Citation: Lutian Zhao,  Yangge Guo,  Liuxuan Luo,  Xiaohui Yan,  Shuiyun Shen,  Junliang Zhang. Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge[J]. Acta Physico-Chimica Sinica, ;2024, 40(7): 230602. doi: 10.3866/PKU.WHXB202306029 shu

Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge

  • Corresponding author: Shuiyun Shen, shuiyun_shen@sjtu.edu.cn
  • Received Date: 14 June 2023
    Revised Date: 30 July 2023
    Accepted Date: 23 August 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2021YFB4001301) and the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (SL2021ZD105).

  • Nanoscale metallic catalysts are garnering increased attention in the advancement of electrochemical energy conversion technologies. The precise control of nanocrystal morphology, size, and crystalline structures offers the ability to manipulate electronic properties and enhance intrinsic catalytic performance. Consequently, a profound understanding of the nanocrystal growth mechanism becomes imperative for the design and production of highly active catalysts. However, mechanism studies in colloidal methods generally depend on operando technics and the development is hindered by expensive cost and limited resources. And high-temperature or high-pressure reaction conditions always bring trouble for the application of the equipment, so the in situ methods have been widely used. While ex situ methods need to detach the samples from the reaction environment, which might lose information about the process and thus fail to reflect the real situation. Furthermore, in conventional methods, the use of macromolecular organics to regulate crystal morphology results in intricate post-treatment processes, and any residual substances can adversely affect catalyst performance. Electrochemical synthesis offers a clean and controllable protocol for producing metallic nanocrystals and supported heterogeneous nanoparticle catalysts. In this review, building upon the classic principles of crystal growth in chemical colloidal methods and electrodeposition, it is proposed that the processes occurring during crystal formation could be visualized or monitored through electrochemical tests. By fine-tuning electrochemical parameters and refining deposition procedures, nucleation density and growth rates along specific facet orientations of nanocrystals can be precisely managed. Electrochemical signals provide insights into in-situ reduction and deposition behaviors at the electrode-electrolyte interfaces through professional analysis. The direct loading of nanocrystals onto substrates amplifies their synergistic effects, mitigates exfoliation issues, and consequently enhances catalytic activity and stability. Additionally, due to its broader potential window compared to H2O, non-aqueous liquids hold promise as a solution for preparing active metals and alloys that exhibit distinctive catalytic performance. Furthermore, electrochemical methods facilitate the synthesis of compounds composed of metallic and nonmetal elements, including metal oxides and phosphides. Thus, electrochemical techniques are poised to offer potential high-performance nanoscale metallic catalysts along with profound insights into the crystal growth mechanism. Nevertheless, a critical challenge hindering the application of electrochemical methods lies in bridging the considerable gap between catalysts and the preparation of electrode-level catalyst layers. The electrochemical signal proves highly sensitive to variations in the reaction environment, and discrepancies in electrode and system properties can lead to distinct electrochemical responses. Consequently, thorough investigations are imperative to address these issues.
  • 加载中
    1. [1]

      (1) Yan, Y.; Chen, G.; She, P.; Zhong, G.; Yan, W.; Guan, B. Y.; Yamauchi, Y. Adv. Mater. 2020, 32, e2004654. doi:10.1002/adma.202004654

    2. [2]

      (2) Wang, J.; Dou, S.; Wang, X. Sci. Adv. 2021, 7, eabf3989. doi:10.1126/sciadv.abf3989

    3. [3]

      (3) Donaldson, L. Mater. Today 2020, 41, 8. doi:10.1016/j.mattod.2020.09.024

    4. [4]

      (4) Wu, H. B.; Lou, X. W. Sci. Adv. 2017, 3, eaap9252. doi:10.1126/sciadv.aap9252

    5. [5]

      (5) Wang, H.; Li, F.; Zhu, X. Fuel Cells 2021, 21, 2. doi:10.1002/fuce.2021701012

    6. [6]

      (6) Brinkert, K.; Mandin, P. NPJ Microgravity 2022, 8, 52. doi:10.1038/s41526-022-00242-3

    7. [7]

      (7) Li, M.; Irtem, E.; Iglesias van Montfort, H. P.; Abdinejad, M.; Burdyny, T. Nat. Commun. 2022, 13, 5398. doi:10.1038/s41467-022-33145-8

    8. [8]

      (8) Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q.; Shakouri, M.; Chen, F. Y.; et al. Nat. Commun. 2021, 12, 2870. doi:10.1038/s41467-021-23115-x

    9. [9]

      (9) Leow, W. R.; Volker, S.; Meys, R.; Huang, J. E.; Jaffer, S. A.; Bardow, A.; Sargent, E. H. Nat. Commun. 2023, 14, 1954. doi:10.1038/s41467-023-37382-3

    10. [10]

      (10) Huang, Z.; Zhu, L.; Li, A.; Gao, Z. Front. Energy 2022, 16, 145. doi:10.1007/s11708-022-0828-6

    11. [11]

      (11) Ma, H.; Sun, Z.; Xue, Z.; Zhang, C.; Chen, Z. Front. Energy 2023, 17, 102. doi:10.1007/s11708-023-0861-0

