Citation: Jingshuo Zhang,  Yue Zhai,  Ziyun Zhao,  Jiaxing He,  Wei Wei,  Jing Xiao,  Shichao Wu,  Quan-Hong Yang. 锂离子电池硅基负极用功能粘结剂的研究进展[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230600. doi: 10.3866/PKU.WHXB202306006 shu

锂离子电池硅基负极用功能粘结剂的研究进展

  • Corresponding author: Shichao Wu,  Quan-Hong Yang, 
  • Received Date: 2 June 2023
    Revised Date: 5 July 2023
    Accepted Date: 20 July 2023

    Fund Project: The project was supported by the National Key Research and Development Program of China (2021YFF0500600) and the National Natural Science Foundation of China (U2001220, 52272231).

  • 硅(Si)具有超高的理论比容量、较低的嵌锂电位及丰富的储量等优势,是发展高比能锂离子电池的关键负极材料。同纳米Si相比,低成本、高振实密度和低界面反应的微米Si应用于高体积能量密度器件独具优势。然而其300%体积形变产生的巨大应力,使得颗粒破碎粉化、电极结构退化以及导电网络失效等问题更为严峻,极大制约了其商业化进程。粘结剂是适应Si体积变化,提供稳定导电网络的重要手段。开发高容量、高稳定微米Si基负极对粘结体系设计提出了更大的挑战。本文首先阐明了粘结剂的基础功能与粘结机制,然后从自愈合、电子导电、离子导电以及参与固态电解质层构建四个方面,总结了Si基负极用功能粘结剂的设计策略和作用原理,最后展望了面向实用化的Si基负极功能粘结剂面临的挑战和未来发展方向。
  • 加载中
    1. [1]

    2. [2]

      (2) Kwon, T. W.; Choi, J. W.; Coskun, A. Chem. Soc. Rev. 2018, 47, 2145. doi:10.1039/c7cs00858a

    3. [3]

      (3) Tan, D. H. S.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B.; et al. Science 2021, 373, 1494. doi:10.1126/science.abg7217

    4. [4]

      (4) Kovalenko, I.; Zdyrko, B.; Magasinski, A.; Hertzberg, B.; Milicev, Z.; Burtovyy, R.; Luzinov, I.; Yushin, G. Science 2011, 334, 75. doi:10.1126/science.1209150

    5. [5]

      (5) Choi, S.; Kwon, T.-W.; Coskun, A.; Choi, J. W. Science 2017, 357, 279. doi:10.1126/science.aal4373

    6. [6]

      (6) Xiao, J.; Han, J.; Kong, D.; Shi, H.; Du, X.; Zhao, Z.; Chen, F.; Lan, P.; Wu, S.; Zhang, Y.; et al. Energy Storage Mater. 2022, 50, 554. doi:10.1016/j.ensm.2022.05.034

    7. [7]

      (7) Ren, Y.; Xiang, L.; Yin, X.; Xiao, R.; Zuo, P.; Gao, Y.; Yin, G.; Du, C. Adv. Funct. Mater. 2022, 32, 2110046. doi:10.1002/adfm.202110046

    8. [8]

      (8) Pan, S.; Han, J.; Wang, Y.; Li, Z.; Chen, F.; Guo, Y.; Han, Z.; Xiao, K.; Yu, Z.; Yu, M.; et al. Adv. Mater. 2022, 34, 2203617. doi:10.1002/adma.202203617

    9. [9]

      (9) Mu, T.; Sun, Y.; Wang, C.; Zhao, Y.; Doyle-Davis, K.; Liang, J.; Sui, X.; Li, R.; Du, C.; Zuo, P.; et al. Nano Energy 2022, 103, 107829. doi:10.1016/j.nanoen.2022.107829

    10. [10]

      (10) Han, J.; Tang, D. M.; Kong, D.; Chen, F.; Xiao, J.; Zhao, Z.; Pan, S.; Wu, S.; Yang, Q. H. Sci. Bull. 2020, 65, 1563. doi:10.1016/j.scib.2020.05.018

    11. [11]

      (11) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; et al. Nat. Nanotechnol. 2012, 7, 310. doi:10.1038/nnano.2012.35

    12. [12]

      (12) Yu, Y.; Gu, L.; Zhu, C.; Tsukimoto, S.; van Aken, P. A.; Maier, J. Adv. Mater. 2010, 22, 2247. doi:10.1002/adma.200903755

    13. [13]

      (13) Hu, Y. S.; Demir-Cakan, R.; Titirici, M. M.; Muller, J. O.; Schlogl, R.; Antonietti, M.; Maier, J. Angew. Chem. Int. Ed. 2008, 47, 1645. doi:10.1002/anie.200704287

    14. [14]

