Citation: Junhao Liao, Yixuan Zhao, Zhaoning Hu, Saiyu Bu, Qi Lu, Mingpeng Shang, Kaicheng Jia, Xiaohui Qiu, Qin Xie, Li Lin, Zhongfan Liu. Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230603. doi: 10.3866/PKU.WHXB202306038 shu

Crack-Free Transfer of Graphene Wafers via Photoresist as Transfer Medium

  • Corresponding author: Xiaohui Qiu, xhqiu@nanoctr.cn Qin Xie, xieqin-cnc@pku.edu.cn Li Lin, linli-cnc@pku.edu.cn Zhongfan Liu, zfliu@pku.edu.cn
  • Received Date: 26 June 2023
    Revised Date: 19 July 2023
    Accepted Date: 24 July 2023
    Available Online: 7 August 2023

    Fund Project: the National Natural Science Foundation of China T2188101the National Natural Science Foundation of China 61974139the National Natural Science Foundation of China 51432002the National Natural Science Foundation of China 51520105003the National Natural Science Foundation of China 12232016Beijing Municipal Science & Technology Commission Z181100004818001Beijing Municipal Science & Technology Commission Z191100000819005Beijing Municipal Science & Technology Commission Z191100000819007Beijing Municipal Science & Technology Commission Z201100008720005National Basic Research Program of China 2016YFA0200101National Basic Research Program of China 2016YFA0200103National Basic Research Program of China 2019YFA0708203Beijing National Laboratory for Molecular Sciences BNLMS-CXTD-202001

  • Graphene offers exceptional properties, such as ultra-high carrier mobility, near-ballistic transport characteristics, and ultra-high-frequency operational response, making it an ideal material for radio-frequency devices and high-speed optical communications. To realize its potential applications, high-quality graphene films must be integrated onto target substrates with reliability, uniformity, and scalability. Despite significant progress in the chemical vapor deposition of high-quality graphene on catalytic metal substrates, the transfer of such films onto application-targeted substrates remains necessary for large-scale technological use, but it faces challenges like contaminations and cracks. Graphene's flexibility and single-atom thickness make it vulnerable to damage and folding during the transfer process due to force disturbances and uneven force distribution. Traditional graphene transfer methods employ organic polymers as a medium and remove them using organic solvents after transferring graphene onto the desired substrates. However, this repetitive process generates organic waste and leaves unavoidable contamination due to the limited solubility of the polymer. Furthermore, selective interlacing of organic solvents during polymer removal can detach graphene from the substrate and cause cracks. In this study, we demonstrate a novel approach to address these issues. Instead of using organic polymers, we directly use the photoresist as the transfer medium to mechanically delaminate graphene from the metal growth substrate onto the targeted substrate. By doing so, we eliminate the need for repeated polymer coating on the graphene surface, enabling successful transfer without crack formation, wrinkles, or unintentional doping. The strong interaction between graphene and the photoresist, coupled with the weakened interaction between graphene and the growth substrate due to oxidation, ensures crack-free delamination. Moreover, the photoresist serves as a patterned mask plate for exposure, etching, and other subsequent device fabrication processes. As a result, the electrical properties of graphene are improved, achieving an average carrier mobility of 6200 cm2·V−1·s−1. This integrated approach not only enhances the device performance of two-dimensional materials but also paves the way for future applications of such materials in electronics and photonics. In conclusion, our method offers a promising solution for the successful transfer and device fabrication of graphene, enhancing its potential in the field of electronics and photonics.
  • 加载中
    1. [1]

      Lange, K.; Muller-Seitz, G.; Sydow, J.; Windeler, A. Res. Policy 2013, 42 (3), 647. doi: 10.1016/j.respol.2012.12.001  doi: 10.1016/j.respol.2012.12.001

    2. [2]

      Yeh, L. Y.; Liao, M. H.; Chen, C. H.; Wu, J.; Lee, J. Y. M.; Liu, C. W.; Lee, T. L.; Liang, M. S. IEEE Trans. Electron Devices 2009, 56 (11), 2848. doi: 10.1109/ted.2009.2030542  doi: 10.1109/ted.2009.2030542

    3. [3]

      Welser, J.; Hoyt, J. L.; Gibbons, J. F. IEEE Electron. Device. Lett. 1994, 15 (3), 100. doi: 10.1109/55.285389  doi: 10.1109/55.285389

    4. [4]

      Radisavljevic, B.; Kis, A. Nat. Mater. 2013, 12 (9), 815. doi: 10.1038/nmat3687  doi: 10.1038/nmat3687