    12. [12]

      (12) Davydova, E. S.; Mukerjee, S.; Jaouen, F.; Dekel, D. R. ACS Catal. 2018, 8, 6665. doi:10.1021/acscatal.8b00689

    13. [13]

      (13) Kulkarni, A.; Siahrostami, S.; Patel, A.; Norskov, J. K. Chem. Rev. 2018, 118, 2302. doi:10.1021/acs.chemrev.7b00488

    14. [14]

      (14) Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Adv. Mater. 2019, 31, e1802234. doi:10.1002/adma.201802234

    15. [15]

      (15) Wang, Y. J.; Long, W.; Wang, L.; Yuan, R.; Ignaszak, A.; Fang, B.; Wilkinson, D. P. Energy Environ. Sci. 2018, 11, 258. doi:10.1039/c7ee02444d

    16. [16]

      (16) Badreldin, A.; Youssef, E.; Djire, A.; Abdala, A.; Abdel-Wahab, A. Cell Rep. Phys. Sci. 2023, 4, 1011427. doi:10.1016/j.xcrp.2023.101427

    17. [17]

      (17) Mu, X.; Liu, S.; Chen, L.; Mu, S. Small Struct. 2023, 4, 2200281. doi:10.1002/sstr.202200281

    18. [18]

      (18) Sahoo, S.; Dekel, D. R.; Maric, R.; Alpay, S. P. ACS Catal. 2021, 11, 2561. doi:10.1021/acscatal.0c04646

    19. [19]

      (19) Luo, Z.; Zhang, H.; Yang, Y.; Wang, X.; Li, Y.; Jin, Z.; Jiang, Z.; Liu, C.; Xing, W.; Ge, J. Nat. Commun. 2020, 11, 1116. doi:10.1038/s41467-020-14980-z

    20. [20]

      (20) McCrum, I. T.; Koper, M. T. M. Nat. Energy 2020, 5, 891. doi:10.1038/s41560-020-00710-8

    21. [21]

      (21) Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. Angew. Chem. Int. Ed. 2018, 57, 7568. doi:10.1002/anie.201710556

    22. [22]

      (22) Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. Y. Chem. Rev. 2020, 120, 851. doi:10.1021/acs.chemrev.9b00248

    23. [23]

      (23) Chen, F.-Y.; Wu, Z.-Y.; Adler, Z.; Wang, H. Joule 2021, 5, 1704. doi:10.1016/j.joule.2021.05.005

    24. [24]

      (24) Fabbri, E.; Schmidt, T. J. ACS Catal. 2018, 8, 9765. doi:10.1021/acscatal.8b02712

    25. [25]

      (25) Kou, Z.; Li, X.; Zhang, L.; Zang, W.; Gao, X.; Wang, J. Small Sci. 2021, 1, 2100011. doi:10.1002/smsc.202100011

    26. [26]

      (26) Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Adv. Funct. Mater. 2022, 32, 2110036. doi:10.1002/adfm.202110036

    27. [27]

      (27) Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; García de Arquer, F. P.; Dinh, C. T.; Li, J.; Wang, Z.; Zheng, X.; Zhang, L.; et al. Nat. Catal. 2020, 3, 985. doi:10.1038/s41929-020-00525-6

    28. [28]

      (28) Matheu, R.; Garrido-Barros, P.; Gil-Sepulcre, M.; Ertem, M. Z.; Sala, X.; Gimbert-Suriñach, C.; Llobet, A. Nat. Rev. Chem. 2019, 3, 331. doi:10.1038/s41570-019-0096-0

    29. [29]

      (29) Todorova, T. K.; Schreiber, M. W.; Fontecave, M. ACS Catal. 2019, 10, 1754. doi:10.1021/acscatal.9b04746

    30. [30]

      (30) Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Coord. Chem. Rev. 2022, 454, 214340. doi:10.1016/j.ccr.2021.214340

    31. [31]

      (31) Xue, Y.; Guo, Y.; Cui, H.; Zhou, Z. Small Methods 2021, 5, e2100736. doi:10.1002/smtd.202100736

    32. [32]

      (32) Wang, C.; Zhang, Y.; Luo, H.; Zhang, H.; Li, W.; Zhang, W. X.; Yang, J. Small Methods 2022, 6, e2200790. doi:10.1002/smtd.202200790

    33. [33]

      (33) Han, S.; Li, H.; Li, T.; Chen, F.; Yang, R.; Yu, Y.; Zhang, B. Nat. Catal. 2023, 6, 402. doi:10.1038/s41929-023-00951-2

    34. [34]

      (34) Zhao, Y.; Liu, Y.; Zhang, Z.; Mo, Z.; Wang, C.; Gao, S. Nano Energy 2022, 97, 107124. doi:10.1016/j.nanoen.2022.107124

    35. [35]

      (35) Fang, L.; Wang, S.; Song, C.; Yang, X.; Li, Y.; Liu, H. J. Hazard. Mater. 2022, 421, 126628. doi:10.1016/j.jhazmat.2021.126628

    36. [36]

