; Qin, H.; Liu, P.; Sun, Z.; Lei, Y.; Jiang, M. Chin. Chem. Lett. 2022, 33, 1025. doi:10.1016/j.cclet.2021.07.021

    5. [5]

      (5) Wu, N.; Zhang, Q.-Y.; Guo, Y.-J.; Zhou, L.; Zhang, L.-J.; Wu, M.-X.; Wang, W.-P.; Yin, Y.-X.; Sheng, P.; Xin, S. Rare Metals 2022, 41, 2217. doi:10.1007/s12598-021-01944-5

    6. [6]

      (6) Tan, J.; Matz, J.; Dong, P.; Shen, J.; Ye, M. Adv. Energy Mater. 2021, 11, 2100046. doi:10.1002/aenm.202100046

    7. [7]

      (7) Yang, Q.; Li, C. Energy Storage Mater. 2018, 14, 100. doi:10.1016/j.ensm.2018.02.017

    8. [8]

      (8) Biswal, P.; Kludze, A.; Rodrigues, J.; Deng, Y.; Moon, T.; Stalin, S.; Zhao, Q.; Yin, J.; Kourkoutis, L. F.; Archer, L. A. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2012071118. doi:10.1073/pnas.2012071118

    9. [9]

      (9) Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. Adv. Sci. 2016, 3, 1500213. doi:10.1002/advs.201500213

    10. [10]

      (10) Li, Y.; Li, Y.; Zhang, L.; Tao, H.; Li, Q.; Zhang, J.; Yang, X. J. Energy Chem. 2023, 77, 123. doi:10.1016/j.jechem.2022.10.026

    11. [11]

      (11) Han, J.-G.; Jeong, M.-Y.; Kim, K.; Park, C.; Sung, C. H.; Bak, D. W.; Kim, K. H.; Jeong, K.-M.; Choi, N.-S. J. Power Sources 2020, 446, 227366. doi:10.1016/j.jpowsour.2019.227366

    12. [12]

      (12) Liu, J.; Wang, Y.; Liu, F.; Cheng, F.; Chen, J. J. Energy Chem. 2020, 42, 1. doi:10.1016/j.jechem.2019.05.017

    13. [13]

      (13) Wotango, A. S.; Su, W.-N.; Leggesse, E. G.; Haregewoin, A. M.; Lin, M.-H.; Zegeye, T. A.; Cheng, J.-H.; Hwang, B.-J. ACS Appl. Mater. Interfaces 2017, 9, 2410. doi:10.1021/acsami.6b13105

    14. [14]

      (14) Han, J.-G.; Kim, K.; Lee, Y.; Choi, N.-S. Adv. Mater. 2019, 31, 1804822. doi:10.1002/adma.201804822

    15. [15]

      (15) Solchenbach, S.; Metzger, M.; Egawa, M.; Beyer, H.; Gasteiger, H. A. J. Electrochem. Soc. 2018, 165, A3022. doi:10.1149/2.0481813jes

    16. [16]

      (16) Li, X.; Liu, J.; He, J.; Qi, S.; Wu, M.; Wang, H.; Jiang, G.; Huang, J.; Wu, D.; Li, F.; et al. Adv. Sci. 2022, 9, 2201297. doi:10.1002/advs.202201297

    17. [17]

      (17) Zhu, Y.; Li, X.; Si, Y.; Zhang, X.; Sang, P.; Fu, Y. J. Energy Chem. 2022, 73, 422. doi:10.1016/j.jechem.2022.06.046

    18. [18]

      (18) Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H. Nano Lett. 2016, 16, 4431. doi:10.1021/acs.nanolett.6b01581

    19. [19]

      (19) Yoo, D.-J.; Elabd, A.; Choi, S.; Cho, Y.; Kim, J.; Lee, S. J.; Choi, S. H.; Kwon, T.-w.; Char, K.; Kim, K. J.; et al. Adv. Mater. 2019, 31, 1901645. doi:10.1002/adma.201901645

    20. [20]

      (20) Wang, Z.; Wang, X.; Sun, W.; Sun, K. Electrochim. Acta 2017, 252, 127. doi:10.1016/j.electacta.2017.08.179

    21. [21]

      (21) Zhang, R.; Cheng, X.-B.; Zhao, C.-Z.; Peng, H.-J.; Shi, J.-L.; Huang, J.-Q.; Wang, J.; Wei, F.; Zhang, Q. Adv. Mater. 2016, 28, 2155. doi:10.1002/adma.201504117

