Citation: Chaolin Mi, Yuying Qin, Xinli Huang, Yijie Luo, Zhiwei Zhang, Chengxiang Wang, Yuanchang Shi, Longwei Yin, Rutao Wang. 电化学置换反应制备石墨烯基纳米无定型锑复合阳极用于高性能钠离子电容器的构筑[J]. Acta Physico-Chimica Sinica, ;2024, 40(5): 230601. doi: 10.3866/PKU.WHXB202306011
-
锑(Sb),因其具有较高的理论比容量(660 mAh·g-1)、较低储钠电位(0.5–0.8 V vs. Na/Na+)和较高的密度(6.68 g·cm-3)等特点,被认为是一种理想的钠离子电容器的阳极材料。然而,在Na+脱嵌过程中,Sb电极会发生较大的体积变化,导致其容量快速衰减以及倍率性能变差,阻碍了Sb电极的实际应用。因此,本文提出一种可用于制备锚定在具有碳涂层的二维石墨烯表面的无定型Sb纳米颗粒的电化学置换方法。所制备Sb/石墨烯复合材料具有典型的二维复合结构,可大幅增加与电解液界面接触面积,缩短离子扩散路径,促进离子迁移与电子转移。进一步利用该复合材料作为阳极,自制活性炭作为阴极,构建出一种新型钠离子电容器。研究证实,该钠离子电容器工作电压可达4.0 V,可输出140.75 Wh·kg-1的最大能量密度和12.43 kW·kg-1的最高功率密度。综上,该研究结果可为钠离子储能器件用高容量锑基阳极材料的优化设计提供可借鉴的思路。
-
-
[1]
(1) Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. Nat. Rev. Mater. 2018, 3, 18013. doi: 10.1038/natrevmats.2018.13
-
[2]
(2) Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. L. Adv. Energy Mater. 2020, 10, 2001310. doi: 10.1002/aenm.202001310
-
[3]
(3) Zhang, Z. H.; Gu, Z. H.; Zhang, C. G.; Li, J. B.; Wang, C. Y. Batteries Supercaps 2021, 4, 1680. doi: 10.1002/batt.202100042
-
[4]
(4) Cai, P.; Zou, K. Y.; Deng, X. L.; Wang, B. W.; Zheng, M.; Li, L. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Adv. Energy Mater. 2021, 11, 2003804. doi: 10.1002/aenm.202003804
-
[5]
(5) Wang, H. W.; Zhu, C. R.; Chao, D. L.; Yan, Q. Y.; Fan, H. J. Adv. Mater. 2017, 29, 1702093. doi: 10.1002/adma.201702093
-
[6]
(6) Chang, X. Q.; Huang, T. Y.; Yu, J. Y.; Li, J. B.; Wang, J.; Wei, Q. L. Batteries Supercaps 2021, 4, 1567. doi: 10.1002/batt.202100043
-
[7]
(7) Ding, J.; Hu, W. B.; Paek, E.; Mitlin, D. Chem. Rev. 2018, 118, 6457. doi: 10.1021/acs.chemrev.8b00116
-
[8]
(8) Zhu, C. Y.; Yu, W. Q.; Zhang, S. X.; Chen, J. C.; Liu, Q. Y.; Li, Q. Y.; Wang, S. J.; Hua, M. H.; Lin, X. H.; Yin, L. W.; et al. Adv. Mater. 2023, 35, 2211611. doi: 10.1002/adma.202211611
-
[9]
(9) Yu, W. Q.; Zhu, C. Y.; Wang, R. T.; Chen, J. C.; Liu, Q. Y.; Zhang, S. X.; Zhang, S. B.; Sun, J. F.; Yin, L. W. Energy Environ. Mater. 2023, 6, 12337. doi: 10.1002/eem2.12337
-
[10]
(10) Zhang, H.; Hasa, I.; Passerini, S. Adv. Energy Mater. 2018, 8, 1702582. doi: 10.1002/aenm.201702582
-
[11]
(11) Lao, M. M.; Zhang, Y.; Luo, W. B.; Yan, Q. Y.; Sun, W. P.; Dou, S. X. Adv. Mater. 2017, 29, 1700622. doi: 10.1002/adma.201700622
-
[12]
(12) Hou, H. S.; Qiu, X. Q.; Wei, W. F.; Zhang, Y.; Ji, X. B. Adv. Energy Mater. 2017, 7, 1602898. doi: 10.1002/aenm.201602898
-
[13]
(13) Yu, W. Q.; Zhu, C. Y.; Wang, R. T.; Chen, J. C.; Liu, Q. Y.; Zhang, S. X.; Gao, Z. J.; Wang, C. X.; Zhang, Z. W.; Yin, L. W. Rare Metals 2022, 41, 3360. doi: 10.1007/s12598-022-02015-z
-
[14]
(14) Yin, J.; Qi, L.; Wang, H. Y. ACS Appl. Mater. Interfaces 2012, 4, 2762. doi: 10.1021/am300385r
-
[15]
(15) Yuan, J.; Qiu, M.; Hu, X.; Liu, Y. J.; Zhong, G. B.; Zhan, H. B.; Wen, Z. H. ACS Nano 2022, 16, 14807. doi: 10.1021/ acsnano.2c05662
-
[16]
(16) Ma, Y.; Zhang, L. Y.; Yan, Z. X.; Cheng, B.; Yu, J. G.; Liu, T. Adv. Energy Mater. 2022, 12, 2103820. doi: 10.1002/aenm. 202103820
-
[17]
(17) Liu, C.; Zhang, M. X.; Zhang, X.; Wan, B.; Li, X. N.; Gou, H. Y.; Wang, Y. X. Yin, F. X.; Wang, G. K. Small 2020, 16, 2004457. doi: 10.1002/smll.202004457
-
[18]
(18) Zhao, R. Z.; Di, H. X.; Wang, C. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Zhang, L. Y.; Yin, L. W. ACS Nano 2020, 14, 13938. doi: 10.1021/acsnano.0c06360.
