Citation: Jun Xie, Yuheng Jiang, Siyang Li, Peng Xu, Qiang Zheng, Xiaoyu Fan, Hailin Peng, Zhiyong Tang. Stable Photocatalytic Coupling of Methane to Ethane with Water Vapor Using TiO2 Supported Ultralow Loading AuPd Nanoparticles[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230603. doi: 10.3866/PKU.WHXB202306037 shu

Stable Photocatalytic Coupling of Methane to Ethane with Water Vapor Using TiO2 Supported Ultralow Loading AuPd Nanoparticles

  • Corresponding author: Xiaoyu Fan, fanxy2022@nanoctr.cn Zhiyong Tang, zytang@nanoctr.cn
  • These authors contributed equally to this work.
  • Received Date: 26 June 2023
    Revised Date: 19 July 2023
    Accepted Date: 21 July 2023
    Available Online: 2 August 2023

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB36000000National Key Basic Research Program of China 2021YFA1200302National Natural Science Foundation of China 92056204National Natural Science Foundation of China 21890381National Natural Science Foundation of China 21721002

  • The selective conversion of methane to C2 hydrocarbons offers a sustainable approach to utilize natural gas efficiently and reduce reliance on conventional fossil fuels. Unlike the conventional thermal catalytic conversion that requires high temperatures and pressures, the photocatalytic pathway enables methane activation and selective conversion under mild conditions, holding great promise as a sustainable method. However, achieving the efficient generation of C2 compounds under flowing conditions using cost-effective photocatalysts remains great challenge. In this work, we synthesized an ultralow loading AuPd alloy nanoparticle-supported on TiO2 (Au0.05-Pd0.05/TiO2) photocatalyst via simple chemical reduction. Characterization using X-ray diffraction (XRD), aberration corrected high-angle annular dark field scanning transmission electron microscopy (AC-HAADF-STEM) and in situ CO-diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirmed its composition and structure. The performance of the Au0.05-Pd0.05/TiO2 photocatalyst in methane conversion was evaluated under flow-reaction conditions. Remarkably, the photocatalyst efficiently converted methane containing water vapor into C2 compounds, including ethane and ethylene, with a remarkable C2 production rate of up to 10092 μmol∙g−1∙h−1 and a selectivity of 77%. While water vapor was not essential for methane conversion, its presence enhanced the production of ethane and ethylene while suppressing overoxidation to CO2. The photocatalyst demonstrated excellent stability, maintaining its catalytic activity even after continuous reaction for 32 h, surpassing previously reported results. With the assistant of transient photocurrent response test, in situ X-ray photoelectron spectroscopy spectra and in situ DRIFTS, we uncovered that the exceptional catalytic activity of Au0.05-Pd0.05/TiO2 originates from the synergistic effect of Au and Pd, which promotes the separation of photogenerated carriers and facilitates the C-C bond coupling of ·CH3 to produce C2 compounds. Furthermore, XPS characterization revealed that the introduction of water vapor replenished consumed lattice oxygen during the methane activation process, thus contributing to the catalyst's stability. This study not only offers a cost-effective and efficient photocatalyst for methane conversion but also provides insights into the fundamental mechanism of photocatalytic methane conversion. We believe that our work will inspire the exploration of inexpensive catalysts with simple preparation methods, driving advancements in efficient methane to C2 compound conversion and contributing to sustainable photocatalytic pathways for the future.
  • 加载中
    1. [1]

      Olivos-Suarez, A. I.; Szécsényi, À.; Hensen, E. J. M.; Ruiz-Martinez, J.; Pidko, E. A.; Gascon, J. ACS Catal. 2016, 6, 2965. doi: 10.1021/acscatal.6b00428  doi: 10.1021/acscatal.6b00428

    2. [2]

      Tang, Y.; Li, Y.; Tao, F. Chem. Soc. Rev. 2022, 51, 376. doi: 10.1039/d1cs00783a  doi: 10.1039/d1cs00783a

    3. [3]

      Meng, X.; Cui, X.; Rajan, N. P.; Yu, L.; Deng, D.; Bao, X. Chem 2019, 5, 2296. doi: 10.1016/j.chempr.2019.05.008  doi: 10.1016/j.chempr.2019.05.008

    4. [4]

      Jiang, Y.; Fan, Y.; Li, S.; Tang, Z. CCS Chemistry 2023, 5, 30. doi: 10.31635/ccschem.022.202201991  doi: 10.31635/ccschem.022.202201991

    5. [5]

      Zhang, W.; Fu, C.; Low, J.; Duan, D.; Ma, J.; Jiang, W.; Chen, Y.; Liu, H.; Qi, Z.; Long, R.; et al. Nat. Commun. 2022, 13, 2806. doi: 10.1038/s41467-022-30532-z  doi: 10.1038/s41467-022-30532-z

    6. [6]

      Jiang, W.; Low, J.; Mao, K.; Duan, D.; Chen, S.; Liu, W.; Pao, C. W.; Ma, J.; Sang, S.; Shu, C.; et al. J. Am. Chem. Soc. 2021, 143, 269. doi: 10.1021/jacs.0c10369  doi: 10.1021/jacs.0c10369

    7. [7]