    22. [22]

      (22) Sun, Z.; Jin, S.; Jin, H.; Du, Z.; Zhu, Y.; Cao, A.; Ji, H.; Wan, L.-J. Adv. Mater. 2018, 30, 1800884. doi:10.1002/adma.201800884

    23. [23]

      (23) Ni, S.; Tan, S.; An, Q.; Mai, L. J. Energy Chem. 2020, 44, 73. doi:10.1016/j.jechem.2019.09.031

    24. [24]

      (24) Li, P.; Dong, X.; Li, C.; Liu, J.; Liu, Y.; Feng, W.; Wang, C.; Wang, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 2093. doi:10.1002/anie.201813905

    25. [25]

      (25) Fu, J.; Ji, X.; Chen, J.; Chen, L.; Fan, X.; Mu, D.; Wang, C. Angew. Chem. Int. Ed. 2020, 59, 22194. doi:10.1002/anie.202009575

    26. [26]

      (26) Liu, J.; Wu, M.; Li, X.; Wu, D.; Wang, H.; Huang, J.; Ma, J. Adv. Energy Mater. 2023, 13, 2300084. doi:10.1002/aenm.202300084

    27. [27]

      (27) Liu, X.; Fu, A.; Lin, J.; Zou, Y.; Liu, G.; Wang, W.; Wu, D.-Y.; Yang, Y.; Zheng, J.; Ye, L. ACS Appl. Energy Mater. 2023, 6, 2001. doi:10.1021/acsaem.2c03934

    28. [28]

      (28) Wu, D.; He, J.; Liu, J.; Wu, M.; Qi, S.; Wang, H.; Huang, J.; Li, F.; Tang, D.; Ma, J. Adv. Energy Mater. 2022, 12, 2200337. doi:10.1002/aenm.202200337

    29. [29]

      (29) Li, F.; He, J.; Liu, J.; Wu, M.; Hou, Y.; Wang, H.; Qi, S.; Liu, Q.; Hu, J.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 6600. doi:10.1002/anie.202013993

    30. [30]

      (30) Huang, J.; Liu, J.; He, J.; Wu, M.; Qi, S.; Wang, H.; Li, F.; Ma, J. Angew. Chem. Int. Ed. 2021, 60, 20717. doi:10.1002/anie.202107957

    31. [31]

      (31) Liu, Y.; Tao, X.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O.; Lu, G.; Lou, X. W. Science 2022, 375, 739. doi:10.1126/science.abn1818

    32. [32]

      (32) Heine, J.; Hilbig, P.; Qi, X.; Niehoff, P.; Winter, M.; Bieker, P. M. J. Electrochem. Soc. 2015, 162, A1094. doi:10.1149/2.0011507jes

    33. [33]

      (33) Lu, Y.; Tu, Z.; Archer, L. A. Nat. Mater. 2014, 13, 961. doi:10.1038/nmat4041

    34. [34]

      (34) Liang, J.-Y.; Zhang, X.-D.; Zeng, X.-X.; Yan, M.; Yin, Y.-X.; Xin, S.; Wang, W.-P.; Wu, X.-W.; Shi, J.-L.; Wan, L.-J.; et al. Angew. Chem. Int. Ed. 2020, 59, 6585. doi:10.1002/anie.201916301

    35. [35]

      (35) Wu, Y.; Feng, X.; Liu, X.; Wang, X.; Ren, D.; Wang, L.; Yang, M.; Wang, Y.; Zhang, W.; Li, Y.; et al. Energy Storage Mater. 2021, 43, 248. doi:10.1016/j.ensm.2021.09.007

    36. [36]

      (36) Lee, Y.-M.; Nam, K.-M.; Hwang, E.-H.; Kwon, Y.-G.; Kang, D.-H.; Kim, S.-S.; Song, S.-W. J. Phys. Chem. C 2014, 118, 10631. doi:10.1021/jp501670g

    37. [37]

      (37) Pham, H. Q.; Chung, G. J.; Han, J.; Hwang, E.-H.; Kwon, Y.-G.; Song, S.-W. J. Chem. Phys. 2020, 152, 094709. doi:10.1063/1.5144280

    38. [38]

