Citation: Yuting Bai, Cenqi Yan, Zhen Li, Jiaqiang Qin, Pei Cheng. Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230601. doi: 10.3866/PKU.WHXB202306010
-
Improving the thermal stability, chemical stability, and mechanical strength of battery separators is crucial to prevent safety incidents like thermal runaway in batteries. This significantly enhances the overall safety performance of batteries. Among various options, polyimide (PI) stands out as an ideal choice due to its outstanding thermal stability, excellent chemical stability, and high mechanical strength. However, existing preparation methods of PI separators, such as non-solvent induced phase separation (NIPS), template method, and electrospinning, often suffer from issues like inadequate mechanical strength. Therefore, this study focused on investigating a novel method to prepare thermoplastic PI porous films with thermally closed pores and enhanced mechanical strength. Several characterization techniques, including scanning electron microscopy (SEM), in situ Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analyzer (TGA)-FTIR coupling, were employed to understand the pore-forming mechanism of PI porous films. The findings revealed that the temperature range of triethylamine (TEA) removal was consistent with the main stage of the imidization reaction and pore formation. This indicated that the pore structure was formed in situ during the thermal imidization process when TEA was stripped out of the PI film. PI films with varying TEA contents were prepared to investigate the impact on pore structure, showing that pore size could be regulated by TEA content. A more regular reticulated small pore structure on the macroporous pore wall was observed when TEA content was ≥ 100%. SEM analysis showed that the films were thermally self-closed at a heat treatment temperature of 300 °C. Additionally, TGA indicated that the thermal decomposition temperature of PI porous film reached 580 °C. The mechanical strength of the PI films before and after pore closure was investigated, demonstrating excellent mechanical strength of approximately 120 MPa. The novel in situ pore formation method for PI porous films through the salt-formation method of poly (amic acid) (PAA) with the organic base TEA, followed by TEA release during thermal imidization, resulted in PI porous films with outstanding thermal stability and high mechanical strength. The self-closure of the PI porous film at high temperatures effectively isolates material and heat transport, providing robust safety assurance for batteries. This advancement has the potential to significantly improve battery safety and performance.
-
-
[1]
(1) Zhang, X.; Sun, Q.; Zhen, C.; Niu, Y.; Han, Y.; Zeng, G.; Chen, D.; Feng, C.; Chen, N.; Lv, W.; et al. Energy Storage Mater. 2021, 37, 628. doi: 10.1016/j.ensm.2021.02.042
-
[2]
(2) Waqas, M.; Ali, S.; Feng, C.; Chen, D.; Han, J.; He, W. Small 2019, 15 (33), 1901689. doi: 10.1002/smll.201901689
-
[3]
(3) Costa, C. M.; Lee, Y.-H.; Kim, J.-H.; Lee, S.-Y.; Lanceros-Méndez, S. Energy Storage Mater. 2019, 22, 346. doi: 10.1016/j.ensm.2019.07.024
-
[4]
(4) Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. J. Power Sources 2013, 226, 272. doi: 10.1016/j.jpowsour.2012.10.060
-
[5]
(5) Sun, Y.; Liu, N.; Cui, Y. Nat. Energy 2016, 1 (7), 16071. doi: 10.1038/nenergy.2016.71
-
[6]
(6) Liu, X.; Ren, D.; Hsu, H.; Feng, X.; Xu, G.-L.; Zhuang, M.; Gao, H.; Lu, L.; Han, X.; Chu, Z.; et al. Joule 2018, 2 (10), 2047. doi: 10.1016/j.joule.2018.06.015
-
[7]
(7) Zhang, J.; Liu, Z.; Kong, Q.; Zhang, C.; Pang, S.; Yue, L.; Wang, X.; Yao, J.; Cui, G. ACS Appl. Mater. Interfaces 2013, 5 (1), 128. doi: 10.1021/am302290n
-
[8]
(8) Costa, C. M.; Rodrigues, L. C.; Sencadas, V.; Silva, M. M.; Rocha, J. G.; Lanceros-Méndez, S. J. Membr. Sci. 2012, 407–408, 193. doi: 10.1016/j.memsci.2012.03.044
-
[9]