    5. [5]

      Dennard, R. H.; Gaensslen, F. H.; Yu, H. N.; Rideout, V. L.; Bassous, E.; Leblanc, A. R. Proc. IEEE 1999, 87 (4), 668. doi: 10.1109/jproc.1999.752522  doi: 10.1109/jproc.1999.752522

    6. [6]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306 (5696), 666. doi: 10.1126/science.1102896  doi: 10.1126/science.1102896

    7. [7]

      Kretinin, A. V.; Cao, Y.; Tu, J. S.; Yu, G. L.; Jalil, R.; Novoselov, K. S.; Haigh, S. J.; Gholinia, A.; Mishchenko, A.; Lozada, M.; et al. Nano Lett. 2014, 14 (6), 3270. doi: 10.1021/nl5006542  doi: 10.1021/nl5006542

    8. [8]

      Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81 (1), 109. doi: 10.1103/revmodphys.81.109  doi: 10.1103/revmodphys.81.109

    9. [9]

      Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Nature 2018, 556 (7699), 43. doi: 10.1038/nature26160  doi: 10.1038/nature26160

    10. [10]

      Giambra, M. A.; Miseikus, V.; Pezzini, S.; Marconi, S.; Montanaro, A.; Fabbri, F.; Sorianello, V.; Ferrari, A. C.; Coletti, C.; Romagnoli, M. ACS Nano 2021, 15 (2), 3171. doi: 10.1021/acsnano.0c09758  doi: 10.1021/acsnano.0c09758

    11. [11]

      Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J. J.; Perez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galan, T.; et al. Nat. Photonics 2017, 11 (6), 366. doi: 10.1038/nphoton.2017.75  doi: 10.1038/nphoton.2017.75

    12. [12]

      Marconi, S.; Giambra, M. A.; Montanaro, A.; Miseikis, V.; Soresi, S.; Tirelli, S.; Galli, P.; Buchali, F.; Templ, W.; Coletti, C.; et al. Nat. Commun. 2021, 12 (1), 806. doi: 10.1038/s41467-021-21137-z  doi: 10.1038/s41467-021-21137-z

    13. [13]

      Liu, C. H.; Chang, Y. C.; Norris, T. B.; Zhong, Z. H. Nat. Nanotechnol. 2014, 9 (4), 273. doi: 10.1038/nnano.2014.31  doi: 10.1038/nnano.2014.31

    14. [14]

      Tian, H.; Yang, Y.; Xie, D.; Cui, Y. L.; Mi, W. T.; Zhang, Y. G.; Ren, T. L. Sci. Rep. 2014, 4, 3598. doi: 10.1038/srep03598  doi: 10.1038/srep03598

    15. [15]

      Wang, M.; Huang, M.; Luo, D.; Li, Y.; Choe, M.; Seong, W. K.; Kim, M.; Jin, S.; Wang, M.; Chatterjee, S.; et al. Nature 2021, 596 (7873), 519. doi: 10.1038/s41586-021-03753-3  doi: 10.1038/s41586-021-03753-3

    16. [16]

      Yuan, G. W.; Lin, D. J.; Wang, Y.; Huang, X. L.; Chen, W.; Xie, X. D.; Zong, J. Y.; Yuan, Q. Q.; Zheng, H.; Wang, D.; et al. Nature 2020, 577 (7789), 204. doi: 10.1038/s41586-019-1870-3  doi: 10.1038/s41586-019-1870-3

    17. [17]

      Chen, T. A.; Chuu, C. P.; Tseng, C. C.; Wen, C. K.; Wong, H. S. P.; Pan, S. Y.; Li, R. T.; Chao, T. A.; Chueh, W. C.; Zhang, Y. F.; et al. Nature 2020, 579 (7798), 219. doi: 10.1038/s41586-020-2009-2  doi: 10.1038/s41586-020-2009-2

    18. [18]

      Li, Y. L. Z.; Sun, L. Z.; Chang, Z. H.; Liu, H. Y.; Wang, Y. C.; Liang, Y.; Chen, B. H.; Ding, Q. J.; Zhao, Z. Y.; Wang, R. Y.; et al. Adv. Mater. 2020, 32 (29), 2002034. doi: 10.1002/adma.202002034  doi: 10.1002/adma.202002034

    19. [19]

      Zhang, J. C.; Lin, L.; Jia, K. C.; Sun, L. Z.; Peng, H. L.; Liu, Z. F. Adv. Mater. 2020, 32 (1), 1903266. doi: 10.1002/adma.201903266  doi: 10.1002/adma.201903266