      Wang, G.; Mu, X.; Li, J.; Zhan, Q.; Qian, Y.; Mu, X.; Li, L. Angew. Chem. Int. Ed. 2021, 60, 20760. doi: 10.1002/anie.202108870  doi: 10.1002/anie.202108870

    8. [8]

      Yu, X.; Zholobenko, V. L.; Moldovan, S.; Hu, D.; Wu, D.; Ordomsky, V. V.; Khodakov, A. Y. Nat. Energy 2020, 5, 511. doi: 10.1038/s41560-020-0616-7  doi: 10.1038/s41560-020-0616-7

    9. [9]

      Zhou, W.; Qiu, X.; Jiang, Y.; Fan, Y.; Wei, S.; Han, D.; Niu, L.; Tang, Z. J. Mater. Chem. A 2020, 8, 13277. doi: 10.1039/d0ta02793f  doi: 10.1039/d0ta02793f

    10. [10]

      Jiang, Y.; Li, S.; Wang, S.; Zhang, Y.; Long, C.; Xie, J.; Fan, X.; Zhao, W.; Xu, P.; Fan, Y.; et al. J. Am. Chem. Soc. 2023, 145, 2698. doi: 10.1021/jacs.2c13313  doi: 10.1021/jacs.2c13313

    11. [11]

      Ouyang, M.; Papanikolaou, K. G.; Boubnov, A.; Hoffman, A. S.; Giannakakis, G.; Bare, S. R.; Stamatakis, M.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Nat. Commun. 2021, 12, 1549. doi: 10.1038/s41467-021-21555-z  doi: 10.1038/s41467-021-21555-z

    12. [12]

      Wei, T.; Wang, J.; Goodman, D. W. J. Phys. Chem. C 2007, 111, 8781. doi: 10.1021/jp067177l  doi: 10.1021/jp067177l

    13. [13]

      Ward, T.; Delannoy, L.; Hahn, R.; Kendell, S.; Pursell, C. J.; Louis, C.; Chandler, B. D. ACS. Catal. 2013, 3, 2644. doi: 10.1021/cs400569v  doi: 10.1021/cs400569v

    14. [14]

      Song, S.; Song, H.; Li, L.; Wang, S.; Chu, W.; Peng, K.; Meng, X.; Wang, Q.; Deng, B.; Liu, Q.; et al. Nat. Catal. 2021, 4, 1032. doi: 10.1038/s41929-021-00708-9  doi: 10.1038/s41929-021-00708-9

    15. [15]

      Li, X.; Xie, J.; Rao, H.; Wang, C.; Tang, J. Angew. Chem. Int. Ed. 2020, 59, 19702. doi: 10.1002/anie.202007557  doi: 10.1002/anie.202007557

    16. [16]

      Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H. -H.; Yuan, R.; Huang, X. -H.; Wang, X.; Wang, X.; et al. Energy Environ. Sci. 2018, 11, 294. doi: 10.1039/c7ee02951a  doi: 10.1039/c7ee02951a

    17. [17]

      Liu, Y.; Chen, Y.; Jiang, W.; Kong, T.; Camargo, P. H. C.; Gao, C.; Xiong, Y. Research 2022, 2022, 1. doi: 10.34133/2022/9831340  doi: 10.34133/2022/9831340

    18. [18]

      Wang, P.; Shi, R.; Zhao, Y.; Li, Z.; Zhao, J.; Zhao, J.; Waterhouse, G. I. N.; Wu, L. Z.; Zhang, T. Angew. Chem. Int. Ed. 2023, 62, e202304301. doi: 10.1002/anie.202304301  doi: 10.1002/anie.202304301

    19. [19]

      Jiang, Y. H.; Zhao, W. S.; Li, S. Y.; Wang, S. K.; Fan, Y. Y.; Wang, F.; Qiu, X. Y.; Zhu, Y. F.; Zhang, Y.; Long, C.; et al. J. Am. Chem. Soc. 2022, 144, 15977. doi: 10.1021/jacs.2c04884  doi: 10.1021/jacs.2c04884

    20. [20]

      Su, R.; Tiruvalam, R.; Logsdail, A. J.; He, Q.; Downing, C. A.; Jensen, M. T.; Dimitratos, N.; Kesavan, L.; Wells, P. P.; Bechstein, R.; et al. ACS Nano 2014, 8, 3490. doi: 10.1021/nn500963m  doi: 10.1021/nn500963m

    21. [21]

      Panigrahy, B.; Sahoo, P. K.; Sahoo, B. B. Dalton Trans. 2022, 51, 664. doi: 10.1039/d1dt02761a  doi: 10.1039/d1dt02761a

  • 加载中
    1. [1]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    2. [2]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    3. [3]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    4. [4]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    5. [5]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    6. [6]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    7. [7]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    8. [8]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    9. [9]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    10. [10]

      Yan FanJiao TanCuijuan ZouXuliang HuXing FengXin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101

    11. [11]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    12. [12]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    15. [15]

      Jia-Cheng HouWei CaiHong-Tao JiLi-Juan OuWei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469

    16. [16]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    17. [17]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    18. [18]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    19. [19]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    20. [20]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

Metrics
  • PDF Downloads(1)
  • Abstract views(163)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return