Citation: Yuqiong Li,  Bing Lan,  Bin Guan,  Chunlong Dai,  Fan Zhang,  Zifeng Lin. Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230603. doi: 10.3866/PKU.WHXB202306031 shu

Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction

  • Corresponding author: Zifeng Lin, linzifeng@scu.edu.cn
  • Received Date: 20 June 2023
    Revised Date: 19 July 2023
    Accepted Date: 19 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (52072252) and Sichuan University-Zigong City Science and Technology Cooperation Special Project (2022CDZG-16).

  • MXenes are two-dimensional metal carbides, nitrides, and carbonitrides that are typically achieved by selectively etching the A-site elements from their corresponding MAX phase precursors. Thanks to the merits including high mechanical stability, excellent conductivity, and a high specific surface area, MXenes have attracted widespread attention in the field of energy storage and conversion. By far, most studies are focus on the synthesis and applications of Ti- or V-based MXenes. Mo-based MXenes, while less investigated due to the difficulty of synthesis, have shown significant potential in various fields, including electrochemical biomolecular sensing, electrocatalysis, and energy storage. The conventional method of preparing Mo-based MXenes involves etching precursors with hazardous HF-containing solutions, which is not only time-consuming but also poses safety risks. In this study, we present a Lewis molten salt synthesis approach to prepare Mo2CTx MXene by etching Mo2Ga2C precursor that eliminates the need for hazardous HF and significantly reduces the synthesis time. The impact of etching temperature and time on the phase and microstructure of Mo2CTx MXene were carefully investigated, and our findings indicate that the Mo2Ga2C precursor can be almost fully etched at 600 °C for just 30 min using the molten salt method, which is a challenging feat to achieve using HF etching. Furthermore, it is found that Mo2CTx MXene can be obtained in a wide temperature range from 600 to 800 °C with excellent structural stability. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirmed the selective etching of Ga atoms from Mo2Ga2C and the successful preparation of Mo2CTx MXene, and X-ray photoelectron spectroscopy (XPS) suggests the preservation of Mo-C bonds in the Mo2CTx layered structure. The hydrogen evolution reaction (HER) performance of Mo2CTx MXene prepared by the molten salt method was investigated in alkaline electrolytes. The molten salt derived Mo2CTx MXene displayed exceptional catalytic performance for the HER, maintaining long-term stability in alkaline conditions, and exhibiting a low overpotential of only 114 mV and a Tafel slope of 124 mV∙dec−1 at 10 mA∙cm−2. The much larger double layer capacitance of molten salt derived Mo2CTx MXene as compare to the Mo2Ga2C precursor suggests that accordion-like structure can greatly increase the electrochemical active sites and thus plays a key role in boosting the catalytic performance.
  • 加载中
    1. [1]

      (1) VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. Science 2021, 372, eabf1581. doi: 10.1126/science.abf1581

    2. [2]

      (2) Li, X.; Huang, Z.; Shuck, C.E.; Liang, G.; Gogotsi Y.; Zhi, C. Nat. Rev. Chem. 2022, 6, 389. doi: 10.1038/s41570-022-00384-8

    3. [3]

      (3) Wang, Y.; Qu, Z.; Geng, S.; Liao, M.; Ye, L.; Shadike, Z.; Zhao, X.; Wang, S.; Xu, Q.; Yuan, B.; et al. Angew. Chem. Int. Ed. 2023, 62, e202304978. doi: 10.1002/anie.202304978

    4. [4]

      (4) Wen, C.; Li, X.; Zhang, R.; Xu, C.; You, W.; Liu, Z.; Zhao, B.; Che, R. ACS Nano 2022, 16, 1150. doi: 10.1021/acsnano.1c08957

    5. [5]

      (5) Ma, G.; Shao, H.; Xu, J.; Liu, Y.; Huang, Q.; Taberna, P. L.; Simon, P.; Lin, Z. Nat. Commun. 2021, 12, 5085. doi: 10.1038/s41467-021-25306-y

    6. [6]

      (6) Lin, Z.; Shao, H.; Xu, K.; Taberna, P. L.; Simon, P. Trends Chem. 2020, 2, 654. doi: 10.1016/j.trechm.2020.04.010

    7. [7]

    8. [8]

      (8) Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306

    9. [9]

      (9) Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Adv. Eng. Mater. 2020, 22, 1901241. doi: 10.1002/adem.201901241

    10. [10]

      (10) Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 982. doi: 10.1002/adma.201470041

    11. [11]

      (11) Yang, X.; Gao, N.; Zhou, S.; Zhao, J. Phys. Chem. Chem. Phys. 2018, 20, 19390. doi: 10.1039/C8CP02635A