    20. [20]

      Liu, L.; Li, T. T.; Ma, L.; Li, W. S.; Gao, S.; Sun, W. J.; Dong, R. K.; Zou, X. L.; Fan, D. X.; Shao, L. W.; et al. Nature 2022, 605 (7908), 69. doi: 10.1038/s41586-022-04523-5  doi: 10.1038/s41586-022-04523-5

    21. [21]

      Liu, X. T.; Zhang, J. C.; Wang, W. D.; Zhao, W.; Chen, H.; Liu, B. Y.; Zhang, M. Q.; Liang, F. S.; Zhang, L. J.; Zhang, R.; et al. Nano Res. 2022, 15 (4), 3775. doi: 10.1007/s12274-021-3922-x  doi: 10.1007/s12274-021-3922-x

    22. [22]

      Ci, H. N.; Chen, J. T.; Ma, H.; Sun, X. L.; Jiang, X. Y.; Liu, K. C.; Shan, J. Y.; Lian, X. Y.; Jiang, B.; Liu, R. J.; et al. Adv. Mater. 2022, 34 (51), 2206389. doi: 10.1002/adma.202206389  doi: 10.1002/adma.202206389

    23. [23]

      Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Nature 2019, 573 (7775), 507. doi: 10.1038/s41586-019-1573-9  doi: 10.1038/s41586-019-1573-9

    24. [24]

      Gao, L. B.; Ni, G. X.; Liu, Y. P.; Liu, B.; Neto, A. H. C.; Loh, K. P. Nature 2014, 505 (7482), 190. doi: 10.1038/nature12763  doi: 10.1038/nature12763

    25. [25]

      Kim, J.; Park, H.; Hannon, J. B.; Bedell, S. W.; Fogel, K.; Sadana, D. K.; Dimitrakopoulos, C. Science 2013, 342 (6160), 833. doi: 10.1126/science.1242988  doi: 10.1126/science.1242988

    26. [26]

      Qing, F. Z.; Zhang, Y. F.; Niu, Y. T.; Stehle, R.; Chen, Y. F.; Li, X. S. Nanoscale 2020, 12 (20), 10890. doi: 10.1039/d0nr01198c  doi: 10.1039/d0nr01198c

    27. [27]

      Leong, W. S.; Wang, H. Z.; Yeo, J. J.; Martin-Martinez, F. J.; Zubair, A.; Shen, P. C.; Mao, Y. W.; Palacios, T.; Buehler, M. J.; Hong, J. Y.; et al. Nat. Commun. 2019, 10 (1), 867. doi: 10.1038/s41467-019-08813-x  doi: 10.1038/s41467-019-08813-x

    28. [28]

      Zhang, Z. K.; Du, J. H.; Zhang, D. D.; Sun, H. D.; Yin, L. C.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C. Nat. Commun. 2017, 8, 14560. doi: 10.1038/ncomms14560  doi: 10.1038/ncomms14560

    29. [29]

      Zhao, Y. X.; Song, Y. Q.; Hu, Z. N.; Wang, W. D.; Chang, Z. H.; Zhang, Y.; Lu, Q.; Wu, H. T.; Liao, J. H.; Zou, W. T.; et al. Nat. Commun. 2022, 13 (1), 4409. doi: 10.1038/s41467-022-31887-z  doi: 10.1038/s41467-022-31887-z

    30. [30]

      Hu, Z. N.; Li, F. F.; Wu, H. T.; Liao, J. H.; Wang, Q.; Chen, G.; Shi, Z. F.; Zhu, Y. Q.; Bu, S. Y.; Zhao, Y. X.; et al. Adv. Mater. 2023, 35 (29), 2300621. doi: 10.1002/adma.202300621  doi: 10.1002/adma.202300621

    31. [31]

      De Fazio, D.; Purdie, D. G.; Ott, A. K.; Braeuninger-Weimer, P.; Khodkov, T.; Goossens, S.; Taniguchi, T.; Watanabe, K.; Livreri, P.; Koppens, F. H. L.; et al. ACS Nano 2019, 13 (8), 8926. doi: 10.1021/acsnano.9b02621  doi: 10.1021/acsnano.9b02621

    32. [32]

      Matsumae, T.; Fujino, M.; Suga, T. ECS J. Solid State Sci. Technol. 2017, 6 (8), 512. doi: 10.1149/2.0111708jss  doi: 10.1149/2.0111708jss

    33. [33]

