Citation: Kaifeng Lin, Ding Zhong, Jiahui Shao, Kaihui Liu, Jinhuan Wang, Yonggang Zuo, Xu Zhou. Research Progress of Two-Dimensional Material Hybrid Fiber Modulators[J]. Acta Physico-Chimica Sinica, ;2023, 39(10): 230602. doi: 10.3866/PKU.WHXB202306026 shu

Research Progress of Two-Dimensional Material Hybrid Fiber Modulators

  • Corresponding author: Kaihui Liu, khliu@pku.edu.cn Jinhuan Wang, jinhuan_wang@163.com Yonggang Zuo, science_zyg@163.com Xu Zhou, xuzhou2020@m.scnu.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 13 June 2023
    Revised Date: 28 July 2023
    Accepted Date: 31 July 2023
    Available Online: 8 August 2023

    Fund Project: the National Natural Science Foundation of China 52102044the National Natural Science Foundation of China 52203331Guangzhou Basic and Applied Basic Research Projects 202201010395

  • Communication technology has been rapidly advancing and widely applied in various fields, and optical fiber communication has become the fundamental basis of modern information communication, thanks to its high capacity and low loss. Optical modulators, which are essential devices in optical fiber communication systems, are typically based on bulk crystal electrical and optoelectronic devices. However, these devices have a drawback that they affect the quality of light in high-density transmission processes, thereby limiting the potential of optical fiber communication to achieve high-speed and high-capacity performance. To overcome this dilemma, researchers have been devoted to developing all-fiber devices capable of modulating, amplifying and detecting optical signals without interrupting the optical fiber transmission process. In recent years, many new types of optical fibers with different structures have been designed and fabricated. Among them, two-dimensional materials are exciting considerable attention in the field of optical modulation due to their unique properties that enhance the interaction between light and matter. Optical fiber-type modulators based on two-dimensional material hybrid fibers are expected to bring new opportunities for optical fiber communication. In this article, we will introduce various methods of combining two-dimensional materials with different structures of optical fibers, such as fiber end-face composites, hole inner-wall composites, tapered composites and side-polished composites structures. These methods can effectively integrate the advantages of both two-dimensional materials and optical fibers, and create novel optical modulators with high performance and functionality. We will also present some examples of optical modulators based on two-dimensional material hybrid fibers, including MoS2-based all-optical wavelength modulators, graphene-based electro-optical absorption modulators, and MXene-based thermo-optical phase modulators. These devices can modulate the wavelength, intensity or phase of optical signals by exploiting the optical, electrical or thermal properties of two-dimensional materials. The modulation of optical signals is achieved by changing the real and imaginary parts of the refractive index of two-dimensional materials through external optical, electric or thermal fields. In addition, we will summarize the modulation principles, processes and applications of two-dimensional material hybrid fiber modulators in different domains, such as all-optical, electro-optical, and thermo-optical. We will compare their advantages and disadvantages with conventional optical modulators based on bulk crystal devices, and explore their potential for improving the performance and efficiency of optical fiber communication systems. Finally, we will discuss the opportunities and challenges faced by the field of two-dimensional material hybrid fibers, and take a look at the perspectives for future research directions and developments.
  • 加载中
    1. [1]

      Kao, K. C.; Hockham, G. A. IEE Proc.-J Optoelectron. 1986, 133, 191. doi: 10.1049/ip-j.1986.0030  doi: 10.1049/ip-j.1986.0030

    2. [2]

      Shi, W.; Tian, Y.; Gervais, A. Nanophotonics 2020, 9, 4629. doi: 10.1515/nanoph-2020-0309  doi: 10.1515/nanoph-2020-0309

    3. [3]

      Chen, J.-H.; Xiong, Y.-F.; Xu, F.; Lu, Y.-Q. Light Sci. Appl. 2021, 10, 78. doi: 10.1038/s41377-021-00520-x  doi: 10.1038/s41377-021-00520-x

    4. [4]

      Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C.; et al. Acta Phys.-Chim. Sin. 2021, 37, 2108017.  doi: 10.3866/PKU.WHXB202108017

    5. [5]

      Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K.; Castro Neto, A. H. Rev. Mod. Phys. 2009, 81, 109. doi: 10.1103/RevModPhys.81.109  doi: 10.1103/RevModPhys.81.109

    6. [6]

      Tan, C.; Cao, X.; Wu, X.-J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G.-H.; et al. Chem. Rev. 2017, 117, 6225. doi: 10.1021/acs.chemrev.6b00558  doi: 10.1021/acs.chemrev.6b00558

    7. [7]

      Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. Science 2016, 353, 6298. doi: 10.1126/science.aac9439  doi: 10.1126/science.aac9439

    8. [8]

      Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. Adv. Mater. 2014, 26, 992. doi: 10.1002/adma.201304138  doi: 10.1002/adma.201304138

    9. [9]

      Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. Nat. Rev. Mater. 2017, 2, 17033. doi: 10.1038/natrevmats.2017.33  doi: 10.1038/natrevmats.2017.33

    10. [10]

      Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tomanek, D.; Ye, P. D. ACS Nano 2014, 8, 4033. doi: 10.1021/nn501226z  doi: 10.1021/nn501226z

    11. [11]

      Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Nat. Nanotechnol. 2014, 9, 768. doi: 10.1038/nnano.2014.207  doi: 10.1038/nnano.2014.207

    12. [12]

      Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; et al. ACS Nano 2013, 7, 2898. doi: 10.1021/nn400280c  doi: 10.1021/nn400280c

    13. [13]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    14. [14]

      Mak, K. F.; Shan, J.; Nat. Photonics 2016, 10, 216. doi: 10.1038/nphoton.2015.282  doi: 10.1038/nphoton.2015.282

    15. [15]

      Xu, X.; Zhang, Z.; Qiu, L.; Zhuang, J.; Zhang, L.; Wang, H.; Liao, C.; Song, H.; Qiao, R.; Gao, P.; et al. Nat. Nanotechnol. 2016, 11, 930. doi: 10.1038/nnano.2016.132  doi: 10.1038/nnano.2016.132

    16. [16]

      Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J.; et al. Sci. Bull. 2017, 62, 1074. doi: 10.1016/j.scib.2017.07.005  doi: 10.1016/j.scib.2017.07.005

    17. [17]

      Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z.; et al. Nature 2019, 570, 91. doi: 10.1038/s41586-019-1226-z  doi: 10.1038/s41586-019-1226-z

    18. [18]