-
[19]
(19) Li, Q. H.; Zhang, W.; Peng, J.; Zhang, W.; Liang, Z. X.; Wu, J. W.; Feng, J. J.; Li, H. X.; Huang, S. M. ACS Nano 2021, 15, 15104. doi: 10.1021/acsnano.1c05458
-
[20]
(20) Yang, K. X.; Tang, J. F.; Liu, Y.; Kong, M.; Zhou, B.; Shang, Y. C.; Zhang, W. H. ACS Nano 2020, 14, 5728. doi: 10.1021/acsnano.0c00366
-
[21]
(21) Liu, Z. M.; Yu, X. Y.; Lou, X. W.; Paik, U. Energy Environ. Sci. 2016, 9, 2314. doi:10.1039/c6EE01501H
-
[22]
(22) He, M.; Kravchyk, K.; Walter, M.; Kovalenko, M. V. Nano Lett. 2014, 14, 1255. doi: 10.1021/nl404165c
-
[23]
(23) Liu, J.; Yu, L. T.; Wu, C.; Wen, Y. R.; Yin, K. B.; Chiang, F. K.; Hu, R. Z.; Liu, J. W.; Sun, L. T.; Gu, L.; et al. Nano Lett. 2017, 17, 2034. doi: 10.1021/acs. nanolett.7b00083
-
[24]
(24) Liu, Y.; Zhou, B.; Liu, S.; Ma, Q. S.; Zhang, W. H. ACS Nano 2019, 13, 5885. doi: 10.1021/acsnano. 9b01660
-
[25]
(25) Hou, Z. G.; Zhang, X. Q.; Chen, J. W.; Qian, Y. T.; Chen, L. F.; Lee, P. S. Adv. Energy Mater. 2022, 12, 210453. doi: 10.1002/aenm.202104053
-
[26]
(26) Bi, X. Y.; Li, M. C.; Zhou, G. Q.; Liu, C. Z.; Huang, R. Z.; Shi, Y.; Xu, B. B.; Guo, Z. H.; Fan, W.; Algadi, H.; et al. Nano Res. 2023, 16, 7696. doi: 10.1007/s12274-023-5586-1
-
[27]
(27) Duan, J.; Zhang, W.; Wu, C.; Fan, Q. J.; Zhang, W. X.; Hu, X. L.; Huang, Y. H. Nano Energy 2015, 16, 479. doi: 10.1016/j.nanoen.2015.07.021
-
[28]
(28) Xiao, B.; Sun, Z.; Zhang, H.; Wu, Y.; Li, J.; Cui, J.; Han, J.; Li, M.; Zheng, H.; Chen, J.; et al. Energy Environ. Sci. 2023, 16, 2153. doi: 10.1039/D2EE03970B
-
[29]
(29) Li, H. M.; Wang, K. L.; Zhou, M.; Li, W.; Tao, H. W.; Wang, R. X.; Cheng, S. J.; Jiang, K. ACS Nano 2019, 13, 9533. doi: 10.1021/acsnano.9b04520
-
[30]
(30) Chen, B. C.; Qin, H. Y.; Li, K.; Zhang, B.; Liu, E. Z.; Zhao, N. Q.; Shi, C. S.; He, C. N. Nano Energy 2019, 66, 104133. doi: 10.1016/j.nanoen.2019.104133
-
[31]
(31) Guo, X.; Gao, H.; Wang, S. J.; Yang, G.; Zhang, X. Y.; Zhang, J. Q.; Liu, H.; Wang, G. X. Nano Lett. 2022, 22, 1225. doi: 10.1021/acs.nanolett.1c04389
-
[32]
(32) Dong, W. X.; Qu, Y. F.; Liu, X.; Chen, L. F. Flatchem 2023, 37, 100467. doi: 10.1016/j.flatc.2022.100467
-
[33]
(33) Yao, J. J.; Li, F. Z.; Zhou, R. Y.; Guo, C. C.; Liu, X. R.; Zhu, Y. R.; Chin. Chem. Lett. 2023, 108354. doi: 10.1016/j.cclet.2023.108354
-
[34]
-
[35]
(35) Shao, M. J.; Li, C. X.; Li, T.; Yu, W. Q.; Wang, R. T.; Zhang, J.; Yin, L. W. Adv. Funct. Mater. 2020, 30, 2006561. doi: 10.1002/adfm.202006561
-
[36]
(36) Tang, T.; Jiang, W. J.; Liu, X. Z.; Deng, J.; Niu, S.; Wang, B.; Jin, S. F.; Zhang, Q.; Gu, L.; Hu, J. S.; et al. J. Am. Chem. Soc. 2020, 142, 7116. doi: 10.1021/jacs.0c01349
-
[37]
(37) Pu, B.; Liu, Y.; Bai, J.; Chu, X.; Zhou, X. F.; Qing, Y.; Wang, Y. B.; Zhang, M. Z.; Ma, Q. S.; Xu, Z.; et al. ACS Nano 2022, 16, 18746. doi: 10.1021/acsnano.2c07472
-
[38]
(38) Chen, Z.; Augustyn, V.; Jia, X. L.; Xiao, Q. F.; Dunn, B.; Lu, Y. F. ACS Nano 2012, 6, 4319. doi: 10.1021/nn300920e