      (38) Su, H.; Chen, Z.; Li, M.; Bai, P.; Li, Y.; Ji, X.; Liu, Z.; Sun, J.; Ding, J.; Yang, M.; et al. Adv. Mater. 2023, 35, 2301171. doi:10.1002/adma.202301171

    39. [39]

      (39) Zhu, C.; Wu, D.; Wang, Z.; Wang, H.; Liu, J.; Guo, K.; Liu, Q.; Ma, J. Adv. Funct. Mater. 2023, 2214195. doi:10.1002/adfm.202214195

    40. [40]

      (40) Kim, E.; Lee, J.; Kim, D.; Lee, K. E.; Han, S. S.; Lim, N.; Kang, J.; Park, C. G.; Kim, K. Chem. Commun. 2009, 1472. doi:10.1039/B823110A

    41. [41]

      (41) Hou, T.; Yang, G.; Rajput, N. N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K. A. Nano Energy 2019, 64, 103881. doi:10.1016/j.nanoen.2019.103881

    42. [42]

      (42) VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2005, 167, 103. doi:10.1016/j.cpc.2004.12.014

    43. [43]

      (43) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J. WIREs Comput. Mol. Sci. 2014, 4, 15. doi:10.1002/wcms.1159

    44. [44]

      (44) Piao, Z.; Gao, R.; Liu, Y.; Zhou, G.; Cheng, H.-M. Adv. Mater. 2023, 35, 2206009. doi:10.1002/adma.202206009

    45. [45]

      (45) Wu, J.; Gao, Z.; Wang, Y.; Yang, X.; Liu, Q.; Zhou, D.; Wang, X.; Kang, F.; Li, B. Nano-Micro Lett. 2022, 14, 147. doi:10.1007/s40820-022-00896-4

    46. [46]

      (46) Zheng, H.; Xie, Y.; Xiang, H.; Shi, P.; Liang, X.; Xu, W. Electrochim. Acta 2018, 270, 62. doi:10.1016/j.electacta.2018.03.089

    47. [47]

      (47) Plimpton, S. J. Comput. Phys. 1995, 117, 1. doi:10.1006/jcph.1995.1039

    48. [48]

      (48) Qiao, L.; Rodriguez Peña, S.; Martínez-Ibañez, M.; Santiago, A.; Aldalur, I.; Lobato, E.; Sanchez-Diez, E.; Zhang, Y.; Manzano, H.; Zhu, H.; et al. J. Am. Chem. Soc. 2022, 144, 9806. doi:10.1021/jacs.2c02260

    49. [49]

      (49) Xiong, S.; Xie, K.; Diao, Y.; Hong, X. J. Power Sources 2014, 246, 840. doi:10.1016/j.jpowsour.2013.08.041

    50. [50]

      (50) Zou, P.; Wang, Y.; Chiang, S.-W.; Wang, X.; Kang, F.; Yang, C. Nat. Commun. 2018, 9, 464. doi:10.1038/s41467-018-02888-8

    51. [51]

      (51) Gao, X.; Zhou, Y.-N.; Han, D.; Zhou, J.; Zhou, D.; Tang, W.; Goodenough, J. B. Joule 2020, 4, 1864. doi:10.1016/j.joule.2020.06.016

    52. [52]

      (52) Wang, H.; Gao, H.; Chen, X.; Zhu, J.; Li, W.; Gong, Z.; Li, Y.; Wang, M.-S.; Yang, Y. Adv. Energy Mater. 2021, 11, 2102148. doi:10.1002/aenm.202102148

    53. [53]

      (53) Oh, J.-M.; Venters, C. C.; Di, C.; Pinto, A. M.; Wan, L.; Younis, I.; Cai, Z.; Arai, C.; So, B. R.; Duan, J.; et al. Nat. Commun. 2020, 11, 1. doi:10.1038/s41467-019-13993-7

    54. [54]

      (54) Cui, C.; Fan, X.; Zhou, X.; Chen, J.; Wang, Q.; Ma, L.; Yang, C.; Hu, E.; Yang, X.-Q.; Wang, C. J. Am. Chem. Soc. 2020, 142, 8918. doi:10.1021/jacs.0c02302

  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    3. [3]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    4. [4]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    8. [8]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    9. [9]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    11. [11]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    12. [12]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    18. [18]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    19. [19]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(3)
  • Abstract views(377)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return