      Yu, S.; Wu, X.; Wang, Y.; Guo, X.; Tong, L. Adv. Mater. 2017, 29, 1606128. doi: 10.1002/adma.201606128  doi: 10.1002/adma.201606128

    19. [19]

      Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics 2010, 4, 611. doi: 10.1038/nphoton.2010.186  doi: 10.1038/nphoton.2010.186

    20. [20]

      Wang, Z.; Qiao, J.; Zhao, S.; Wang, S.; He, C.; Tao, X.; Wang, S. InfoMat 2021, 3, 1110. doi: 10.1002/inf2.12236  doi: 10.1002/inf2.12236

    21. [21]

      Meng, S.; Kong, T.; Ma, W.; Wang, H.; Zhang, H. Small 2019, 15, 1902691. doi: 10.1002/smll.201902691  doi: 10.1002/smll.201902691

    22. [22]

      Liu, W.; Liu, M.; Liu, X.; Wang, X.; Deng, H.-X.; Lei, M.; Wei, Z.; Wei, Z. Adv. Opt. Mater. 2020, 8, 1901631. doi: 10.1002/adom.201901631  doi: 10.1002/adom.201901631

    23. [23]

      Liu, M.; Wei, Z.-W.; Luo, A.-P.; Xu, W.-C.; Luo, Z.-C. Nanophotonics 2020, 9, 2641. doi: 10.1515/nanoph-2019-0564  doi: 10.1515/nanoph-2019-0564

    24. [24]

      He, J.; Tao, L.; Zhang, H.; Zhou, B.; Li, J. Nanoscale 2019, 11, 2577. doi: 10.1039/c8nr09368g  doi: 10.1039/c8nr09368g

    25. [25]

      Mao, D.; Wang, H.; Zhang, H.; Zeng, C.; Du, Y.; He, Z.; Sun, Z.; Zhao, J. Nat. Commun. 2021, 12, 6712. doi: 10.1038/s41467-021-26872-x  doi: 10.1038/s41467-021-26872-x

    26. [26]

      Chen, H.; Wang, C.; Ouyang, H.; Song, Y.; Jiang, T. Nanophotonics 2020, 9, 2107. doi: 10.1515/nanoph-2019-0493.  doi: 10.1515/nanoph-2019-0493

    27. [27]

      Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Ba Sko, D. M.; Ferrari, A. C. ACS Nano 2010, 4, 803. doi: 10.1021/nn901703e  doi: 10.1021/nn901703e

    28. [28]

      Xia, F.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Nat. Photonics 2014, 8, 899. doi: 10.1038/nphoton.2014.271  doi: 10.1038/nphoton.2014.271

    29. [29]

      Sun, Z.; Martinez, A.; Wang, F. Nat. Photonics 2016, 10, 227. doi: 10.1038/nphoton.2016.15  doi: 10.1038/nphoton.2016.15

    30. [30]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438, 197. doi: 10.1038/nature04233  doi: 10.1038/nature04233

    31. [31]

      Zhang, Z.; Ding, M.; Cheng, T.; Qiao, R.; Zhao, M.; Luo, M.; Wang, E.; Sun, Y.; Zhang, S.; Li, X.; et al. Nat. Nanotechnol. 2022, 17, 1258. doi: 10.1038/s41565-022-01230-0  doi: 10.1038/s41565-022-01230-0

    32. [32]

      Baccarani, G.; Ostoja, P. Solid-State Electron. 1975, 18, 579. doi: 10.1016/0038-1101(75)90036-2  doi: 10.1016/0038-1101(75)90036-2

    33. [33]

      Klimmer, S.; Ghaebi, O.; Gan, Z.; George, A.; Turchanin, A.; Cerullo, G.; Soavi, G. Nat. Photonics 2021, 15, 837. doi: 10.1038/s41566-021-00859-y  doi: 10.1038/s41566-021-00859-y

    34. [34]

      Hong, H.; Wu, C.; Zhao, Z.; Zuo, Y.; Wang, J.; Liu, C.; Zhang, J.; Wang, F.; Feng, J.; Shen, H.; et al. Nat. Photonics 2021, 15, 510. doi: 10.1038/s41566-021-00801-2  doi: 10.1038/s41566-021-00801-2

    35. [35]

      Zhou, X.; Cheng, J.; Zhou, Y.; Cao, T.; Hong, H.; Liao, Z.; Wu, S.; Peng, H.; Liu, K.; Yu, D. J. Am. Chem. Soc. 2015, 137, 7994. doi: 10.1021/jacs.5b04305  doi: 10.1021/jacs.5b04305

    36. [36]

      Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Adv. Mater. 2018, 30, 1705963. doi: 10.1002/adma.201705963  doi: 10.1002/adma.201705963

    37. [37]

      Huang, Y.; Pan, Y.-H.; Yang, R.; Bao, L.-H.; Meng, L.; Luo, H.-L.; Cai, Y.-Q.; Liu, G.-D.; Zhao, W.-J.; Zhou, Z.; et al. Nat. Commun. 2020, 11, 2453. doi: 10.1038/s41467-020-16266-w  doi: 10.1038/s41467-020-16266-w

    38. [38]

      Tseng, S.-M.; Chen, C.-L. Appl. Opt. 1992, 31, 3438. doi: 10.1364/AO.31.003438  doi: 10.1364/AO.31.003438

    39. [39]

      Knight, J. C.; Broeng, J.; Birks, T. A.; Russell, P. S. J. Science 1998, 282, 1476. doi: 10.1126/science.282.5393.1476  doi: 10.1126/science.282.5393.1476

    40. [40]

      Russell, P. J. S. 2003, 299, 358. doi: 10.1126/science.1079280

    41. [41]

      Tong, L. M.; Gattass, R. R.; Ashcom, J. B.; He, S. L.; Lou, J. Y.; Shen, M. Y.; Maxwell, I.; Mazur, E. Nature 2003, 426, 816. doi: 10.1038/nature02193  doi: 10.1038/nature02193

    42. [42]

      Gao, S.-f.; Wang, Y.-y.; Ding, W.; Jiang, D.-l.; Gu, S.; Zhang, X.; Wang, P. Nat. Commun. 2018, 9, 2828. doi: 10.1038/s41467-018-05225-1  doi: 10.1038/s41467-018-05225-1

    43. [43]

      Xu, P.; Cui, B.; Bu, Y.; Wang, H.; Guo, X.; Wang, P.; Shen, Y. R.; Tong, L. Science 2021, 373, 187. doi: 10.1126/science.abh3754  doi: 10.1126/science.abh3754

    44. [44]

