Citation: Weicheng Feng,  Jingcheng Yu,  Yilan Yang,  Yige Guo,  Geng Zou,  Xiaoju Liu,  Zhou Chen,  Kun Dong,  Yuefeng Song,  Guoxiong Wang,  Xinhe Bao. 调控双钙钛矿中高熵组分促进高温析氧反应[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230601. doi: 10.3866/PKU.WHXB202306013 shu

调控双钙钛矿中高熵组分促进高温析氧反应

  • Corresponding author: Yuefeng Song,  Guoxiong Wang, 
  • Received Date: 5 June 2023
    Revised Date: 31 July 2023
    Accepted Date: 31 July 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2021YFA1502400), the National Natural Science Foundation of China (22272176, 22002166, 22125205, 22072146, 22002158), the DNL Cooperation Fund, CAS (DNL202007), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022008) and the CAS Youth Innovation Promotion (Y201938).

  • 固体氧化物电解池(SOEC)中阳极析氧反应动力学较为迟缓,限制了SOEC器件电催化转化能力,因此针对阳极材料的改性研究对于进一步提升SOEC电化学性能十分关键。高熵钙钛矿(HEP)在许多反应中表现出良好的催化活性,但在SOEC中的应用鲜有研究。本文通过在双钙钛矿的A位或A'位分别掺杂不同的稀土金属、碱土金属或碱金属离子,合成了(Pr0.2La0.2Sm0.2Nd0.2Gd0.2) BaCo2O6-δ(A-HEP)和Pr (Ba0.2Sr0.2Ca0.2Na0.2K0.2) Co2O6-δ(A'-HEP)两种高熵钙钛矿材料。由于掺杂离子平均半径和氧化态的差异,A-HEP保持四方双钙钛矿相结构而A'-HEP则转变为正交单钙钛矿相。物理化学表征结果表明,A-HEP中Co平均价态更高,Co 2p-O 1s杂化更强,从而增加了电子转移路径并降低了转移能垒。同时,A-HEP中表面氧空位浓度更高,可为阳极析氧反应提供更多的活性位点。因此,在具有A-HEP阳极的SOEC中,与氧输运、电子传输和表界面反应过程相关的阳极极化电阻显著降低,并在800℃下实现最高1.76 A·cm-2的电流密度和200 h的稳定性。本工作为高熵钙钛矿材料在SOEC阳极中的应用提供了新的策略。
  • 加载中
    1. [1]

      (1) Hauch, A.; Kungas, R.; Blennow, P.; Hansen, A. B.; Hansen, J. B.; Mathiesen, B. V.; Mogensen, M. B. Science 2020, 370, eaba6118. doi:10.1126/science.aba6118

    2. [2]

      (2) Zheng, Y.; Wang, J. C.; Yu, B.; Zhang, W. Q.; Chen, J.; Qiao, J. L.; Zhang, J. J. Chem. Soc. Rev. 2017, 46, 1427. doi:10.1039/C6CS00403B

    3. [3]

      (3) Ebbesen, S.; Jensen, S.; Hauch, A.; Mogensen, M. Chem. Rev. 2014, 114, 10697. doi:10.1021/cr5000865

    4. [4]

      (4) Song, Y. F.; Zhang, X. M.; Xie, K.; Wang, G. X.; Bao, X. H. Adv. Mater. 2019, 31, e1902033. doi:10.1002/adma.201902033

    5. [5]

      (5) Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Science 2017, 358, 751. doi:10.1126/science.aam7092

    6. [6]

      (6) Choi, J.; Park, S.; Han, H.; Kim, M.; Park, M.; Han, J.; Kim, W. B. J. Mater. Chem. A 2021, 9, 8740. doi:10.1039/d0ta11328j

    7. [7]

      (7) Ai, N.; He, S.; Li, N.; Zhang, Q.; Rickard, W. D. A.; Chen, K. F.; Zhang, T.; Jiang, S. P. J. Power Sources 2018, 384, 125. doi:10.1016/j.jpowsour.2018.02.082