      (36) Liang, H. W.; Cao, X.; Zhou, F.; Cui, C. H.; Zhang, W. J.; Yu, S. H. Adv. Mater. 2011, 23, 1467. doi:10.1002/adma.201004377

    37. [37]

    38. [38]

      (38) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Norskov, J. K.; Jaramillo, T. F. Science 2017, 355, eaad4998. doi:10.1126/science.aad4998

    39. [39]

      (39) Kwon, T.; Kim, T.; Son, Y.; Lee, K. Adv. Energy Mater. 2021, 11, 2100265. doi:10.1002/aenm.202100265

    40. [40]

      (40) Qin, R.; Zheng, N. Chem 2019, 5, 1935. doi:10.1016/j.chempr.2019.07.011

    41. [41]

      (41) Zhang, L.; Xie, Z.; Gong, J. Chem. Soc. Rev. 2016, 45, 3916. doi:10.1039/c5cs00958h

    42. [42]

      (42) Marinkovic, N. S.; Sasaki, K.; Adzic, R. R. Front. Energy 2017, 11, 236. doi:10.1007/s11708-017-0487-1

    43. [43]

      (43) Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Chem. Rev. 2016, 116, 10346. doi:10.1021/acs.chemrev.5b00703

    44. [44]

      (44) Kwon, S. G.; Hyeon, T. Small 2011, 7, 2685. doi:10.1002/smll.201002022

    45. [45]

      (45) Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Angew. Chem. Int. Ed. 2006, 118, 7988. doi:10.1002/ange.200603068

    46. [46]

      (46) Sun, Y. Chem. Soc. Rev. 2013, 42, 2497. doi:10.1039/c2cs35289c

    47. [47]

      (47) You, H.; Fang, J. Nano Today 2016, 11, 145. doi:10.1016/j.nantod.2016.04.003

    48. [48]

      (48) Peng, Z.; Yang, H. Nano Today 2009, 4, 143. doi:10.1016/j.nantod.2008.10.010

    49. [49]

      (49) Wang, Y.; He, J.; Liu, C.; Chong, W. H.; Chen, H. Angew. Chem. Int. Ed. 2015, 54, 2022. doi:10.1002/anie.201402986

    50. [50]

      (50) Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60. doi:10.1002/anie.200802248

    51. [51]

      (51) Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Nat. Mater. 2007, 6, 692. doi:10.1038/nmat1957

    52. [52]

      (52) Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; et al. J. Phys. Chem. Lett. 2013, 4, 2209. doi:10.1021/jz401269w

    53. [53]

      (53) Kamrani Moghaddam, L.; Ramezani Paschepari, S.; Zaimy, M. A.; Abdalaian, A.; Jebali, A. Cancer Gene Therapy 2016, 23, 321. doi:10.1038/cgt.2016.38

    54. [54]

      (54) Li, Q.; Rellan-Pineiro, M.; Almora-Barrios, N.; Garcia-Rates, M.; Remediakis, I. N.; Lopez, N. Nanoscale 2017, 9, 13089. doi:10.1039/c7nr03889e

    55. [55]

      (55) Chen, T.; Rodionov, V. O. ACS Catal. 2016, 6, 4025. doi:10.1021/acscatal.6b00714

    56. [56]

      (56) Li, Q.; Sun, S. Nano Energy 2016, 29, 178. doi:10.1016/j.nanoen.2016.02.030

    57. [57]

      (57) Tao, A. R.; Habas, S.; Yang, P. D. Small 2008, 4, 310. doi:10.1002/smll.200701295

    58. [58]

      (58) Zhao, Q.; Li, H.; Zhang, X.; Yu, S.; Wang, S.; Sun, G. J. Energy Chem. 2020, 41, 120. doi:10.1016/j.jechem.2019.05.006

    59. [59]

      (59) Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J. M.; Murray, C. B. J. Am. Chem. Soc. 2011, 133, 998. doi:10.1021/ja108948z

    60. [60]

      (60) Mamme, M. H.; Kohn, C.; Deconinck, J.; Ustarroz, J. Nanoscale 2018, 10, 7194. doi:10.1039/c7nr08529j

    61. [61]

      (61) Lai, S. C. S.; Lazenby, R. A.; Kirkman, P. M.; Unwin, P. R. Chem. Sci. 2015, 6, 1126. doi:10.1039/c4sc02792b

    62. [62]

      (62) Scharifker, B. R.; Mostany, J. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 13. doi:10.1016/0022-0728(84)80207-7

    63. [63]

      (63) Altimari, P.; Pagnanelli, F. Electrochim. Acta 2016, 206, 116. doi:10.1016/j.electacta.2016.04.094

    64. [64]

      (64) Mostany, J.; Mozota, J.; Scharifker, B. R. J. Electroanal. Chem. Interfacial Electrochem. 1984, 177, 25. doi:10.1016/0022-0728(84)80208-9

    65. [65]

      (65) Zhang, C.; Shen, X.; Pan, Y.; Peng, Z. Front. Energy 2017, 11, 268. doi:10.1007/s11708-017-0466-6

    66. [66]