      Bao, Q.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z. X.; Loh, K. P.; Tang, D. Y. Adv. Funct. Mater. 2009, 19, 3077. doi: 10.1002/adfm.200901007  doi: 10.1002/adfm.200901007

    45. [45]

      Li, Y.; An, N.; Lu, Z.; Wang, Y.; Chang, B.; Tan, T.; Guo, X.; Xu, X.; He, J.; Xia, H.; et al. Nat. Commun. 2022, 13, 3138. doi: 10.1038/s41467-022-30901-8  doi: 10.1038/s41467-022-30901-8

    46. [46]

      Bao, Q.; Zhang, H.; Wang, B.; Ni, Z.; Lim, C. H. Y. X.; Wang, Y.; Tang, D. Y.; Loh, K. P. Nat. Photonics 2011, 5, 411. doi: 10.1038/nphoton.2011.102  doi: 10.1038/nphoton.2011.102

    47. [47]

      Lee, E. J.; Choi, S. Y.; Jeong, H.; Park, N. H.; Yim, W.; Kim, M. H.; Park, J.-K.; Son, S.; Bae, S.; Kim, S. J.; et al. Nat. Commun. 2015, 6, 6851. doi: 10.1038/ncomms7851  doi: 10.1038/ncomms7851

    48. [48]

      Ouyang, T.; Lin, L.; Xia, K.; Jiang, M.; Lang, Y.; Guan, H.; Yu, J.; Li, D.; Chen, G.; Zhu, W.; et al. Opt. Express 2017, 25, 9823. doi: 10.1364/oe.25.009823  doi: 10.1364/oe.25.009823

    49. [49]

      Wang, X. Y.; Cheng, Y.; Xue, G. D.; Zhou, Z. Q.; Zhao, M. Z.; Ma, C. J.; Xie, J.; Yao, G. J.; Hong, H.; Zhou, X.; et al. Acta Phys.-Chim. Sin. 2023, 39, 2212028.  doi: 10.3866/PKU.WHXB202212028

    50. [50]

      Zuo, Y.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R.; Liang, J.; Zhou, X.; Wang, J.; Wu, M.; Zhao, Y.; et al. Nat. Nanotechnol. 2020, 15, 987. doi: 10.1038/s41565-020-0770-x  doi: 10.1038/s41565-020-0770-x

    51. [51]

      Shang, N. Z.; Cheng, Y.; Ao, S.; Tuerdi, G.; Li, M. W.; Wang, X. Y.; Hong, H.; Li, Z. H.; Zhang, X. Y.; Fu, W. Y.; et al. Acta Phys.-Chim. Sin. 2022, 38, 2108041.  doi: 10.3866/PKU.WHXB202108041

    52. [52]

      Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Xie, Y.; Yu, W.; Yao, F.; Sun, Z.; et al. Nat. Photonics 2019, 13, 754. doi: 10.1038/s41566-019-0492-5  doi: 10.1038/s41566-019-0492-5

    53. [53]

      Zhou, X.; Deng, Q.; Yu, W.; Liu, K.; Liu, Z. Adv. Funct. Mater. 2022, 32, 2202282. doi: 10.1002/adfm.202202282  doi: 10.1002/adfm.202202282

    54. [54]

      Li, W.; Chen, B.; Meng, C.; Fang, W.; Xiao, Y.; Li, X.; Hu, Z.; Xu, Y.; Tong, L.; Wang, H.; et al. Nano Lett. 2014, 14, 955. doi: 10.1021/nl404356t  doi: 10.1021/nl404356t

    55. [55]

      Zhang, M.; Wu, Q.; Chen, H.; Zheng, Z.; Zhang, H. 2D Mater. 2021, 8, 12003. doi: 10.1088/2053-1583/abafeb  doi: 10.1088/2053-1583/abafeb

    56. [56]

      Liang, C.; Lee, K. F.; Levin, T.; Chen, J.; Kumar, P. Opt. Express 2006, 14, 6936. doi: 10.1364/OE.14.006936  doi: 10.1364/OE.14.006936

    57. [57]

      Knox, W. H. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1273. doi: 10.1109/2944.902178  doi: 10.1109/2944.902178

    58. [58]

      Huang, H.; Yang, L.-M.; Liu, J. Appl. Opt. 2012, 51, 2979. doi: 10.1364/AO.51.002979  doi: 10.1364/AO.51.002979

    59. [59]

      Gattass, R. R.; Mazur, E. Nat. Photonics 2008, 2, 219. doi: 10.1038/nphoton.2008.47  doi: 10.1038/nphoton.2008.47

    60. [60]

      Diddams, S. A. J. Opt. Soc. Am. B-Opt. Phys. 2010, 27, B51. doi: 10.1364/JOSAB.27.000B51  doi: 10.1364/JOSAB.27.000B51

    61. [61]

      Qin, C.; Jia, K.; Li, Q.; Tan, T.; Wang, X.; Guo, Y.; Huang, S.-W.; Liu, Y.; Zhu, S.; Xie, Z.; et al. Light Sci. Appl. 2020, 9, 185. doi: 10.1038/s41377-020-00419-z  doi: 10.1038/s41377-020-00419-z

    62. [62]

      Sorokin, E.; Sorokina, I. T.; Mandon, J.; Guelachvili, G.; Picqué, N. Opt. Express 2007, 15, 16540. doi: 10.1364/OE.15.016540  doi: 10.1364/OE.15.016540

    63. [63]

      Huang, H.; Yang, L.-M.; Liu, J. In Femtosecond Fiber-Laser-Based, Laser-Induced Breakdown Spectroscopy, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE] Sensing XIII, SPIE: Baltimore, 2012; pp. 835817–835819.