    8. [8]

      (8) Shao, Z. P.; Haile, S. M. Nature 2004, 431, 170. doi:10.1038/nature02863

    9. [9]

      (9) Jiang, S. P. Solid State Ionics 2002, 146, 1. doi:10.1016/S0167-2738(01)00997-3

    10. [10]

      (10) Chen, K. F.; Ai, N.; Jiang, S. P. Int. J. Hydrogen Energy 2014, 39, 0349. doi:10.1016/j.ijhydene.2014.05.013

    11. [11]

      (11) Woodward, P. M.; Suard, E.; Karen, P. J. Am. Chem. Soc. 2003, 125, 8889. doi:10.1021/ja034813+

    12. [12]

      (12) Woodward, P. M.; Karen, P. Inorg. Chem. 2003, 42, 1121. doi:10.1021/ic026022z

    13. [13]

      (13) King, G.; Woodward, P. M. J. Mater. Chem. 2010, 20, 5785. doi:10.1039/B926757C

    14. [14]

      (14) Karen, P.; Woodward, P. M.; Lindén, J.; Vogt, T.; Studer, A.; Fischer, P. Phys. Rev. B 2001, 64, 214405. doi:10.1103/PhysRevB.64.214405

    15. [15]

      (15) Karen, P.; M. Woodward, P. J. Mater. Chem. 1999, 9, 789. doi:10.1039/A809302D

    16. [16]

      (16) Zhukov, V. P.; Chulkov, E. V.; Politov, B. V.; Suntsov, A. Y.; Kozhevnikov, V. L. Phys. Chem. Chem. Phys. 2021, 23, 2313. doi:10.1039/D0CP05497F

    17. [17]

      (17) Taskin, A. A.; Lavrov, A. N.; Ando, Y. Prog. Solid State Chem. 2007, 35, 481. doi:10.1016/j.progsolidstchem.2007.01.014

    18. [18]

      (18) Taskin, A. A.; Lavrov, A. N.; Ando, Y. Appl. Phys. Lett. 2005, 86, 091910. doi:10.1063/1.1864244

    19. [19]

      (19) Shin, T. H.; Myung, J.-H.; Verbraeken, M.; Kim, G.; Irvine, J. T. S. Faraday Discuss. 2015, 182, 227. doi:10.1039/C5FD00025D

    20. [20]

      (20) Seymour, I. D.; Tarancón, A.; Chroneos, A.; Parfitt, D.; Kilner, J. A.; Grimes, R. W. Solid State Ionics 2012, 216, 41. doi:10.1016/j.ssi.2011.09.002

    21. [21]

      (21) Kim, G.; Wang, S.; Jacobson, A. J.; Reimus, L.; Brodersen, P.; Mims, C. A. J. Mater. Chem. 2007, 17, 2500. doi:10.1039/B618345J

    22. [22]

      (22) Dong, F.; Ni, M.; Chen, Y.; Chen, D.; Tadé, M. O.; Shao, Z. J. Mater. Chem. A 2014, 2, 20520. doi:10.1039/C4TA04372C

    23. [23]

      (23) Akande, S. O.; Boulfrad, S.; Schwingenschlögl, U. J. Mater. Chem. A 2016, 4, 3560. doi:10.1039/C5TA06858D

    24. [24]

      (24) Rost, C. M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E. C.; Hou, D.; Jones, J. L.; Curtarolo, S.; Maria, J.-P. Nat. Commun. 2015, 6, 8485. doi:10.1038/ncomms9485

    25. [25]

      (25) Wright, A. J.; Wang, Q. Y.; Huang, C. Y.; Nieto, A.; Chen, R. K.; Luo, J. J. Eur. Ceram. Soc. 2020, 40, 2120. doi:10.1016/j.jeurceramsoc.2020.01.015

    26. [26]

      (26) Jiang, S. Y.; Sun, D.; Zhang, Y. Q.; Wang, S. B.; Zhao, C. Z. J. Mater. Sci. 2017, 52, 3199. doi:10.1007/s10853-016-0609-x