      (66) Shen, S. Y.; Guo, Y. G.; Wei, G. H.; Luo, L. X.; Li, F.; Zhang, J. L. Front. Energy 2018, 12, 501. doi:10.1007/s11708-018-0586-7

    67. [67]

      (67) Chang, Q.; Xu, Y.; Zhu, S.; Xiao, F.; Shao, M. Front. Energy 2017, 11, 254. doi:10.1007/s11708-017-0493-3

    68. [68]

      (68) Peng, X.; Omasta, T. J.; Roller, J. M.; Mustain, W. E. Front. Energy 2017, 11, 299. doi:10.1007/s11708-017-0495-1

    69. [69]

      (69) Ye, R.; Liu, Y.; Peng, Z.; Wang, T.; Jalilov, A. S.; Yakobson, B. I.; Wei, S. H.; Tour, J. M. ACS Appl. Mater. Interfaces 2017, 9, 3785. doi:10.1021/acsami.6b15725

    70. [70]

      (70) Gloag, L.; Benedetti, T. M.; Cheong, S.; Li, Y.; Chan, X. H.; Lacroix, L. M.; Chang, S. L. Y.; Arenal, R.; Florea, I.; Barron, H.; et al. Angew. Chem. Int. Ed. 2018, 57, 10241. doi:10.1002/anie.201806300

    71. [71]

      (71) Liu, Z.; Zeng, L.; Yu, J.; Yang, L.; Zhang, J.; Zhang, X.; Han, F.; Zhao, L.; Li, X.; Liu, H.; et al. Nano Energy 2021, 85, 105940. doi:10.1016/j.nanoen.2021.105940

    72. [72]

      (72) Chen, W.; Tang, Y. W.; Lu, T. Electrochemistry 2008, 14, 235. doi:10.1016/S1872-2067(08)60075-3

    73. [73]

      (73) Visintin, A.; Triaca, W. E.; Arvia, A. J. J. Electroanal. Chem. 1987, 221, 239. doi:10.1016/0022-0728(87)80260-7

    74. [74]

      (74) Egli, W. A.; Visintin, A.; Triaca, W. E.; Arvia, A. J. Appl. Surf. Sci. 1993, 68, 583. doi:10.1016/0169-4332(93)90240-C

    75. [75]

      (75) Triaca, W. E.; Kessler, T.; Canullo, J. C.; Arvia, A. J. J. Electrochem. Soc. 1987, 134, 1165. doi:10.1149/1.2100636

    76. [76]

      (76) Zinola, C. F.; Castro Luna, A. M.; Triaca, W. E.; Arvia, A. J. J. Appl. Electrochem. 1994, 24, 119. doi:10.1007/BF00247782

    77. [77]

      (77) Tran, D. S.; Park, H.; Kim, H.; Kim, S. K. Int. J. Energy Res. 2020, 45, 5325. doi:10.1002/er.6155

    78. [78]

      (78) Chen, Y. N.; Zhang, X.; Zhou, Z. Small Methods 2019, 3, 1900050. doi:10.1002/smtd.201900050

    79. [79]

      (79) Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skala, T.; Bruix, A.; Illas, F.; Prince, K. C.; et al. Nat. Mater. 2011, 10, 310. doi:10.1038/nmat2976

    80. [80]

      (80) Xiao, F.; Wang, Q.; Xu, G.-L.; Qin, X.; Hwang, I.; Sun, C.-J.; Liu, M.; Hua, W.; Wu, H.-W.; Zhu, S.; et al. Nat. Catal. 2022, 5, 503. doi:10.1038/s41929-022-00796-1

    81. [81]

      (81) Campbell, C. T. Nat. Chem. 2012, 4, 597. doi:10.1038/nchem.1412

    82. [82]

      (82) Jackson, C.; Smith, G. T.; Inwood, D. W.; Leach, A. S.; Whalley, P. S.; Callisti, M.; Polcar, T.; Russell, A. E.; Levecque, P.; Kramer, D. Nat. Commun. 2017, 8, 15802. doi:10.1038/ncomms15802

    83. [83]

      (83) van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955. doi:10.1038/s41929-019-0364-x

    84. [84]

      (84) Sun, N.; Wang, M.; Chang, J.; Ge, J.; Xing, W.; Shao, G. Front. Energy 2017, 11, 310. doi:10.1007/s11708-017-0491-5

    85. [85]

      (85) Liu, Y.; You, H.; Kimmel, Y. C.; Esposito, D. V.; Chen, J. G.; Moffat, T. P. Chem. Mater. 2020, 504, 144472. doi:10.1016/j.apsusc.2019.144472

    86. [86]

      (86) Quinn, B. M.; Dekker, C.; Lemay, S. G. J. Am. Chem. Soc. 2005, 127, 6146. doi:10.1021/ja0508828

    87. [87]

      (87) Shinde, D. V.; Kokumai, T. M.; Buha, J.; Prato, M.; De Trizio, L.; Manna, L. J. Mater. Chem. A 2020, 8, 10787. doi:10.1039/d0ta03475d

    88. [88]

