Citation: Yuting Bai,  Cenqi Yan,  Zhen Li,  Jiaqiang Qin,  Pei Cheng. Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230601. doi: 10.3866/PKU.WHXB202306010 shu

Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method

  • Corresponding author: Zhen Li,  Jiaqiang Qin,  Pei Cheng, 
  • Received Date: 5 June 2023
    Revised Date: 26 July 2023
    Accepted Date: 27 July 2023

    Fund Project: The project was supported by the National Natural Science Foundation of China (51873127).

  • Improving the thermal stability, chemical stability, and mechanical strength of battery separators is crucial to prevent safety incidents like thermal runaway in batteries. This significantly enhances the overall safety performance of batteries. Among various options, polyimide (PI) stands out as an ideal choice due to its outstanding thermal stability, excellent chemical stability, and high mechanical strength. However, existing preparation methods of PI separators, such as non-solvent induced phase separation (NIPS), template method, and electrospinning, often suffer from issues like inadequate mechanical strength. Therefore, this study focused on investigating a novel method to prepare thermoplastic PI porous films with thermally closed pores and enhanced mechanical strength. Several characterization techniques, including scanning electron microscopy (SEM), in situ Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analyzer (TGA)-FTIR coupling, were employed to understand the pore-forming mechanism of PI porous films. The findings revealed that the temperature range of triethylamine (TEA) removal was consistent with the main stage of the imidization reaction and pore formation. This indicated that the pore structure was formed in situ during the thermal imidization process when TEA was stripped out of the PI film. PI films with varying TEA contents were prepared to investigate the impact on pore structure, showing that pore size could be regulated by TEA content. A more regular reticulated small pore structure on the macroporous pore wall was observed when TEA content was ≥ 100%. SEM analysis showed that the films were thermally self-closed at a heat treatment temperature of 300 °C. Additionally, TGA indicated that the thermal decomposition temperature of PI porous film reached 580 °C. The mechanical strength of the PI films before and after pore closure was investigated, demonstrating excellent mechanical strength of approximately 120 MPa. The novel in situ pore formation method for PI porous films through the salt-formation method of poly (amic acid) (PAA) with the organic base TEA, followed by TEA release during thermal imidization, resulted in PI porous films with outstanding thermal stability and high mechanical strength. The self-closure of the PI porous film at high temperatures effectively isolates material and heat transport, providing robust safety assurance for batteries. This advancement has the potential to significantly improve battery safety and performance.
  • 加载中
    1. [1]

      (1) Zhang, X.; Sun, Q.; Zhen, C.; Niu, Y.; Han, Y.; Zeng, G.; Chen, D.; Feng, C.; Chen, N.; Lv, W.; et al. Energy Storage Mater. 2021, 37, 628. doi: 10.1016/j.ensm.2021.02.042

    2. [2]

      (2) Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Small 2019, 15 (33), 1901689. doi: 10.1002/smll.201901689

    3. [3]

      (3) Costa, C. M.; Lee, Y.-H.; Kim, J.-H.; Lee, S.-Y.; Lanceros-Méndez, S. Energy Storage Mater. 2019, 22, 346. doi: 10.1016/j.ensm.2019.07.024

    4. [4]

      (4) Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. J. Power Sources 2013, 226, 272. doi: 10.1016/j.jpowsour.2012.10.060

    5. [5]

      (5) Sun, Y.; Liu, N.; Cui, Y. Nat. Energy 2016, 1 (7), 16071. doi: 10.1038/nenergy.2016.71

    6. [6]

      (6) Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G.-L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z.; et al. Joule 2018, 2 (10), 2047. doi: 10.1016/j.joule.2018.06.015

    7. [7]

      (7) Zhang, J.; Liu, Z.; Kong, Q.; Zhang, C.; Pang, S.; Yue, L.; Wang, X.; Yao, J.; Cui, G. ACS Appl. Mater. Interfaces 2013, 5 (1), 128. doi: 10.1021/am302290n

    8. [8]

      (8) Costa, C. M.; Rodrigues, L. C.; Sencadas, V.; Silva, M. M.; Rocha, J. G.; Lanceros-Méndez, S. J. Membr. Sci. 2012, 407408, 193. doi: 10.1016/j.memsci.2012.03.044

    9. [9]