    27. [27]

      (27) Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C.-L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y.; et al. Nat. Commun. 2020, 11, 3908. doi:10.1038/s41467-020-17738-9

    28. [28]

      (28) Chen, H.; Fu, J.; Zhang, P. F.; Peng, H. G.; Abney, C. W.; Jie, K. C.; Liu, X. M.; Chi, M. F.; Dai, S. J. Mater. Chem. A 2018, 6, 11129. doi:10.1039/C8TA01772G

    29. [29]

      (29) Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. Adv. Mater. 2019, 31, e1806236. doi:10.1002/adma.201806236

    30. [30]

      (30) Shi, Y. C.; Ni, N.; Ding, Q.; Zhao, X. F. J. Mater. Chem. A 2022, 10, 2256. doi:10.1039/d1ta07275g

    31. [31]

      (31) Yang, Q.; Wang, G. Q.; Wu, H. D.; Beshiwork, B. A.; Tian, D.; Zhu, S. Y.; Yang, Y.; Lu, X. Y.; Ding, Y. Z.; Ling, Y. H.; et al. J. Alloy. Compd. 2021, 872, 159633. doi:10.1016/j.jallcom.2021.159633

    32. [32]

      (32) He, F.; Zhou, Y.; Hu, T.; Xu, Y.; Hou, M.; Zhu, F.; Liu, D.; Zhang, H.; Xu, K.; Liu, M.; Chen, Y. Adv. Mater. 2023, 35, e2209469. doi:10.1002/adma.202209469

    33. [33]

      (33) Garcı́a-Muñoz, J. L.; Frontera, C.; Llobet, A.; Carrillo, A. E.; Caneiro, A.; Aranda, M. A. G.; Ritter, C.; Dooryee, E. Phys. B 2004, 350, e277. doi:10.1016/j.physb.2004.03.069

    34. [34]

      (34) Brinks, H. W.; Fjellvåg, H.; Kjekshus, A.; Hauback, B. C. J. Solid State Chem. 1999, 147, 464. doi:10.1006/jssc.1999.8384

    35. [35]

      (35) Guo, D.; Zhang, M.; Chen, Z.; Liu, X.-X. RSC Adv. 2018, 8, 33374. doi:10.1039/C8RA07032F

    36. [36]

      (36) Xin, W.-L.; Lu, K.-K.; Zhu, D.-R.; Zeng, H.-B.; Zhang, X.-J.; Marks, R.-S.; Shan, D. Electrochim. Acta 2019, 307, 375. doi:10.1016/j.electacta.2019.03.196

    37. [37]

      (37) Zhao, K.; Shen, Y.; Huang, Z.; He, F.; Wei, G. Q.; Zheng, A. Q.; Li, H. B.; Zhao, Z. L. J. Energy Chem. 2017, 26, 501. doi:10.1016/j.jechem.2016.11.016

    38. [38]

      (38) Sunarso, J.; Hashim, S. S.; Zhu, N.; Zhou, W. Prog. Energy Combust. Sci. 2017, 61, 57. doi:10.1016/j.pecs.2017.03.003

    39. [39]

      (39) Suntivich, J.; Hong, W. T.; Lee, Y.-L.; Rondinelli, J. M.; Yang, W.; Goodenough, J. B.; Dabrowski, B.; Freeland, J. W.; Shao-Horn, Y. J. Phys. Chem. C 2014, 118, 1856. doi:10.1021/jp410644j

    40. [40]

      (40) Miao, X.; Wu, L.; Lin, Y.; Yuan, X.; Zhao, J.; Yan, W.; Zhou, S.; Shi, L. Chem. Commun. 2019, 55, 1442. doi:10.1039/c8cc08817a

    41. [41]

      (41) Luo, Q. X.; Lin, D.; Zhan, W. Q.; Zhang, W. Q.; Tang, L. L.; Luo, J. J.; Gao, Z.; Jiang, P.; Wang, M.; Hao, L. Y.; et al. ACS Appl. Energy Mater. 2020, 3, 7149. doi:10.1021/acsaem.0c01192