    64. [64]

      Keller, U.; Weingarten, K. J.; Kartner, F. X.; Kopf, D.; Braun, B.; Jung, I. D.; Fluck, R.; Honninger, C.; Matuschek, N.; derAu, J. A. IEEE J. Sel. Top. Quantum Electron. 1996, 2, 435. doi: 10.1109/2944.571743  doi: 10.1109/2944.571743

    65. [65]

      Jiang, T.; Yin, K.; Wang, C.; You, J.; Ouyang, H.; Miao, R.; Zhang, C.; Wei, K.; Li, H.; Chen, H.; et al. Photonics Res. 2020, 8, 78. doi: 10.1364/PRJ.8.000078  doi: 10.1364/PRJ.8.000078

    66. [66]

      Dawlaty, J. M.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Appl. Phys. Lett. 2008, 92. doi: 10.1063/1.2837539  doi: 10.1063/1.2837539

    67. [67]

      Kumar, S.; Anija, M.; Kamaraju, N.; Vasu, K. S.; Subrahmanyam, K. S.; Sood, A. K.; Rao, C. N. R. Appl. Phys. Lett. 2009, 95, 191911. doi: 10.1063/1.3264964  doi: 10.1063/1.3264964

    68. [68]

      Liu, J.; Wu, S. D.; Yang, Q. H.; Wang, P. Opt. Lett. 2011, 36, 4008. doi: 10.1364/ol.36.004008  doi: 10.1364/ol.36.004008

    69. [69]

      Popa, D.; Sun, Z.; Hasan, T.; Torrisi, F.; Wang, F.; Ferrari, A. C. Appl. Phys. Lett. 2011, 98, 073106. doi: 10.1063/1.3552684  doi: 10.1063/1.3552684

    70. [70]

      Martinez, A.; Sun, Z. Nat. Photonics 2013, 7, 842. doi: 10.1038/nphoton.2013.304  doi: 10.1038/nphoton.2013.304

    71. [71]

      Song, Y.-W.; Jang, S.-Y.; Han, W.-S.; Bae, M.-K. Appl. Phys. Lett. 2010, 96, 51122. doi: 10.1063/1.3309669  doi: 10.1063/1.3309669

    72. [72]

      Lin, Y.-H.; Yang, C.-Y.; Liou, J.-H.; Yu, C.-P.; Lin, G.-R. Opt. Express 2013, 21, 16763. doi: 10.1364/OE.21.016763  doi: 10.1364/OE.21.016763

    73. [73]

      Cheng, Y.; Yu, W.; Xie, J.; Wang, R.; Cui, G.; Cheng, X.; Li, M.; Wang, K.; Li, J.; Sun, Z.; et al. ACS Photonics 2022, 9, 961. doi: 10.1021/acsphotonics.1c01823  doi: 10.1021/acsphotonics.1c01823

    74. [74]

      Sotor, J.; Pasternak, I.; Krajewska, A.; Strupinski, W.; Sobon, G. Opt. Express 2015, 23, 27503. doi: 10.1364/OE.23.027503  doi: 10.1364/OE.23.027503

    75. [75]

      Martinez, A.; Yamashita, S. Appl. Phys. Lett. 2012, 101, 041118. doi: 10.1063/1.4739512  doi: 10.1063/1.4739512

    76. [76]

      Yan, P.; Liu, A.; Chen, Y.; Chen, H.; Ruan, S.; Guo, C.; Chen, S.; Li, I. L.; Yang, H.; Hu, J.; et al. Opt. Mater. Express 2015, 5, 479. doi: 10.1364/OME.5.000479  doi: 10.1364/OME.5.000479

    77. [77]

      Mao, D.; Wang, Y.; Ma, C.; Han, L.; Jiang, B.; Gan, X.; Hua, S.; Zhang, W.; Mei, T.; Zhao, J. Sci. Rep. 2015, 5, 7965. doi: 10.1038/srep07965  doi: 10.1038/srep07965

    78. [78]

      Liu, H.; Zheng, X.-W.; Liu, M.; Zhao, N.; Luo, A.-P.; Luo, Z.-C.; Xu, W.-C.; Zhang, H.; Zhao, C.-J.; Wen, S.-C. Opt. Express 2014, 22, 6868. doi: 10.1364/OE.22.006868  doi: 10.1364/OE.22.006868

    79. [79]

      Yan, P.; Lin, R.; Chen, H.; Zhang, H.; Liu, A.; Yang, H.; Ruan, S. IEEE Photonics Technol. Lett. 2015, 27, 264. doi: 10.1109/LPT.2014.2361915  doi: 10.1109/LPT.2014.2361915

    80. [80]

      Sotor, J.; Sobon, G.; Abramski, K. M.; Opt. Express 2014, 22, 13244. doi: 10.1364/OE.22.013244  doi: 10.1364/OE.22.013244

    81. [81]

      Chen, Y.; Jiang, G.; Chen, S.; Guo, Z.; Yu, X.; Zhao, C.; Zhang, H.; Bao, Q.; Wen, S.; Tang, D.; et al. Opt. Express 2015, 23, 12823. doi: 10.1364/OE.23.012823  doi: 10.1364/OE.23.012823

    82. [82]

      Jin, X.; Hu, G.; Zhang, M.; Hu, Y.; Albrow-Owen, T.; Howe, R. C. T.; Wu, T. C.; Wu, Q.; Zheng, Z.; Hasan, T. Opt. Express 2018, 26, 12506. doi: 10.1364/OE.26.012506  doi: 10.1364/OE.26.012506

    83. [83]

      Sotor, J.; Sobon, G.; Macherzynski, W.; Paletko, P.; Abramski, K. M. Appl. Phys. Lett. 2015, 107, 051108. doi: 10.1063/1.4927673  doi: 10.1063/1.4927673

    84. [84]

      Yu, Q.; Liu, F.; Zhang, Y.; Deng, H.; Shu, B.; Zhang, J.; Yi, T.; Dai, Y.; Fan, C.; Su, W.; et al. Adv. Photonics Res. 2023, 4, 2200283. doi: 10.1002/adpr.202200283  doi: 10.1002/adpr.202200283

    85. [85]

      Li, Y.; Zhao, X.; Zhang, H.; Li, M.; Infrared Phys. Technol. 2019, 96, 325. doi: 10.1016/j.infrared.2018.11.014  doi: 10.1016/j.infrared.2018.11.014

    86. [86]

      Lee, D.; Park, K.; Debnath, P. C.; Kim, I.; Song, Y.-W.; Nanotechnology 2016, 27, 365203. doi: 10.1088/0957-4484/27/36/365203  doi: 10.1088/0957-4484/27/36/365203

    87. [87]

      Luo, Z.; Wu, D.; Xu, B.; Xu, H.; Cai, Z.; Peng, J.; Weng, J.; Xu, S.; Zhu, C.; Wang, F.; et al. Nanoscale 2016, 8, 1066. doi: 10.1039/C5NR06981E  doi: 10.1039/C5NR06981E

    88. [88]

      Song, H.; Wang, Q.; Zhang, Y.; Li, L.; Opt. Commun. 2017, 394, 157. doi: 10.1016/j.optcom.2017.01.016  doi: 10.1016/j.optcom.2017.01.016

    89. [89]

      Zhao, L. M.; Tang, D. Y.; Zhang, H.; Wu, X.; Bao, Q.; Loh, K. P. Opt. Lett. 2010, 35, 3622. doi: 10.1364/OL.35.003622  doi: 10.1364/OL.35.003622