      (14) Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. Nat. Mater. 2010, 9, 353. doi:10.1038/nmat2725

    15. [15]

      (15) Zhao, Z.; Han, J.; Chen, F.; Xiao, J.; Zhao, Y.; Zhang, Y.; Kong, D.; Weng, Z.; Wu, S.; Yang, Q. H. Adv. Energy Mater. 2022, 12, 2103565. doi:10.1002/aenm.202103565

    16. [16]

      (16) Chen, F.; Han, J.; Kong, D.; Yuan, Y.; Xiao, J.; Wu, S.; Tang, D. M.; Deng, Y.; Lv, W.; Lu, J.; et al. Natl. Sci. Rev. 2021, 8, 12. doi:10.1093/nsr/nwab012

    17. [17]

      (17) Chen, J.; Fan, X.; Li, Q.; Yang, H.; Khoshi, M. R.; Xu, Y.; Hwang, S.; Chen, L.; Ji, X.; Yang, C.; et al. Nat. Energy 2020, 5, 386. doi:10.1038/s41560-020-0601-1

    18. [18]

      (18) Zhu, T.; Sternlicht, H.; Ha, Y.; Fang, C.; Liu, D.; Savitzky, B. H.; Zhao, X.; Lu, Y.; Fu, Y.; Ophus, C.; et al. Nat. Energy 2023, 8, 129. doi:10.1038/s41560-022-01176-6

    19. [19]

      (19) McBrayer, J. D.; Rodrigues, M.-T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L.; et al. Nat. Energy 2021, 6, 866. doi:10.1038/s41560-021-00883-w

    20. [20]

      (20) Wang, Q.; Zhu, M.; Chen, G.; Dudko, N.; Li, Y.; Liu, H.; Shi, L.; Wu, G.; Zhang, D. Adv. Mater. 2022, 34, 2109658. doi:10.1002/adma.202109658

    21. [21]

      (21) Lopez, J.; Mackanic, D. G.; Cui, Y.; Bao, Z. Nat. Rev. Mater. 2019, 4, 312. doi:10.1038/s41578-019-0103-6

    22. [22]

      (22) Li, P.; Kim, H.; Myung, S.-T.; Sun, Y.-K. Energy Storage Mater. 2021, 35, 550. doi:10.1016/j.ensm.2020.11.028

    23. [23]

      (23) Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. InfoMat 2021, 3, 460. doi:10.1002/inf2.12185

    24. [24]

      (24) Kwon, T.-W.; Choi, J. W.; Coskun, A. Joule 2019, 3, 662. doi:10.1016/j.joule.2019.01.006

    25. [25]

    26. [26]

      (26) Zhao, Z.; Chen, F.; Han, J.; Kong, D.; Pan, S.; Xiao, J.; Wu, S.; Yang, Q. H. Adv. Energy Mater. 2023, 13, 2300367. doi:10.1002/aenm.202300367

    27. [27]

      (27) Chen, H.; Ling, M.; Hencz, L.; Ling, H. Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Chem. Rev. 2018, 118, 8936. doi:10.1021/acs.chemrev.8b00241

    28. [28]

      (28) Liu, G.; Zheng, H.; Song, X.; Battaglia, V. S. J. Electrochem. Soc. 2012, 159, A214. doi:10.1149/2.024203jes

    29. [29]

      (29) Hernandez, C. R.; Etiemble, A.; Douillard, T.; Mazouzi, D.; Karkar, Z.; Maire, E.; Guyomard, D.; Lestriez, B.; Roué, L. Adv. Energy Mater. 2018, 8, 1701787. doi:10.1002/aenm.201701787

    30. [30]

    31. [31]

      (31) Wu, S.; Yang, Y.; Liu, C.; Liu, T.; Zhang, Y.; Zhang, B.; Luo, D.; Pan, F.; Lin, Z. ACS Energy Lett. 2020, 6, 290. doi:10.1021/acsenergylett.0c02342

    32. [32]

      (32) Lee, H. A.; Shin, M.; Kim, J.; Choi, J. W.; Lee, H. Adv. Mater. 2021, 33, 2007460. doi:10.1002/adma.202007460

    33. [33]

      (33) Han, D. Y.; Han, I. K.; Son, H. B.; Kim, Y. S.; Ryu, J.; Park, S. Adv. Funct. Mater. 2023, 33, 2213458. doi:10.1002/adfm.202213458

    34. [34]

      (34) Xu, Z.; Yang, J.; Zhang, T.; Nuli, Y.; Wang, J.; Hirano, S.-I. Joule 2018, 2, 950. doi:10.1016/j.joule.2018.02.012

    35. [35]