    12. [12]

      (12) Michalsky, R.; Zhang, Y. J.; Peterson, A. A. ACS Catal. 2014, 4, 1274. doi: 10.1021/cs500056u

    13. [13]

      (13) Chen, W. F.; Muckerman, J. T.; Fujita, E. Chem. Commun. 2013, 49, 8896. doi: 10.1039/C3CC44076A

    14. [14]

      (14) Vrubel, H.; Hu, X. Angew. Chem. Int. Ed. 2012, 51, 12703. doi: 10.1002/anie.201207111

    15. [15]

      (15) Chang, K.; Chen, W. ACS Nano 2011, 5, 4720. doi: 10.1021/nn200659w

    16. [16]

      (16) Zribi, R.; Neri, G. Sensors 2020, 20, 5404. doi: 10.3390/s20185404

    17. [17]

      (17) Zha, X. H.; Yin, J.; Zhou, Y.; Huang, Q.; Luo, K.; Lang, J.; Francisco, J. S.; He, J.; Du, S. J. Phys. Chem. C 2016, 120, 15082. doi: 10.1021/acs.jpcc.6b04192

    18. [18]

      (18) Hu, C.; Lai, C. C.; Tao, Q.; Lu, J.; Halim, J.; Sun, L.; Zhang, J.; Yang, J.; Anasori, B.; Wang, J. Chem. Commun. 2015, 51, 6560. doi: 10.1039/C5CC00980D

    19. [19]

      (19) Meshkian, R.; Näslund, L. Å.; Halim, J.; Lu, J.; Barsoum, M. W.; Rosen, J. Scripta Mater. 2015, 108, 147. doi: 10.1016/j.scriptamat.2015.07.003

    20. [20]

    21. [21]

      (21) Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. Adv. Funct. Mater. 2016, 26, 3118. doi: 10.1002/adfm.201505328

    22. [22]

      (22) Mei, J.; Ayoko, G. A.; Hu, C.; Bell, J. M.; Sun, Z. Sustain. Mater. Technol. 2020, 25, e00156. doi: 10.1016/j.susmat.2020.e00156

    23. [23]

      (23) Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894. doi: 10.1038/s41563-020-0657-0

    24. [24]

      (24) Sarma, D.; Rao, C. J. Electron. Spectrosc. 1980, 20, 25. doi: 10.1016/0368-2048(80)85003-1

    25. [25]

      (25) Toby, B. H. J. Appl. Crystallogr. 2001, 34, 210. doi: 10.1107/S0021889801002242

    26. [26]

      (26) Song, H.; Wu, M.; Tang, Z.; Tse, J. S.; Yang, B.; Lu, S. Angew. Chem. Int. Ed. 2021, 60, 7234. doi: 10.1002/anie.202017102

    27. [27]

      (27) Wang, C.; Shou, H.; Chen, S.; Wei, S.; Lin, Y.; Zhang, P.; Liu, Z.; Zhu, K.; Guo, X.; Wu, X. Adv. Mater. 2021, 33, 2101015. doi: 10.1002/adma.202101015

    28. [28]

      (28) Dong, H.; Xiao, P.; Jin, N.; Wang, B.; Liu, Y.; Lin, Z. ChemElectroChem 2021, 8, 957. doi: 10.1002/celc.202100142

    29. [29]

      (29) Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L.; Xue, J.; Wang, H. Adv. Mater. 2018, 30, 1803694. doi: 10.1002/adma.201803694

    30. [30]

      (30) Yue, X.; Yi, S.; Wang, R.; Zhang, Z.; Qiu, S. J. Mater. Chem. A 2017, 5, 10591. doi: 10.1039/C7TA02655B

    31. [31]

      (31) Halim, J.; Cook, K. M.; Naguib, M.; Eklund, P.; Gogotsi, Y.; Rosen, J.; Barsoum, M. W. Appl. Surf. Sci. 2016, 362, 406. doi: 10.1016/j.apsusc.2015.11.089

  • 加载中
    1. [1]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    4. [4]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    7. [7]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    8. [8]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    9. [9]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    10. [10]

      Xuanzhu Huo Yixi Liu Qiyu Wu Zhiqiang Dong Chanzi Ruan Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095

    11. [11]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    12. [12]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    13. [13]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    14. [14]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    15. [15]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    16. [16]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    17. [17]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    18. [18]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    19. [19]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    20. [20]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

Metrics
  • PDF Downloads(0)
  • Abstract views(558)
  • HTML views(52)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return