    90. [90]

      Dou, Z.; Song, Y.; Tian, J.; Liu, J.; Yu, Z.; Fang, X. Opt. Express 2014, 22, 24055. doi: 10.1364/OE.22.024055  doi: 10.1364/OE.22.024055

    91. [91]

      Sobon, G.; Sotor, J.; Pasternak, I.; Krajewska, A.; Strupinski, W.; Abramski, K. M. Opt. Mater. Express 2015, 5, 2884. doi: 10.1364/OME.5.002884  doi: 10.1364/OME.5.002884

    92. [92]

      Jung, M.; Lee, J.; Koo, J.; Park, J.; Song, Y.-W.; Lee, K.; Lee, S.; Lee, J. H. Opt. Express 2014, 22, 7865. doi: 10.1364/OE.22.007865  doi: 10.1364/OE.22.007865

    93. [93]

      Zhu, G.; Zhu, X.; Wang, F.; Xu, S.; Li, Y.; Guo, X.; Balakrishnan, K.; Norwood, R. A.; Peyghambarian, N. IEEE Photonics Technol. Lett. 2015, 28, 7. doi: 10.1109/LPT.2017.2478836  doi: 10.1109/LPT.2017.2478836

    94. [94]

      Hader, J.; Yang, H. J.; Scheller, M.; Moloney, J. V.; Koch, S. W. J. Appl. Phys. 2016, 119, 053102. doi: 10.1063/1.4941350  doi: 10.1063/1.4941350

    95. [95]

      Cafiso, S. D. D. D.; Ugolotti, E.; Schmidt, A.; Petrov, V.; Griebner, U.; Agnesi, A.; Cho, W. B.; Jung, B. H.; Rotermund, F.; Bae, S.; et al. Opt. Lett. 2013, 38, 1745. doi: 10.1364/ol.38.001745  doi: 10.1364/ol.38.001745

    96. [96]

      Sasikala, V.; Chitra, K. J. Opt. 2018, 47, 307. doi: 10.1007/s12596-018-0452-3  doi: 10.1007/s12596-018-0452-3

    97. [97]

      Liu, Z.-B.; Feng, M.; Jiang, W.-S.; Xin, W.; Wang, P.; Sheng, Q.-W.; Liu, Y.-G.; Wang, D. N.; Zhou, W.-Y.; Tian, J.-G. Laser Phys. Lett. 2013, 10, 065901. doi: 10.1088/1612-2011/10/6/065901  doi: 10.1088/1612-2011/10/6/065901

    98. [98]

      Meng, C.; Yu, S.-L.; Wang, H.-Q.; Cao, Y.; Tong, L.-M.; Liu, W.-T.; Shen, Y.-R. Light Sci. Appl. 2015, 4, e348. doi: 10.1038/lsa.2015.121  doi: 10.1038/lsa.2015.121

    99. [99]

      Chen, J.-H.; Zheng, B.-C.; Shao, G.-H.; Ge, S.-J.; Xu, F.; Lu, Y.-Q. Light Sci. Appl. 2015, 4, e360. doi: 10.1038/lsa.2015.133  doi: 10.1038/lsa.2015.133

    100. [100]

      Zhang, H.; Healy, N.; Shen, L.; Huang, C. C.; Hewak, D. W.; Peacock, A. C. Sci. Rep. 2016, 6, 1. doi: 10.1038/srep23512  doi: 10.1038/srep23512

    101. [101]

      Zhang, D.; Guan, H.; Zhu, W.; Yu, J.; Lu, H.; Qiu, W.; Dong, J.; Zhang, J.; Luo, Y.; Chen, Z. Opt. Express 2017, 25, 28536. doi: 10.1364/OE.25.028536  doi: 10.1364/OE.25.028536

    102. [102]

      Soklaski, R.; Liang, Y.; Yang, L.; Tran, V. Phys. B 2014, 89, 235319. doi: 10.1103/PhysRevB.89.235319  doi: 10.1103/PhysRevB.89.235319

    103. [103]

      Willner, A. E.; Khaleghi, S.; Chitgarha, M. R.; Yilmaz, O. F. J. Lightwave Technol. 2013, 32, 660. doi: 10.1109/JLT.2013.2287219  doi: 10.1109/JLT.2013.2287219

    104. [104]

      Koos, C.; Vorreau, P.; Vallaitis, T.; Dumon, P.; Bogaerts, W.; Baets, R.; Esembeson, B.; Biaggio, I.; Michinobu, T.; Diederich, F. Nat. Photonics 2009, 3, 216. doi: 10.1038/nphoton.2009.25  doi: 10.1038/nphoton.2009.25

    105. [105]

      Inoue, K. J. Lightwave Technol. 1992, 10, 1553. doi: 10.1109/50.184893  doi: 10.1109/50.184893

    106. [106]

      Ohlen, P.; Olsson, B. E.; Blumenthal, D. J. P. IEEE Photonics Technol. Lett. 2000, 12, 522. doi: 10.1109/68.841273  doi: 10.1109/68.841273

    107. [107]

      Dahan, D.; Bilenca, A.; Eisenstein, G. Opt. Lett. 2003, 28, 634. doi: 10.1364/OL.28.000634  doi: 10.1364/OL.28.000634

    108. [108]

      Jiang, B.; Hao, Z.; Ji, Y.; Hou, Y.; Yi, R.; Mao, D.; Gan, X.; Zhao, J.; Light Sci. Appl. 2020, 9, 63. doi: 10.1038/s41377-020-0304-1  doi: 10.1038/s41377-020-0304-1

    109. [109]

      Chen, J.-H.; Tan, J.; Wu, G.-X.; Zhang, X.-J.; Xu, F.; Lu, Y.-Q. Light Sci. Appl. 2019, 8, 8. doi: 10.1038/s41377-018-0115-9  doi: 10.1038/s41377-018-0115-9

    110. [110]

      Ngo, G. Q.; Najafidehaghani, E.; Gan, Z.; Khazaee, S.; Siems, M. P.; George, A.; Schartner, E. P.; Nolte, S.; Ebendorff-Heidepriem, H.; Pertsch, T.; et al. Nat. Photonics 2022, 16, 769. doi: 10.1038/s41566-022-01067-y  doi: 10.1038/s41566-022-01067-y

    111. [111]