    42. [42]

      (42) Grimaud, A.; Diaz-Morales, O.; Han, B.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Nat. Chem. 2017, 9, 457. doi:10.1038/nchem.2695

    43. [43]

      (43) Xi, X.; Liu, J. W.; Luo, W. Z.; Fan, Y.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Adv. Energy Mater. 2021, 11, 2102845. doi:10.1002/aenm.202102845

    44. [44]

      (44) Li, J. W.; Fu, Z. M.; Wei, B.; Su, C. X.; Yue, X.; Lü, Z. J. Mater. Chem. A 2020, 8, 18778. doi:10.1039/d0ta04857g

    45. [45]

      (45) Guan, F.; Zhang, X. M.; Song, Y. F.; Zhou, Y. J.; Bao, X. H. Chin. J. Catal. 2018, 39, 1484. doi:10.1016/S1872-2067(18)63118-3

    46. [46]

      (46) Zhang, X. M.; Song, Y. F.; Guan, F.; Zhou, Y. J.; Lv, H. F.; Wang, G. X.; Bao, X. H. J. Catal. 2018, 359, 8. doi:10.1016/j.jcat.2017.12.027

    47. [47]

      (47) Li, Q.; Wu, J. B.; Wu, T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Adv. Funct. Mater. 2021, 31, 2102002. doi:10.1002/adfm.202102002

    48. [48]

      (48) Song, Y. F.; Zhou, Z. W.; Zhang, X. M.; Zhou, Y. J.; Gong, H. M.; Lv, H. F.; Liu, Q. X.; Wang, G. X.; Bao, X. H. Angew. Chem. Int. Ed. 2019, 58, 4617. doi:10.1002/anie.201814612

    49. [49]

      (49) Wang, W. H.; Yang, Y.; Huan, D. M.; Wang, L. K.; Shi, N.; Xie, Y.; Xia, C. R.; Peng, R. R.; Lu, Y. L. J. Mater. Chem. A 2019, 7, 12538. doi:10.1039/c9ta03099a

    50. [50]

      (50) Ciucci, F.; Chen, C. Electrochim. Acta 2015, 167, 439. doi:10.1016/j.electacta.2015.03.123

    51. [51]

      (51) Saccoccio, M.; Wan, T. H.; Chen, C.; Ciucci, F. Electrochim. Acta 2014, 147, 470. doi:10.1016/j.electacta.2014.09.058

    52. [52]

      (52) Li, Y. H.; Li, Y.; Wan, Y. H.; Xie, Y.; Zhu, J. F.; Pan, H. B.; Zheng, X. S.; Xia, C. R. Adv. Energy Mater. 2019, 9, 1803156. doi:10.1002/aenm.201803156

    53. [53]

      (53) Lv, H. F.; Lin, L.; Zhang, X. M.; Song, Y. F.; Matsumoto, H.; Zeng, C. B.; Ta, N.; Liu, W.; Gao, D. F.; Wang, G. X.; et al. Adv. Mater. 2020, 32, e1906193. doi:10.1002/adma.201906193

    54. [54]

      (54) Song, Y. F.; Zhang, X. M.; Zhou, Y. J.; Lv, H. F.; Liu, Q. X.; Feng, W. F.; Wang, G. X.; Bao, X. H. J. Energy Chem. 2019, 35, 181. doi:10.1016/j.jechem.2019.03.013

    55. [55]

      (55) Zhang, X. M.; Song, Y. F.; Guan, F.; Zhou, Y. J.; Lv, H. F.; Liu, Q. X.; Wang, G. X.; Bao, X. H. J. Power Sources 2018, 400, 104. doi:10.1016/j.jpowsour.2018.08.017

  • 加载中
    1. [1]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    8. [8]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    9. [9]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    10. [10]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    15. [15]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    16. [16]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(1)
  • Abstract views(425)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return