      (9) Liu, X.; Song, K.; Lu, C.; Huang, Y.; Duan, X.; Li, S.; Ding, Y. J. Membr. Sci. 2018, 555, 1. doi: 10.1016/j.memsci.2018.03.027

    10. [10]

      (10) Hu, S.; Lin, S.; Tu, Y.; Hu, J.; Wu, Y.; Liu, G.; Li, F.; Yu, F.; Jiang, T. J. Mater. Chem. A 2016, 4 (9), 3513. doi: 10.1039/C5TA08694A

    11. [11]

      (11) Ding, Y.; Hou, H.; Zhao, Y.; Zhu, Z.; Fong, H. Prog. Polym. Sci. 2016, 61, 67. doi: 10.1016/j.progpolymsci.2016.06.006

    12. [12]

      (12) Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Prog. Polym. Sci. 2012, 37 (7), 907. doi: 10.1016/j.progpolymsci.2012.02.005

    13. [13]

      (13) Ma, P.; Dai, C.; Wang, H.; Li, Z.; Liu, H.; Li, W.; Yang, C. Compos. Commun. 2019, 16, 84. doi: 10.1016/j.coco.2019.08.011

    14. [14]

      (14) Maeyoshi, Y.; Ding, D.; Kubota, M.; Ueda, H.; Abe, K.; Kanamura, K.; Abe, H. ACS Appl. Mater. Interfaces 2019, 11 (29), 25833. doi: 10.1021/acsami.9b05257

    15. [15]

      (15) Lin, D.; Zhuo, D.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2016, 138 (34), 11044. doi: 10.1021/jacs.6b06324

    16. [16]

      (16) Maeyoshi, Y.; Miyamoto, S.; Munakata, H.; Kanamura, K. J. Power Sources 2017, 350, 103. doi: 10.1016/j.jpowsour.2017.03.053

    17. [17]

      (17) Li, M. N.; Zhang, Z. J.; Yin, Y. T.; Guo, W. C.; Bai, Y. G.; Zhang, F.; Zhao, B.; Shen, F.; Han, X. G. ACS Appl. Mater. Interfaces 2020, 12 (3), 3610. doi: 10.1021/acsami.9b19049

    18. [18]

      (18) Lin, C. E.; Zhang, H.; Song, Y. Z.; Zhang, Y.; Yuan, J. J.; Zhu, B. K. J. Mater. Chem. A 2018, 6 (3), 991. doi: 10.1039/c7ta08702k

    19. [19]

      (19) Zhang, H.; Lin, C.-E.; Zhou, M.-Y.; John, A. E.; Zhu, B.-K. Electrochim. Acta 2016, 187, 125. doi: 10.1016/j.electacta.2015.11.028

    20. [20]

      (20) Kong, L.; Yan, Y.; Qiu, Z.; Zhou, Z.; Hu, J. J. Membr. Sci. 2018, 549, 321. doi: 10.1016/j.memsci.2017.12.028

    21. [21]

      (21) Wang, L. L.; Liu, F.; Shao, W. L.; Cui, S. Z.; Zhao, Y. M.; Zhou, Y. M.; He, J. X. Compos. Commun. 2019, 16, 150. doi: 10.1016/j.coco.2019.09.004

    22. [22]

      (22) Miao, Y. E.; Zhu, G. N.; Hou, H. Q.; Xia, Y. Y.; Liu, T. X. J. Power Sources 2013, 226, 82. doi: 10.1016/j.jpowsour.2012.10.027

    23. [23]

      (23) Wang, Y.; Wang, S.; Fang, J.; Ding, L.-X.; Wang, H. J. Membr. Sci. 2017, 537, 248. doi: 10.1016/j.memsci.2017.05.023

    24. [24]

      (24) Kim, J.-H.; Kim, J.-H.; Choi, K.-H.; Yu, H. K.; Kim, J. H.; Lee, J. S.; Lee, S.-Y. Nano Lett. 2014, 14 (8), 4438. doi: 10.1021/nl5014037

    25. [25]

      (25) Seo, Y.; Lee, S. M.; Kim, D. Y.; Kim, K. U. Macromolecules 1997, 30 (13), 3747. doi: 10.1021/ma961482v

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    9. [9]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    10. [10]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    11. [11]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    12. [12]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    17. [17]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    20. [20]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

Metrics
  • PDF Downloads(0)
  • Abstract views(673)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return