Citation: Meiran Li, Yingjie Song, Xin Wan, Yang Li, Yiqi Luo, Yeheng He, Bowen Xia, Hua Zhou, Mingfei Shao. Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation[J]. Acta Physico-Chimica Sinica, ;2024, 40(9): 230600. doi: 10.3866/PKU.WHXB202306007
-
Electrocatalytic water splitting driven by renewable energy is a potential approach to obtain green hydrogen. However, the relatively high overpotential of anodic oxygen evolution reaction (OER) is one of the main obstacles hindering the widespread popularity of water electrocatalysis technology. To this end, electrochemical hydrogen-evolution coupled with the oxidation of biomass derived platforms, such as replacing OER with thermodynamically favorable 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR), provides an efficient strategy to lower energy utilization and co-producing valuable organic oxygenates. For instance, 2,5-furandicarboxylic acid (FDCA) is emerging as an important and value-added industrial chemical obtained from HMFOR, which can be used as the monomer of various sustainable bioplastics (e.g., polyesters, polyamides). Great efforts have been devoted to this arena on electrocatalyst engineering for better activity and product selectivity. However, less work has focused on the process scalability of HMFOR to FDCA. Here, we report a simple hydrothermal method to fabricate an array-structured nickel-vanadium layered double hydroxides (NiV-LDH) growth on nickel foam matrix, demonstrating large-sized (6 cm × 10 cm) synthesis of self-supported electrode. The as-prepared material is active and efficient for HMFOR, achieving 100 mA∙cm−2 of current density at 1.52 V vs. RHE (reversible hydrogen electrode) with 94.6% of Faradaic efficiency and 89.1% of yield to FDCA. Compared to traditional water splitting, replacing OER with HMFOR improves the counterpart hydrogen production rate by two-times. As proof-of-concept, we demonstrate the continuous and scalable HMFOR using a low-cost and membrane-free flow reactor system with electrode area of 49.5 cm2. Under a constant current of 10 A, this system achieves high HMF single-pass conversion (94.8%), high FDCA concentration (~186.8 mmol∙L−1), and high FDCA selectivity (98.5%) using 200 mmol∙L−1 of HMF feedstock at a flow rate of 3.62 mL∙min−1. Finally, gram-scale FDCA (119.5 g) can be obtained with hydrogen production using water electrolysis technology. This work highlights that catalyst design and system engineering should be coupled in the future rather than continuing in parallel directions.
-
-
[1]
(1) Lagadec, M. F.; Grimaud, A. Nat. Mater. 2020, 19, 1140. doi: 10.1038/s41563-020-0788-3
-
[2]
(2) Lu, Y.; Liu, T.; Dong, C.-L.; Huang, Y.-C.; Li, Y.; Chen, J.; Zou, Y.; Wang, S. Adv. Mater. 2021, 33, 2007056. doi: 10.1002/adma.202007056
-
[3]
-
[4]
-
[5]
(5) Verma, S.; Lu, S.; Kenis, P. J. A. Nat. Energy 2019, 4, 466. doi: 10.1038/s41560-019-0374-6
-
[6]
(6) Wei, X.; Li, Y.; Chen, L. Shi; J. Angew. Chem. Int. Ed. 2021, 60, 3148. doi: 10.1002/anie.202012066
-
[7]
(7) Sherbo, R. S.; Delima; R. S; Chiykowski, V. A.; MacLeod, B. P.; Berlinguette, C. P. Nat. Catal. 2018, 1, 501. doi: 10.1038/s41929-018-0083-8
-
[8]
(8) You, B.; Liu, X.; Jiang, N.; Sun, Y. J. Am. Chem. Soc. 2016, 138, 13639. doi: 10.1021/jacs.6b07127
-
[9]
(9) Song, Y.; Ji, K.; Duan, H.; Shao, M. Exploration 2021, 1 (3), 20210050. doi: 10.1002/EXP.20210050
-
[10]
(10) Wang, T.; Tao, L.; Zhu, X.; Chen, C.; Chen, W.; Du, S.; Zhou, Y.; Zhou, B.; Wang, D.; Xie, C.; et al. Nat. Catal. 2022, 5, 66. doi: 10.1038/s41929-021-00721-y
-
[11]
(11) Huang, Y.; Chong, X.; Liu, C.; Liang, Y.; Zhang, B. Angew. Chem. Int. Ed. 2018, 57, 13163. doi: 10.1002/anie.201807717
-
[12]
(12) Wu, J.; Xu, L.; Li, Y.; Dong, C.-L.; Lu, Y.; Nga, T. T. T.; Kong, Z.; Li, S.; Zou, Y.; Wang, S. J. Am. Chem. Soc. 2022, 144, 23649. doi: 10.1021/jacs.2c11153
-
[13]
(13) Lin, K.; Xia, A.; Huang, Y.; Zhu, X.; Zhu, X.; Cai, K.; Wei, Z.; Liao, Q. 2023, 374, 128775. doi: 10.1016/j.biortech.2023.128775
-
[14]
(14) Xia, A.; Lin, K.; Cai, K.; Wei, Z.; Liao, Q. Green Chem. 2022, 24 (24), 9519. doi: 10.1039/D2GC02965K
-
[15]
-
[16]
-
[17]