(9) Liu, X.; Song, K.; Lu, C.; Huang, Y.; Duan, X.; Li, S.; Ding, Y. J. Membr. Sci. 2018, 555, 1. doi: 10.1016/j.memsci.2018.03.027
-
[10]
(10) Hu, S.; Lin, S.; Tu, Y.; Hu, J.; Wu, Y.; Liu, G.; Li, F.; Yu, F.; Jiang, T. J. Mater. Chem. A 2016, 4 (9), 3513. doi: 10.1039/C5TA08694A
-
[11]
(11) Ding, Y.; Hou, H.; Zhao, Y.; Zhu, Z.; Fong, H. Prog. Polym. Sci. 2016, 61, 67. doi: 10.1016/j.progpolymsci.2016.06.006
-
[12]
(12) Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Prog. Polym. Sci. 2012, 37 (7), 907. doi: 10.1016/j.progpolymsci.2012.02.005
-
[13]
(13) Ma, P.; Dai, C.; Wang, H.; Li, Z.; Liu, H.; Li, W.; Yang, C. Compos. Commun. 2019, 16, 84. doi: 10.1016/j.coco.2019.08.011
-
[14]
(14) Maeyoshi, Y.; Ding, D.; Kubota, M.; Ueda, H.; Abe, K.; Kanamura, K.; Abe, H. ACS Appl. Mater. Interfaces 2019, 11 (29), 25833. doi: 10.1021/acsami.9b05257
-
[15]
(15) Lin, D.; Zhuo, D.; Liu, Y.; Cui, Y. J. Am. Chem. Soc. 2016, 138 (34), 11044. doi: 10.1021/jacs.6b06324
-
[16]
(16) Maeyoshi, Y.; Miyamoto, S.; Munakata, H.; Kanamura, K. J. Power Sources 2017, 350, 103. doi: 10.1016/j.jpowsour.2017.03.053
-
[17]
(17) Li, M. N.; Zhang, Z. J.; Yin, Y. T.; Guo, W. C.; Bai, Y. G.; Zhang, F.; Zhao, B.; Shen, F.; Han, X. G. ACS Appl. Mater. Interfaces 2020, 12 (3), 3610. doi: 10.1021/acsami.9b19049
-
[18]
(18) Lin, C. E.; Zhang, H.; Song, Y. Z.; Zhang, Y.; Yuan, J. J.; Zhu, B. K. J. Mater. Chem. A 2018, 6 (3), 991. doi: 10.1039/c7ta08702k
-
[19]
(19) Zhang, H.; Lin, C.-E.; Zhou, M.-Y.; John, A. E.; Zhu, B.-K. Electrochim. Acta 2016, 187, 125. doi: 10.1016/j.electacta.2015.11.028
-
[20]
(20) Kong, L.; Yan, Y.; Qiu, Z.; Zhou, Z.; Hu, J. J. Membr. Sci. 2018, 549, 321. doi: 10.1016/j.memsci.2017.12.028
-
[21]
(21) Wang, L. L.; Liu, F.; Shao, W. L.; Cui, S. Z.; Zhao, Y. M.; Zhou, Y. M.; He, J. X. Compos. Commun. 2019, 16, 150. doi: 10.1016/j.coco.2019.09.004
-
[22]
(22) Miao, Y. E.; Zhu, G. N.; Hou, H. Q.; Xia, Y. Y.; Liu, T. X. J. Power Sources 2013, 226, 82. doi: 10.1016/j.jpowsour.2012.10.027
-
[23]
(23) Wang, Y.; Wang, S.; Fang, J.; Ding, L.-X.; Wang, H. J. Membr. Sci. 2017, 537, 248. doi: 10.1016/j.memsci.2017.05.023
-
[24]
(24) Kim, J.-H.; Kim, J.-H.; Choi, K.-H.; Yu, H. K.; Kim, J. H.; Lee, J. S.; Lee, S.-Y. Nano Lett. 2014, 14 (8), 4438. doi: 10.1021/nl5014037
-
[25]
(25) Seo, Y.; Lee, S. M.; Kim, D. Y.; Kim, K. U. Macromolecules 1997, 30 (13), 3747. doi: 10.1021/ma961482v
-
[1]
-
-
[1]
Feng Zheng , Ruxun Yuan , Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027
-
[2]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012
-
[3]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[4]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[5]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[6]
Bao Jia , Yunzhe Ke , Shiyue Sun , Dongxue Yu , Ying Liu , Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121
-
[7]
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
-
[8]
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
-
[9]
Jingke LIU , Jia CHEN , Yingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060
-
[10]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[11]
Yan ZHAO , Xiaokang JIANG , Zhonghui LI , Jiaxu WANG , Hengwei ZHOU , Hai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242
-
[12]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[13]
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
-
[14]
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
-
[15]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[16]
Jianjun Liu , Xue Yang , Chi Zhang , Xueyu Zhao , Zhiwei Zhang , Yongmei Chen , Qinghong Xu , Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031
-
[17]
Ruiqing LIU , Wenxiu LIU , Kun XIE , Yiran LIU , Hui CHENG , Xiaoyu WANG , Chenxu TIAN , Xiujing LIN , Xiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441
-
[18]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[19]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[20]
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(545)
- HTML views(38)