      (88) Mavrokefalos, C. K.; Hasan, M.; Khunsin, W.; Schmidt, M.; Maier, S. A.; Rohan, J. F.; Compton, R. G.; Foord, J. S. Electrochim. Acta 2017, 243, 310. doi:10.1016/j.electacta.2017.05.039

    89. [89]

      (89) Li, C.; Luo, M.; Xia, Z.; Guo, S. Nano Mater. Sci. 2020, 2, 309. doi:10.1016/j.nanoms.2019.11.005

    90. [90]

      (90) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732. doi:10.1126/science.1140484

    91. [91]

      (91) Xiao, C.; Lu, B. A.; Xue, P.; Tian, N.; Zhou, Z. Y.; Lin, X.; Lin, W. F.; Sun, S. G. Joule 2020, 4, 2562. doi:10.1016/j.joule.2020.10.002

    92. [92]

      (92) Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G. Angew. Chem. Int. Ed. 2014, 53, 5097. doi:10.1002/anie.201310597

    93. [93]

      (93) Russell, A. E. Faraday Discuss 2008, 140, 9. doi:10.1039/b814058h

    94. [94]

      (94) Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. J. Am. Chem. Soc. 2010, 132, 7580. doi:10.1021/ja102177r

    95. [95]

      (95) Tian, N.; Zhou, Z. Y.; Sun, S. G. Chem. Commun. 2009, 1502. doi:10.1039/b819751b

    96. [96]

      (96) Wei, L.; Mao, Y. J.; Wei, Y. S.; Li, J. W.; Nie, X. M.; Zhao, X. S.; Fan, Y. J.; Sun, S. G. Cryst. Growth Des. 2019, 19, 1532. doi:10.1021/acs.cgd.8b00892

    97. [97]

      (97) Cheng, Q.; Jiang, Y. X.; Tian, N.; Zhou, Z. Y.; Sun, S. G. Electrochim. Acta 2010, 55, 8273. doi:10.1016/j.electacta.2010.06.045

    98. [98]

      (98) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Cui, L.; Ren, B.; Tian, Z. Q. Chem. Commun. 2006, 4090. doi:10.1039/b609164d

    99. [99]

      (99) Zhou, Z. Y.; Huang, Z. Z.; Chen, D. J.; Wang, Q.; Tian, N.; Sun, S. G. Angew. Chem. Int. Ed. 2010, 49, 411. doi:10.1002/anie.200905413

    100. [100]

      (100) Liu, S.; Tian, N.; Xie, A. Y.; Du, J. H.; Xiao, J.; Liu, L.; Sun, H. Y.; Cheng, Z. Y.; Zhou, Z. Y.; Sun, S. G. J. Am. Chem. Soc. 2016, 138, 5753. doi:10.1021/jacs.5b13473

    101. [101]

      (101) Chen, Q. S.; Zhou, Z. Y.; Vidal-Iglesias, F. J.; Solla-Gullon, J.; Feliu, J. M.; Sun, S. G. J. Am. Chem. Soc. 2011, 133, 12930. doi:10.1021/ja2042029

    102. [102]

      (102) Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S.; Mirkin, C. A. J. Am. Chem. Soc. 2010, 132, 14012. doi:10.1021/ja106394k

    103. [103]

      (103) Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F. T.; Yang, H. J. Am. Chem. Soc. 2010, 132, 4984. doi:10.1021/ja100571h

    104. [104]

      (104) Zhao, Q.; Martirez, J. M. P.; Carter, E. A. J. Am. Chem. Soc. 2021, 143, 6152. doi:10.1021/jacs.1c00880

    105. [105]

      (105) Wang, Z.; Yuan, Q.; Shan, J.; Jiang, Z.; Xu, P.; Hu, Y.; Zhou, J.; Wu, L.; Niu, Z.; Sun, J.; et al. J. Phys. Chem. Lett. 2020, 11, 7261. doi:10.1021/acs.jpclett.0c01261

    106. [106]

      (106) Xia, D.; Yu, H.; Xie, H.; Huang, P.; Menzel, R.; Titirici, M. M.; Chai, G. Nanoscale 2022, 14, 7957. doi:10.1039/d2nr01900k

    107. [107]

      (107) Wang, J.; Cheng, T.; Fenwick, A. Q.; Baroud, T. N.; Rosas-Hernandez, A.; Ko, J. H.; Gan, Q.; Goddard, W. A., III; Grubbs, R. H. J. Am. Chem. Soc. 2021, 143, 2857. doi:10.1021/jacs.0c12478

    108. [108]

      (108) Li, D.; Huang, L.; Tian, Y.; Liu, T.; Zhen, L.; Feng, Y. Appl. Catal. B 2021, 292, 120119. doi:10.1016/j.apcatb.2021.120119

    109. [109]

      (109) Hu, S.; Feng, C.; Wang, S.; Liu, J.; Wu, H.; Zhang, L.; Zhang, J. ACS Appl. Mater. Interfaces 2019, 11, 13168. doi:10.1021/acsami.8b19052

    110. [110]

      (110) Shin, H. C.; Liu, M. Chem. Mater. 2004, 16, 5460. doi:10.1021/cm048887b

    111. [111]