      Guo, J.; Xie, J.-J.; Li, D.-J.; Yang, G.-L.; Chen, F.; Wang, C.-R.; Zhang, L.-M.; Andreev, Y. M.; Kokh, K. A.; Lanskii, G. V.; et al. Light Sci. Appl. 2015, 4, e362. doi: 10.1038/lsa.2015.135  doi: 10.1038/lsa.2015.135

    112. [112]

      Gai, X.; Choi, D.-Y.; Madden, S.; Luther-Davies, B. Opt. Express 2012, 20, 13513. doi: 10.1364/OE.20.013513  doi: 10.1364/OE.20.013513

    113. [113]

      Xu, B.; Martinez, A.; Yamashita, S. IEEE Photonics Technol. Lett. 2012, 24, 1792. doi: 10.1109/LPT.2012.2210035  doi: 10.1109/LPT.2012.2210035

    114. [114]

      Wu, Y.; Yao, B.; Cheng, Y.; Rao, Y.; Gong, Y.; Zhou, X.; Wu, B.; Chiang, K. S. IEEE Photonics Technol. Lett. 2013, 26, 249. doi: 10.1109/LPT.2013.2291897  doi: 10.1109/LPT.2013.2291897

    115. [115]

      Wu, Y.; Yao, B. C.; Feng, Q. Y.; Cao, X. L.; Zhou, X. Y.; Rao, Y. J.; Gong, Y.; Zhang, W. L.; Wang, Z. G.; Chen, Y. F.; et al. Photonics research (Washington, DC] 2015, 3, A64. doi: 10.1364/PRJ.3.000A64  doi: 10.1364/PRJ.3.000A64

    116. [116]

      Zheng, J.; Yang, Z.; Si, C.; Liang, Z.; Chen, X.; Cao, R.; Guo, Z.; Wang, K.; Zhang, Y.; Ji, J. ACS Photonics 2017, 4, 1466. doi: 10.1021/acsphotonics.7b00231  doi: 10.1021/acsphotonics.7b00231

    117. [117]

      Wang, K.; Zheng, J.; Huang, H.; Chen, Y.; Song, Y.; Ji, J.; Zhang, H. Opt. Express 2019, 27, 16798. doi: 10.1364/OE.27.016798  doi: 10.1364/OE.27.016798

    118. [118]

      Song, Y.; Chen, Y.; Jiang, X.; Liang, W.; Wang, K.; Liang, Z.; Ge, Y.; Zhang, F.; Wu, L.; Zheng, J. Adv. Opt. Mater. 2018, 6, 1701287. doi: 10.1002/adom.201701287  doi: 10.1002/adom.201701287

    119. [119]

      Song, Y.; Chen, Y.; Jiang, X.; Ge, Y.; Wang, Y.; You, K.; Wang, K.; Zheng, J.; Ji, J.; Zhang, Y. Adv. Opt. Mater. 2019, 7, 1801777. doi: 10.1002/adom.201801777  doi: 10.1002/adom.201801777

    120. [120]

      Chen, S.; Miao, L.; Chen, X.; Chen, Y.; Zhao, C.; Datta, S.; Li, Y.; Bao, Q.; Zhang, H.; Liu, Y. Adv. Opt. Mater. 2015, 3, 1769. doi: 10.1002/adom.201500347  doi: 10.1002/adom.201500347

    121. [121]

      Lin, C.; Stolen, R. H. Appl. Phys. Lett. 1976, 28, 216. doi: 10.1063/1.88702  doi: 10.1063/1.88702

    122. [122]

      Knight, J. C.; Birks, T. A.; Russell, P. S.; Atkin, D. M. Opt. Lett. 1996, 21, 1547. doi: 10.1364/ol.21.001547  doi: 10.1364/ol.21.001547

    123. [123]

      Mogilevtsev, D.; Birks, T. A.; Russell, P. S. Opt. Lett. 1998, 23, 1662. doi: 10.1364/ol.23.001662  doi: 10.1364/ol.23.001662

    124. [124]

      Saitoh, K.; Koshiba, M. Opt. Express 2004, 12, 2027. doi: 10.1364/OPEX.12.002027  doi: 10.1364/OPEX.12.002027

    125. [125]

      Liu, K.; Liu, J.; Shi, H. X.; Tan, F. Z.; Wang, P. Opt. Express 2014, 22, 24384. doi: 10.1364/oe.22.024384  doi: 10.1364/oe.22.024384

    126. [126]

      Ranka, J. K.; Windeler, R. S.; Stentz, A. J. Opt. Lett. 2000, 25, 25. doi: 10.1364/ol.25.000025  doi: 10.1364/ol.25.000025

    127. [127]

      Stark S P, P. A. J. N. J. Opt. Soc. Am. B-Opt. Phys. 2009, 3, 592. doi: 10.1364/JOSAB.27.000592  doi: 10.1364/JOSAB.27.000592

    128. [128]

      Guo, C.; Ruan, S.; Yan, P.; Pan, E.; Wei, H. Opt. Express 2010, 18, 11046. doi: 10.1364/OE.18.011046  doi: 10.1364/OE.18.011046

    129. [129]

      Wang, F.; Wang, K.; Yao, C.; Jia, Z.; Wang, S.; Wu, C.; Qin, G.; Ohishi, Y.; Qin, W. Opt. Lett. 2016, 41, 634. doi: 10.1364/OL.41.000634  doi: 10.1364/OL.41.000634

    130. [130]

      Jiang, X.; Joly, N. Y.; Finger, M. A.; Babic, F.; Wong, G. K. L.; Travers, J. C.; Russell, P. S. J. Nat. Photonics 2015, 9, 133. doi: 10.1038/nphoton.2014.320  doi: 10.1038/nphoton.2014.320

    131. [131]

      Domachuk, P.; Wolchover, N. A.; Cronin-Golomb, M.; Wang, A.; George, A. K.; Cordeiro, C. M.; Knight, J. C.; Omenetto, F. G. Opt. Express 2008, 16, 7161. doi: 10.1364/oe.16.007161  doi: 10.1364/oe.16.007161

    132. [132]

      Kudlinski, A.; Bouwmans, G.; Vanvincq, O.; Quiquempois, Y.; Le Rouge, A.; Bigot, L.; Melin, G.; Mussot, A. Opt. Lett. 2009, 34, 3631. doi: 10.1364/OL.34.003631  doi: 10.1364/OL.34.003631

    133. [133]

      Kottig, F.; Novoa, D.; Tani, F.; Gunendi, M. C.; Cassataro, M.; Travers, J. C.; Russell, P. S. J. Nat. Commun. 2017, 8, 813. doi: 10.1038/s41467-017-00943-4  doi: 10.1038/s41467-017-00943-4