-
[39]
(39) Kirubasankar, B.; Vijayan, S.; Angaiah, S. Sustain. Energy Fuels 2019, 3, 467. doi: 10.1039/C8SE00446C
-
[40]
(40) Li, H, X.; Lang, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T. Y.; Liu, W. S.; Yan, X. B. Adv. Funct. Mater. 2018, 28, 1800757. doi: 10.1002/adfm.201800757
-
[41]
(41) Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. ACS Nano 2020, 14, 867. doi: 10.1021/acsnano.9b08030
-
[42]
(42) Wang, S. J.; Wang, R. T.; Zhang, Y. B.; Jin, D. D.; Zhang, L. J. Power Sources 2018, 379, 33. doi: 10.1016/j.jpowsour.2018.01.019
-
[43]
(43) Dong, S. Y.; Shen, L. F.; Li, H. S.; Pang, G.; Dou, H.; Zhang, X.G. Adv. Funct. Mater. 2016, 26, 3703. doi: 10.1002/adfm.201600264
-
[44]
(44) Gao, J. Y.; Li, Y. P.; Liu, Y.; Jiao, S. H.; Li, J.; Wang, G. R.; Zeng, S. Y.; Zhang, G. Q. J. Mater. Chem. A 2019, 7, 10028. doi: 10.1039/C9TA05666A
-
[45]
(45) Chao, H. X.; Qin, H. Q.; Zhang, M. D.; Huang, Y. C.; Gao, L. F.; Gu, H. L.; Wang, K.; Teng, X. L.; Cheng, J. K.; Lu, Y. K.; et al. Adv. Funct. Mater. 2021, 31, 2007636. doi: 10.1002/adfm.20200636
-
[46]
(46) Le, Z. Y.; Liu, F.; Nie, P.; Li, X. R.; Liu, X. Y.; Bian, Z. F.; Chen, G.; Wu, H. B.; Lu, Y. F. ACS Nano 2017, 11, 2952. doi: 10.1021/acsnano.6b08332
-
[47]
(47) Song, Z. R.; Zhang, G. Y.; Deng, X. L.; Tian, Y.; Xiao, X. H.; Deng, W. T.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Adv. Funct. Mater. 2022, 32, 2205453. doi: 10.1002/ adfm.202205453
-
[48]
(48) Liu, Q. Y.; Chen, J. C.; Du, D. N.; Zhang, S. X.; Zhu, C. Y.; Zhang, Z. W.; Wang, C. X.; Yin, L. W.; Wang, R. T. J. Mater. Chem. A 2023, doi: 10.1039/D3TA01098H
-
[1]
-
-
[1]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[2]
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
-
[3]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[4]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[5]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[6]
Jie XIE , Hongnan XU , Jianfeng LIAO , Ruoyu CHEN , Lin SUN , Zhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216
-
[7]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[8]
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
-
[9]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[10]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[11]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[12]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[13]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[14]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[15]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[16]
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
-
[17]
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
-
[18]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[19]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[20]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[1]
Metrics
- PDF Downloads(4)
- Abstract views(167)
- HTML views(21)