      (111) Huan, T. N.; Simon, P.; Rousse, G.; Genois, I.; Artero, V.; Fontecave, M. Chem. Sci. 2017, 8, 742. doi:10.1039/c6sc03194c

    112. [112]

      (112) Zhang, K.; Zou, R. Small 2021, 17, e2100129. doi:10.1002/smll.202100129

    113. [113]

      (113) Tong, Y.; Chen, P.; Zhou, T.; Xu, K.; Chu, W.; Wu, C.; Xie, Y. Angew. Chem. Int. Ed. 2017, 56, 7121. doi:10.1002/anie.201702430

    114. [114]

      (114) Tian, T.; Gao, H.; Zhou, X.; Zheng, L.; Wu, J.; Li, K.; Ding, Y. ACS Energy Lett. 2018, 3, 2150. doi:10.1021/acsenergylett.8b01206

    115. [115]

      (115) Tao, S.; Yang, F.; Schuch, J.; Jaegermann, W.; Kaiser, B. ChemSusChem 2018, 11, 948. doi:10.1002/cssc.201702138

    116. [116]

      (116) Li, X.; Wang, Y.; Wang, J.; Da, Y.; Zhang, J.; Li, L.; Zhong, C.; Deng, Y.; Han, X.; Hu, W. Adv. Mater. 2020, 32, e2003414. doi:10.1002/adma.202003414

    117. [117]

      (117) Huan, T. N.; Rousse, G.; Zanna, S.; Lucas, I. T.; Xu, X.; Menguy, N.; Mougel, V.; Fontecave, M. Angew. Chem. Int. Ed. 2017, 56, 4792. doi:10.1002/anie.201700388

    118. [118]

      (118) Cao, Y.; Chen, Z.; Ye, F.; Yang, Y.; Wang, K.; Wang, Z.; Yin, L.; Xu, C. J. Alloys Compd. 2022, 896, 163103. doi:10.1016/j.jallcom.2021.163103

    119. [119]

      (119) Liu, Q.; Gu, S.; Li, C. M. J. Power Sources 2015, 299, 342. doi:10.1016/j.jpowsour.2015.09.027

    120. [120]

      (120) Sun, Y.; Huang, C.; Shen, J.; Zhong, Y.; Ning, J.; Hu, Y. J. Colloid Interface Sci. 2020, 558, 1. doi:10.1016/j.jcis.2019.09.090

    121. [121]

      (121) Gao, S.; Zavabeti, A.; Wang, B.; Ren, R.; Yang, C.; Liu, Z.; Wang, Y. ACS Appl. Nano Mater. 2021, 4, 4542. doi:10.1021/acsanm.1c00134

    122. [122]

      (122) Liu, M.; Yang, L.; Liu, T.; Tang, Y.; Luo, S.; Liu, C.; Zeng, Y. J. Mater. Chem. A 2017, 5, 8608. doi:10.1039/c7ta01791j

    123. [123]

      (123) Chen, Y. X.; Chen, S. P.; Chen, Q. S.; Zhou, Z. Y.; Sun, S. G. Electrochim. Acta 2008, 53, 6938. doi:10.1016/j.electacta.2008.02.024

    124. [124]

      (124) Chen, Y. X.; Chen, S. P.; Zhou, Z. Y.; Tian, N.; Jiang, Y. X.; Sun, S. G.; Ding, Y.; Wang, Z. L. J. Am. Chem. Soc. 2009, 131, 10860. doi:10.1021/ja904225q

    125. [125]

      (125) Chen, L. F.; Xie, A. Y.; Lou, Y. Y.; Tian, N.; Zhou, Z. Y.; Sun, S. G. J. Electroanal. Chem. 2022, 907, 116022. doi:10.1016/j.jelechem.2022.116022

    126. [126]

      (126) Li, X. Curr. Opin Electrochem. 2023, 39, 101289. doi:10.1016/j.coelec.2023.101289

    127. [127]

      (127) Wu, W.; Eliaz, N.; Gileadi, E. J. Electrochem. Soc. 2014, 162, D20. doi:10.1149/2.0281501jes

    128. [128]

      (128) Heusler, K. E. Electrochim. Acta 1996, 41, 411. doi:10.1016/0013-4686(95)00321-5

    129. [129]

      (129) Beermann, V.; Gocyla, M.; Kuhl, S.; Padgett, E.; Schmies, H.; Goerlin, M.; Erini, N.; Shviro, M.; Heggen, M.; Dunin-Borkowski, R. E.; et al. J. Am. Chem. Soc. 2017, 139, 16536. doi:10.1021/jacs.7b06846

    130. [130]

      (130) Gan, L.; Rudi, S.; Cui, C.; Heggen, M.; Strasser, P. Small 2016, 12, 3189. doi:10.1002/smll.201600027

    131. [131]

      (131) Wang, S.; Xiong, L.; Bi, J.; Zhang, X.; Yang, G.; Yang, S. ACS Appl. Mater. Interfaces 2018, 10, 27009. doi:10.1021/acsami.8b07742

    132. [132]