    134. [134]

      Bethge, J.; Husakou, A.; Mitschke, F.; Noack, F.; Griebner, U.; Steinmeyer, G.; Herrmann, J. Opt. Express 2010, 18, 6230. doi: 10.1364/OE.18.006230  doi: 10.1364/OE.18.006230

    135. [135]

      Upadhyay, A.; Singh, S.; Sharma, D.; Taya, S. A. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2021, 270, 115236. doi: 10.1016/j.mseb.2021.115236  doi: 10.1016/j.mseb.2021.115236

    136. [136]

      Ahmad, H.; Salleh, M. F.; Zaini, M. K. A.; Yusoff, N.; Reduan, S. A.; Ismail, M. F. IEEE J. Quantum Electron. 2022, 58, 1. doi: 10.1109/JQE.2022.3175490  doi: 10.1109/JQE.2022.3175490

    137. [137]

      Chen, J.-H.; Chen, Y.; Luo, W.; Kou, J.-L.; Xu, F.; Lu, Y.-Q. Opt. Express 2014, 22, 17890. doi: 10.1364/OE.22.017890  doi: 10.1364/OE.22.017890

    138. [138]

      Kerbage, C.; Steinvurzel, P.; Reyes, P.; Westbrook, P. S.; Windeler, R. S.; Hale, A.; Eggleton, B. J. Opt. Lett. 2002, 27, 842. doi: 10.1364/OL.27.000842  doi: 10.1364/OL.27.000842

    139. [139]

      Qian, W.; Zhao, C.-L.; Wang, Y.; Chan, C. C.; Liu, S.; Jin, W. Opt. Lett. 2011, 36, 3296. doi: 10.1364/OL.36.003296  doi: 10.1364/OL.36.003296

    140. [140]

      Lee, H. W.; Schmidt, M. A.; Tyagi, H. K.; Sempere, L. P.; Russell, P. S. J. Appl. Phys. Lett. 2008, 93, 111102. doi: 10.1063/1.2982083  doi: 10.1063/1.2982083

    141. [141]

      Lee, H. W.; Schmidt, M. A.; Russell, P. S. J. Opt. Lett. 2012, 37, 2946. doi: 10.1364/OL.37.002946  doi: 10.1364/OL.37.002946

    142. [142]

      Kim, J. T.; Choi, C.-G; Opt. Express 2012, 20, 3556. doi: 10.1364/OE.20.003556  doi: 10.1364/OE.20.003556

    143. [143]

      Sathiyan, S.; Ahmad, H.; Chong, W. Y.; Lee, S. H.; Sivabalan, S. IEEE Photonics J. 2015, 7, 1. doi: 10.1109/JPHOT.2015.2499543  doi: 10.1109/JPHOT.2015.2499543

    144. [144]

      de Oliveira, R. E. P.; de Matos, C. J. S. Sci. Rep. 2015, 5, 16949. doi: 10.1038/srep16949  doi: 10.1038/srep16949

    145. [145]

      Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. Nature 2011, 474, 64. doi: 10.1038/nature10067  doi: 10.1038/nature10067

    146. [146]

      Yao, B.; Rao, Y.; Wang, Z.; Wu, Y.; Zhou, J.; Wu, H.; Fan, M.; Cao, X.; Zhang, W.; Chen, Y. Sci. Rep. 2015, 5, 18526. doi: 10.1038/srep18526  doi: 10.1038/srep18526

    147. [147]

      Zhang, H.; Healy, N.; Shen, L.; Huang, C. C.; Aspiotis, N.; Hewak, D. W.; Peacock, A. C. J. Lightwave Technol. 2016, 34, 3563. doi: 10.1109/JLT.2016.2581315  doi: 10.1109/JLT.2016.2581315

    148. [148]

      Li, W.; Yi, L.; Zheng, R.; Ni, Z.; Hu, W. Photonics Res. 2016, 4, 41. doi: 10.1364/PRJ.4.000041  doi: 10.1364/PRJ.4.000041

    149. [149]

      He, X.; Zhang, X.; Zhang, H.; Xu, M. IEEE J. Sel. Top. Quantum Electron. 2013, 20, 55. doi: 10.1109/JSTQE.2013.2270278  doi: 10.1109/JSTQE.2013.2270278

    150. [150]

      Zhou, F.; Du, W. J. Opt. 2018, 20, 035401. doi: 10.1088/2040-8986/aaa6fa  doi: 10.1088/2040-8986/aaa6fa

    151. [151]

      Kou, J.-L.; Chen, J.-H.; Chen, Y.; Xu, F.; Lu, Y.-Q. Optica 2014, 1, 307. doi: 10.1364/OPTICA.1.000307  doi: 10.1364/OPTICA.1.000307

    152. [152]

      Xia, F.; Wang, H.; Jia, Y. Nat. Commun. 2014, 5, 4458. doi: 10.1038/ncomms5458  doi: 10.1038/ncomms5458

    153. [153]

      Yuan, H.; Liu, X.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G.; Hikita, Y. Nat. Nanotechnol. 2015, 10, 707. doi: 10.1038/nnano.2015.112  doi: 10.1038/nnano.2015.112

    154. [154]

      Cui, Y.; Lu, F.; Liu, X.; Sci. Rep. 2017, 7, 1. doi: 10.1038/srep43909  doi: 10.1038/srep43909

    155. [155]

      Liu, E.; Fu, Y.; Wang, Y.; Feng, Y.; Liu, H.; Wan, X.; Zhou, W.; Wang, B.; Shao, L.; Ho, C.-H. Nat. Commun. 2015, 6, 6991. doi: 10.1038/ncomms7991  doi: 10.1038/ncomms7991

    156. [156]

      Wang, C.; Zhang, M.; Stern, B.; Lipson, M.; Loncar, M. Opt. Express 2018, 26, 1547. doi: 10.1364/oe.26.001547  doi: 10.1364/oe.26.001547

    157. [157]

      Abel, S.; Eltes, F.; Ortmann, J. E.; Messner, A.; Castera, P.; Wagner, T.; Urbonas, D.; Rosa, A.; Gutierrez, A. M.; Tulli, D.; et al. Nat. Mater. 2019, 18, 42-+. doi: 10.1038/s41563-018-0208-0  doi: 10.1038/s41563-018-0208-0

    158. [158]

      Park, N. H.; Ha, S.; Chae, K.; Park, J. Y.; Yeom, D. I. Nanophotonics 2020, 9, 4539. doi: 10.1515/nanoph-2020-0327  doi: 10.1515/nanoph-2020-0327