      Song, Y. Q.; Gao, Y. Q.; Liu, X. T.; Ma, J.; Chen, B. H.; Xie, Q.; Gao, X.; Zheng, L. M.; Zhang, Y.; Ding, Q. J.; et al. Adv. Mater. 2022, 34 (1), 2105851. doi: 10.1002/adma.202105851  doi: 10.1002/adma.202105851

    34. [34]

      Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W. Nano Lett. 2012, 12 (1), 414. doi: 10.1021/nl203733r  doi: 10.1021/nl203733r

    35. [35]

      Matsumae, T.; Koehler, A. D.; Greenlee, J. D.; Anderson, T. J.; Baumgart, H.; Jernigan, G. G.; Hobart, K. D.; Kub, F. J. ECS J. Solid State Sci. Technol. 2015, 4 (7), 190. doi: 10.1149/2.0031507jss  doi: 10.1149/2.0031507jss

    36. [36]

      Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Nature 2009, 462 (7271), 339. doi: 10.1038/nature08569  doi: 10.1038/nature08569

    37. [37]

      Hu, Z. N.; Zhao, Y. X.; Zou, W. T.; Lu, Q.; Liao, J. H.; Li, F. F.; Shang, M. P.; Lin, L.; Liu, Z. F. Adv. Funct. Mater. 2022, 32 (42), 2203179. doi: 10.1002/adfm.202203179  doi: 10.1002/adfm.202203179

    38. [38]

      Chang, Z.; Yang, R.; Wei, Y. J. Mech. Phys. Solids 2019, 132, 103697. doi: 10.1016/j.jmps.2019.103697  doi: 10.1016/j.jmps.2019.103697

    39. [39]

      Lee, J. E.; Ahn, G.; Shim, J.; Lee, Y. S.; Ryu, S. Nat. Commun. 2012, 3, 1024. doi: 10.1038/ncomms2022  doi: 10.1038/ncomms2022

    40. [40]

      Petrone, N.; Dean, C. R.; Meric, I.; Van der Zande, A. M.; Huang, P. Y.; Wang, L.; Muller, D.; Shepard, K. L.; Hone, J. Nano Lett. 2012, 12 (6), 2751. doi: 10.1021/nl204481s  doi: 10.1021/nl204481s

    41. [41]

      Banszerus, L.; Schmitz, M.; Engels, S.; Dauber, J.; Oellers, M.; Haupt, F.; Watanabe, K.; Taniguchi, T.; Beschoten, B.; Stampfer, C. Sci. Adv. 2015, 1 (6), 1500222. doi: 10.1126/sciadv.1500222  doi: 10.1126/sciadv.1500222

    42. [42]

      Pezzini, S.; Miseikis, V.; Pace, S.; Rossella, F.; Watanabe, K.; Taniguchi, T.; Coletti, C. 2D Mater. 2020, 7 (4), 041003. doi: 10.1088/2053-1583/aba645  doi: 10.1088/2053-1583/aba645

    43. [43]

      Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; et al. Science 2013, 342 (6158), 614. doi: 10.1126/science.1244358  doi: 10.1126/science.1244358

    44. [44]

      Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3 (8), 491. doi: 10.1038/nnano.2008.199  doi: 10.1038/nnano.2008.199

    45. [45]

      Ki, D. K.; Morpurgo, A. F. Nano Lett. 2013, 13 (11), 5165. doi: 10.1021/nl402462q  doi: 10.1021/nl402462q

    46. [46]

      Lee, W. H.; Park, Y. D. Adv. Mater. Interfaces 2018, 5, 1700316. doi: 10.1002/admi.201700316  doi: 10.1002/admi.201700316

    47. [47]

      Lee, W. H.; Park, J.; Kim, Y.; Kim, K. S.; Hong, B. H.; Cho, K. Adv. Mater. 2011, 23 (30), 3460. doi: 10.1002/adma.201101340  doi: 10.1002/adma.201101340

    48. [48]

      Gammelgaard, L.; Caridad, J. M.; Cagliani, A.; Mackenzie, D. M. A.; Petersen, D. H.; Booth, T. J.; Boggild, P. 2D Mater. 2014, 1 (3), 035005. doi: 10.1088/2053-1583/1/3/035005  doi: 10.1088/2053-1583/1/3/035005

  • 加载中
    1. [1]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    2. [2]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    9. [9]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    10. [10]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    11. [11]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    13. [13]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . CeO2/Bi19Br3S27 S型异质结的高效界面电荷转移用于增强光催化CO2还原. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    14. [14]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    15. [15]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    18. [18]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    19. [19]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

Metrics
  • PDF Downloads(2)
  • Abstract views(269)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return