      (132) Zhu, H.; Zhang, S.; Guo, S.; Su, D.; Sun, S. J. Am. Chem. Soc. 2013, 135, 7130. doi:10.1021/ja403041g

    133. [133]

      (133) Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Atwan, M. H.; Tessema, M. M. J. Am. Chem. Soc. 2012, 134, 8535. doi:10.1021/ja300756y

    134. [134]

      (134) Chang, Q.; Xu, Y.; Duan, Z.; Xiao, F.; Fu, F.; Hong, Y.; Kim, J.; Choi, S. I.; Su, D.; Shao, M. Nano Lett. 2017, 17, 3926. doi:10.1021/acs.nanolett.7b01510

    135. [135]

      (135) Zhang, C.; Hwang, S. Y.; Trout, A.; Peng, Z. J. Am. Chem. Soc. 2014, 136, 7805. doi:10.1021/ja501293x

    136. [136]

      (136) Bu, L.; Ding, J.; Guo, S.; Zhang, X.; Su, D.; Zhu, X.; Yao, J.; Guo, J.; Lu, G.; Huang, X. Adv. Mater. 2015, 27, 7204. doi:10.1002/adma.201502725

    137. [137]

      (137) Wang, C.; Chi, M.; Wang, G.; van der Vliet, D.; Li, D.; More, K.; Wang, H.-H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Adv. Funct. Mater. 2011, 21, 147. doi:10.1002/adfm.201001138

    138. [138]

      (138) Matsuda, Y.; Imahashi, K.; Yoshimoto, N.; Morita, M.; Haga, M. J. Alloys Compd. 1993, 193, 277. doi:10.1016/0925-8388(93)90370-3

    139. [139]

      (139) Liu, P.; Yang, Q.; Tong, Y.; Yang, Y. Electrochim. Acta 2000, 45, 2147. doi:10.1016/S0013-4686(99)00434-X

    140. [140]

      (140) Yang, Q.; Liu, P.; Yang, Y.; Tong, Y. J. Electroanal. Chem. 1998, 456, 223. doi:10.1016/S0022-0728(98)00283-6

    141. [141]

      (141) Monnens, W.; Deferm, C.; Binnemans, K.; Fransaer, J. Phys. Chem. Chem. Phys. 2020, 22, 24526. doi:10.1039/d0cp03277h

    142. [142]

      (142) Shen, Q.; Xue, J.; Liu, X.; Jia, H.; Yang, X.; Xu, B. J. Solid State Electrochem. 2016, 21, 19. doi:10.1007/s10008-016-3314-4

    143. [143]

      (143) Li, G. R.; Zhang, Z. S.; Su, C. Y.; Tong, Y. X. J. Phys. Chem. C 2009, 113, 1227. doi:10.1021/jp805051p

    144. [144]

      (144) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978, 100, 170. doi:10.1021/ja00469a029,

    145. [145]

      (145) Farmer, J. A.; Campbell, C. T. Science 2010, 329, 933. doi:10.1126/science.1191778

    146. [146]

      (146) Rao, R. G.; Blume, R.; Hansen, T. W.; Fuentes, E.; Dreyer, K.; Moldovan, S.; Ersen, O.; Hibbitts, D. D.; Chabal, Y. J.; Schlogl, R.; et al. Nat. Commun. 2017, 8, 340. doi:10.1038/s41467-017-00421-x

    147. [147]

      (147) Yan, Q. Q.; Wu, D. X.; Chu, S. Q.; Chen, Z. Q.; Lin, Y.; Chen, M. X.; Zhang, J.; Wu, X. J.; Liang, H. W. Nat. Commun. 2019, 10, 4977. doi:10.1038/s41467-019-12851-w

    148. [148]

      (148) Zhao, L.; Guo, Y.; Fu, C.; Luo, L.; Wei, G.; Shen, S.; Zhang, J. Chin. J. Catal. 2021, 42, 2068. doi:10.1016/s1872-2067(21)63860-3

    149. [149]

      (149) Zhao, L.; Fu, C.; Luo, L.; You, J.; An, L.; Yan, X.; Shen, S.; Zhang, J. Appl. Catal. B 2022, 318, 121831. doi:10.1016/j.apcatb.2022.121831

    150. [150]

      (150) Liu, F.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. J. Alloys Compd. 2016, 654, 163. doi:10.1016/j.jallcom.2015.09.137

    151. [151]

      (151) Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508. doi:10.1021/cr1003248

    152. [152]

      (152) Singh, S. K.; Savoy, A. W. J. Mol. Liq. 2020, 297, 112038. doi:10.1016/j.molliq.2019.112038

    153. [153]

      (153) Rogers, R. D.; Voth, G. A. Acc. Chem. Res. 2007, 40, 1077. doi:10.1021/ar700221n

    154. [154]

      (154) Zhang, Q.; Hua, Y.; Xu, C.; Li, Y.; Li, J.; Dong, P. J. Rare Earths 2015, 33, 1017. doi:10.1016/s1002-0721(14)60520-2

    155. [155]