    159. [159]

      Cheng, X.; Zhou, X.; Tao, L.; Yu, W.; Liu, C.; Cheng, Y.; Ma, C.; Shang, N.; Xie, J.; Liu, K.; et al. Nanoscale 2020, 12, 14472. doi: 10.1039/D0NR03266B  doi: 10.1039/D0NR03266B

    160. [160]

      Xu, K.; Xie, Y. Q.; Xie, H. C.; Liu, Y. J.; Yao, Y.; Du, J. B.; He, Z. Y.; Song, Q. H. J. Lightwave Technol. 2018, 36, 4730. doi: 10.1109/jlt.2018.2864606  doi: 10.1109/jlt.2018.2864606

    161. [161]

      Dolleman, R. J.; Hsu, M.; Vollebregt, S.; Sader, J. E.; van der Zant, H. S. J.; Steeneken, P. G.; Ghatkesar, M. K. Appl. Phys. Lett. 2019, 115, 053102. doi: 10.1063/1.5111086  doi: 10.1063/1.5111086

    162. [162]

      Lewis, A. H.; De Lucia, F.; Belardi, W.; Huang, C.-C.; Hayes, J. R.; Poletti, F.; Hewak, D. W.; Sazio, P. J. A. In Composite Material Hollow Core Anti-Resonant Fiber Electromodulators: Exploring the Optical Fet Response, Conference on Optical Components and Materials XVII, San Francisco, CA, 2020, Feb. 4–6; San Francisco, CA, 2020.

    163. [163]

      Rao, C. N.; Sagar, S. B.; Harshitha, N. G.; Aepuru, R.; Premkumar, S.; Panda, H. S.; Choubey, R. K.; Kale, S. N. Opt. Lett. 2015, 40, 491. doi: 10.1364/ol.40.000491  doi: 10.1364/ol.40.000491

    164. [164]

      Rao, C. N.; Pawar, D.; Nakate, U. T.; Aepuru, R.; Gui, X.; Mangalaraja, R. V.; Kale, S. N.; Suh, E.-k.; Liu, W.; Zhu, D.; et al. Opt. Lett. 2020, 45, 4611. doi: 10.1364/ol.393796  doi: 10.1364/ol.393796

    165. [165]

      Nedeljkovic, M.; Stanković, S.; Mitchell, C. J.; Khokhar, A. Z.; Reynolds, S. A.; Thomson, D. J.; Gardes, F. Y.; Littlejohns, C. G.; Reed, G. T.; Mashanovich, G. Z. IEEE Photonics Technol. Lett. 2014, 26, 1352 doi: 10.1109/LPT.2014.2323702  doi: 10.1109/LPT.2014.2323702

    166. [166]

      Densmore, A.; Janz, S.; Ma, R.; Schmid, J. H.; Xu, D.-X.; Delâge, A.; Lapointe, J.; Vachon, M.; Cheben, P. Opt. Express 2009, 17, 10457. doi: 10.1364/OE.17.010457  doi: 10.1364/OE.17.010457

    167. [167]

      Gan, F.; Barwicz, T.; Popovic, M.; Dahlem, M.; Holzwarth, C.; Rakich, P.; Smith, H.; Ippen, E.; Kartner, F. In Maximizing the Thermo-Optic Tuning Range of Silicon Photonic Structures, 2007 Photonics in Switching, IEEE: San Francisco, 2007; pp. 67–68.

    168. [168]

      Dong, P.; Qian, W.; Liang, H.; Shafiiha, R.; Feng, D.; Li, G.; Cunningham, J. E.; Krishnamoorthy, A. V.; Asghari, M. Opt. Express 2010, 18, 20298. doi: 10.1364/OE.18.020298  doi: 10.1364/OE.18.020298

    169. [169]

      Dong, P.; Shafiiha, R.; Liao, S.; Liang, H.; Feng, N.-N.; Feng, D.; Li, G.; Zheng, X.; Krishnamoorthy, A. V.; Asghari, M. Opt. Express 2010, 18, 10941. doi: 10.1364/OE.18.010941  doi: 10.1364/OE.18.010941

    170. [170]

      Guo, Y.; Han, B.; Du, J.; Cao, S.; Gao, H.; An, N.; Li, Y.; An, S.; Ran, Z.; Lin, Y.; et al. Research 2021, 2021, 5612850. doi: 10.34133/2021/5612850  doi: 10.34133/2021/5612850

    171. [171]

      Bao, Q.; Loh, K. P. ACS Nano 2012, 6, 3677. doi: 10.1021/nn300989g  doi: 10.1021/nn300989g

    172. [172]

      Kim, J. T.; Chung, K. H.; Choi, C.-G. Opt. Express 2013, 21, 15280. doi: 10.1364/OE.21.015280  doi: 10.1364/OE.21.015280

    173. [173]

      Gan, X.; Zhao, C.; Wang, Y.; Mao, D.; Fang, L.; Han, L.; Zhao, J. Optica 2015, 2, 468. doi: 10.1364/OPTICA.2.000468  doi: 10.1364/OPTICA.2.000468

    174. [174]

      Wang, C.; Peng, Q.-Q.; Fan, X.-W.; Liang, W.-Y.; Zhang, F.; Liu, J.; Zhang, H. Chin. Phys. B 2018, 27, 094214. doi: 10.1088/1674-1056/27/9/094214  doi: 10.1088/1674-1056/27/9/094214

    175. [175]

      Wu, K.; Guo, C.; Wang, H.; Zhang, X.; Wang, J.; Chen, J. Opt. Express 2017, 25, 17639. doi: 10.1364/OE.25.017639  doi: 10.1364/OE.25.017639

    176. [176]

      Wang, Y.; Zhang, F.; Tang, X.; Chen, X.; Chen, Y.; Huang, W.; Liang, Z.; Wu, L.; Ge, Y.; Song, Y.; et al. Laser Photonics Rev. 2018, 12, 1800016. doi: 10.1002/lpor.201800016  doi: 10.1002/lpor.201800016

    177. [177]

      Wu, Q.; Huang, W.; Wang, Y.; Wang, C.; Zheng, Z.; Chen, H.; Zhang, M.; Zhang, H. Adv. Opt. Mater. 2020, 8, 1900977. doi: 10.1002/adom.201900977  doi: 10.1002/adom.201900977

  • 加载中
    1. [1]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    2. [2]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    5. [5]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    8. [8]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    9. [9]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    13. [13]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    14. [14]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    15. [15]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    16. [16]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    17. [17]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(0)
  • Abstract views(118)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return