(17) He, Z.; Hwang, J.; Gong, Z.; Zhou, M.; Zhang, N.; Kang, X.; Han, J. W.; Chen, Y. Nat. Commun. 2022, 13, 3777. doi: 10.1038/s41467-022-31484-0
-
[18]
(18) Song, Y.; Xie, W.; Song, Y.; Li, H.; Li, S.; Jiang, S.; Lee, J. Y.; Shao, M. Appl. Catal. B-Environ 2022, 312, 121400. doi: 10.1016/j.apcatb.2022.121400
-
[19]
-
[20]
(20) Liu, W.-J.; Dang, L.; Xu, Z.; Yu, H.-Q.; Jin, S.; Huber, G. W. ACS Catal. 2018, 8, 5533. doi: 10.1021/acscatal.8b01017
-
[21]
(21) Chen, W.; Xie, C.; Wang, Y.; Zou, Y.; Dong, C.-L.; Huang, Y.-C.; Xiao, Z.; Wei, Z.; Du, S.; Chen, C.; et al. Chem 2020, 6, 2974. doi: 10.1016/j.chempr.2020.07.022
-
[22]
(22) Song, Y.; Li, Z.; Fan, K.; Ren, Z.; Xie, W.; Yang, Y.; Shao, M.; Wei, M. Appl. Catal. B-Environ. 2021, 299, 120669. doi: 10.1016/j.apcatb.2021.120669
-
[23]
(23) Liu, B.; Xu, S.; Zhang, M.; Li, X.; Decarolis, D.; Liu, Y.; Wang, Y.; Gibson, E. K.; Catlow, C. R. A.; Yan, K.; et al. Green Chem., 2021, 23 (11), 4034. doi: 10.1039/d1gc00901j
-
[24]
(24) Huang, X.; Song, J.; Hua, M.; Xie, Z.; Liu, S.; Wu, T.; Yang, G.; Han, B. Green Chem. 2020, 22, 843. doi: 10.1039/c9gc03698a
-
[25]
(25) Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu, H. Adv. Mater. 2020, 32, 2000455. doi: 10.1002/adma.202000455
-
[26]
(26) Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D. G.; Duan, X. Adv. Funct. Mater. 2013, 23 (28), 3513. doi: 10.1002/adfm.201202825
-
[27]
(27) Li, Z.; Duan, H.; Shao, M.; Li, J.; O'Hare, D.; Wei, M.; Wang, Z. L. Chem 2018, 4 (9), 2168. doi: 10.1016/j.chempr.2018.06.007
-
[28]
-
[29]
(29) Zhang, M.; Liu, Y.; Liu, B.; Chen, Z.; Xu, H.; Yan, K. ACS Catal. 2020, 10, 5179. doi: 10.1021/acscatal.0c00007
-
[30]
(30) Lee, S.; Bai, L.; Hu, X. Angew. Chem. Int. Ed. 2020, 59, 8072. doi: 10.1002/anie.201915803
-
[31]
(31) Chavan, H. S.; Lee, C. H.; Inamdar, A. I.; Han, J.; Park, S.; Cho, S.; Shreshta, N. K.; Lee, S. U.; Hou, B.; Im, H.; et al. ACS Catal. 2022, 12, 3821. doi: 10.1021/acscatal.1c05813
-
[32]
(32) Lu, Y.; Dong, C.-L.; Huang, Y.-C.; Zou, Y.; Liu, Z.; Liu, Y.; Li, Y.; He, N.; Shi, J.; Wang, S. Angew. Chem. Int. Ed. 2020, 59, 19215. doi: 10.1002/anie.202007767
-
[33]
(33) Zhang, N.; Zou, Y.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z.; Zhou, B.; Huang, G.; Lin, H.; Wang, S. Angew. Chem. Int. Ed. 2019, 58, 15895. doi: 10.1002/anie.201908722
-
[34]
(34) Zhu, Y.-Q.; Zhou, H.; Dong, J.; Xu, S.-M.; Xu, M.; Zheng, L.; Xu, Q.; Ma, L.; Li, Z.; Shao, M.; et al. Angew. Chem. Int. Ed. 2023, 62, e202219048. doi: 10.1002/anie.202219048
-
[35]
(35) Wang, C.; Wu, Y.; Bodach, A.; Krebs, M. L.; Schuhmann, W.; Schüth, F. Angew. Chem. Int. Ed. 2023, 62, e202215804. doi: 10.1002/anie.202215804
-
[36]
(36) Wöllner, S.; Nowak, T.; Zhang, G.-R.; Rockstroh, N.; Ghanem, H.; Rosiwal, S.; Brückner, A.; Etzold, B. J. M. ChemistryOpen 2021, 10, 600. doi: 10.1002/open.202100072
-
[37]
(37) Krebs, M. L.; Bodach, A.; Wang, C. L.; Schueth, F. Green Chem. 2023, 25, 1797. doi: 10.1039/d2gc04732b
-
[1]
-
-
[1]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[2]
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
-
[3]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[4]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[5]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[6]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[7]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[8]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
-
[11]
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
-
[12]
Zhenghua ZHAO , Qin ZHANG , Yufeng LIU , Zifa SHI , Jinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342
-
[13]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[14]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[15]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[16]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[17]
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
-
[18]
Weizhong LING , Xiangyun CHEN , Wenjing LIU , Yingkai HUANG , Yu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068
-
[19]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[20]
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(642)
- HTML views(87)