      (155) Zhang, Q.; Wang, Q.; Zhang, S.; Lu, X.; Zhang, X. ChemPhysChem 2016, 17, 335. doi:10.1002/cphc.201500713

    156. [156]

      (156) Wallace, A. G.; Symes, M. D. Trends Chem. 2019, 1, 247. doi:10.1016/j.trechm.2019.03.003

    157. [157]

      (157) Gao, M. Y.; Yang, C.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Hua, Y. X.; Xu, C. Y.; Li, Y. J. Electrochem. Soc. 2017, 164, D778. doi:10.1149/2.1751712jes

    158. [158]

      (158) Zhang, Q.; De Oliveira Vigier, K.; Royer, S.; Jerome, F. Chem. Soc. Rev. 2012, 41, 7108. doi:10.1039/c2cs35178a

    159. [159]

      (159) Wu, J.; Liang, Q.; Yu, X.; Lü, Q. F.; Ma, L.; Qin, X.; Chen, G.; Li, B. Adv. Funct. Mater. 2021, 31, 2011102. doi:10.1002/adfm.202011102

    160. [160]

      (160) Cojocaru, P.; Magagnin, L.; Gomez, E.; Vallés, E. Mater. Lett. 2011, 65, 3597. doi:10.1016/j.matlet.2011.08.003

    161. [161]

      (161) Yang, H.; Guo, X.; Birbilis, N.; Wu, G.; Ding, W. Appl. Surf. Sci. 2011, 257, 9094. doi:10.1016/j.apsusc.2011.05.106

    162. [162]

      (162) Abbott, A. P.; Boothby, D.; Capper, G.; Davies, D. L.; Rasheed, R. K. J. Am. Chem. Soc. 2004, 126, 9142. doi:10.1021/ja048266j

    163. [163]

      (163) Renjith, A.; Lakshminarayanan, V. J. Mater. Chem. A 2015, 3, 3019. doi:10.1039/c4ta05302h

    164. [164]

      (164) Sebastian, P.; Giannotti, M. I.; Gómez, E.; Feliu, J. M. ACS Appl. Energy Mater. 2018, 1, 1016. doi:10.1021/acsaem.7b00177

    165. [165]

      (165) Zhang, J. M.; He, J. J.; Wang, X. Q.; Fan, Y. J.; Zhang, X. J.; Zhong, J. P.; Chen, W.; Sun, S. G. Int. J. Hydrogen Energy 2019, 44, 28709. doi:10.1016/j.ijhydene.2019.09.104

    166. [166]

      (166) Gao, M. Y.; Yang, C.; Zhang, Q. B.; Zeng, J. R.; Li, X. T.; Hua, Y. X.; Xu, C. Y.; Dong, P. J. Mater. Chem. A 2017, 5, 5797. doi:10.1039/c6ta10812a

    167. [167]

      (167) Mao, Y. J.; Liu, F.; Chen, Y. H.; Jiang, X.; Zhao, X. S.; Sheng, T.; Ye, J. Y.; Liao, H. G.; Wei, L.; Sun, S. G. J. Mater. Chem. A 2021, 9, 26277. doi:10.1039/d1ta05515a

    168. [168]

      (168) Abbott, A. P.; El Ttaib, K.; Ryder, K. S.; Smith, E. L. Trans. IMF 2013, 86, 234. doi:10.1179/174591908x327581

    169. [169]

      (169) Li, R.; Hou, Y.; Liu, B.; Wang, D.; Liang, J. Electrochim. Acta 2016, 222, 1272. doi:10.1016/j.electacta.2016.11.101

    170. [170]

      (170) Wei, L.; Xu, C. D.; Huang, L.; Zhou, Z. Y.; Chen, S. P.; Sun, S. G. J. Phys. Chem. C 2015, 120, 15569. doi:10.1021/acs.jpcc.5b03580

    171. [171]

      (171) Wei, L.; Fan, Y. J.; Tian, N.; Zhou, Z. Y.; Zhao, X. Q.; Mao, B. W.; Sun, S. G. J. Phys. Chem. C 2011, 116, 2040. doi:10.1021/jp209743h

    172. [172]

      (172) Zhong, J.; Li, L.; Waqas, M.; Wang, X.; Fan, Y.; Qi, J.; Yang, B.; Rong, C.; Chen, W.; Sun, S. Electrochim. Acta 2019, 322, 134677. doi:10.1016/j.electacta.2019.134677

    173. [173]

      (173) Xiang, S.; Wang, L.; Huang, C. C.; Fan, Y. J.; Tang, H. G.; Wei, L.; Sun, S. G. J. Power Sources 2018, 399, 422. doi:10.1016/j.jpowsour.2018.07.102

    174. [174]

      (174) Wang, S.; Zou, X.; Lu, Y.; Rao, S.; Xie, X.; Pang, Z.; Lu, X.; Xu, Q.; Zhou, Z. Int. J. Hydrogen Energy 2018, 43, 15673. doi:10.1016/j.ijhydene.2018.06.188

  • 加载中
    1. [1]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    2. [2]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    3. [3]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    10. [10]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    18. [18]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(1)
  • Abstract views(91)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return