      (35) Li, Z.; Wu, G.; Yang, Y.; Wan, Z.; Zeng, X.; Yan, L.; Wu, S.; Ling, M.; Liang, C.; Hui, K. N.; et al. Adv. Energy Mater. 2022, 12, 2201197. doi:10.1002/aenm.202201197

    36. [36]

      (36) Li, B.; Cao, P. F.; Saito, T.; Sokolov, A. P. Chem. Rev. 2023, 123, 701. doi:10.1021/acs.chemrev.2c00575

    37. [37]

      (37) Wang, C.; Wu, H.; Chen, Z.; McDowell, M. T.; Cui, Y.; Bao, Z. Nat. Chem. 2013, 5, 1042. doi:10.1038/nchem.1802

    38. [38]

      (38) Li, C. H.; Zuo, J. L. Adv. Mater. 2020, 32, 1903762. doi:10.1002/adma.201903762

    39. [39]

      (39) Kim, J.; Park, K.; Cho, Y.; Shin, H.; Kim, S.; Char, K.; Choi, J. W. Adv. Sci. 2021, 8, 2004290. doi:10.1002/advs.202004290

    40. [40]

      (40) Zhang, L.; Zhang, L.; Chai, L.; Xue, P.; Hao, W.; Zheng, H. J. Mater. Chem. A 2014, 2, 19036. doi:10.1039/c4ta04320k

    41. [41]

      (41) Ying, H.; Zhang, Y.; Cheng, J. Nat. Commun. 2014, 5, 3218. doi:10.1038/ncomms4218

    42. [42]

      (42) Chen, Z.; Wang, C.; Lopez, J.; Lu, Z.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2015, 5, 1401826. doi:10.1002/aenm.201401826

    43. [43]

      (43) Jiao, X.; Yin, J.; Xu, X.; Wang, J.; Liu, Y.; Xiong, S.; Zhang, Q.; Song, J. Adv. Funct. Mater. 2020, 31, 2005699. doi:10.1002/adfm.202005699

    44. [44]

      (44) Kim, S.-M.; Kim, M. H.; Choi, S. Y.; Lee, J. G.; Jang, J.; Lee, J. B.; Ryu, J. H.; Hwang, S. S.; Park, J.-H.; Shin, K.; et al. Energy Environ. Sci. 2015, 8, 1538. doi:10.1039/c5ee00472a

    45. [45]

      (45) Zhao, H.; Wei, Y.; Qiao, R.; Zhu, C.; Zheng, Z.; Ling, M.; Jia, Z.; Bai, Y.; Fu, Y.; Lei, J.; et al. Nano Lett. 2015, 15, 7927. doi:10.1021/acs.nanolett.5b03003

    46. [46]

      (46) Liu, X.; Xu, Z.; Iqbal, A.; Chen, M.; Ali, N.; Low, C.; Qi, R.; Zai, J.; Qian, X. Nano-Micro Lett. 2021, 13, 54. doi:10.1007/s40820-020-00564-5

    47. [47]

      (47) Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098. doi:10.1103/PhysRevLett.39.1098

    48. [48]

      (48) Chen, S.; Song, Z.; Wang, L.; Chen, H.; Zhang, S.; Pan, F.; Yang, L. Accounts Chem. Res. 2022, 55, 2088. doi:10.1021/acs.accounts.2c00259

    49. [49]

      (49) Liu, G.; Xun, S.; Vukmirovic, N.; Song, X.; Olalde-Velasco, P.; Zheng, H.; Battaglia, V. S.; Wang, L.; Yang, W. Adv. Mater. 2011, 23, 4679. doi:10.1002/adma.201102421

    50. [50]

      (50) Zhao, H.; Wang, Z.; Lu, P.; Jiang, M.; Shi, F.; Song, X.; Zheng, Z.; Zhou, X.; Fu, Y.; Abdelbast, G.; et al. Nano Lett. 2014, 14, 6704. doi:10.1021/nl503490h

    51. [51]

      (51) Wu, M.; Xiao, X.; Vukmirovic, N.; Xun, S.; Das, P. K.; Song, X.; Olalde-Velasco, P.; Wang, D.; Weber, A. Z.; Wang, L. W.; et al. J. Am. Chem. Soc. 2013, 135, 12048. doi:10.1021/ja4054465

    52. [52]

      (52) Zhu, T.; Liu, G. J. Electrochem. Soc. 2021, 168, 050533. doi:10.1149/1945-7111/abff01

    53. [53]

      (53) Liu, D.; Zhao, Y.; Tan, R.; Tian, L.-L.; Liu, Y.; Chen, H.; Pan, F. Nano Energy 2017, 36, 206. doi:10.1016/j.nanoen.2017.04.043

    54. [54]

      (54) Higgins, T. M.; Park, S. H.; King, P. J.; Zhang, C. J.; McEvoy, N.; Berner, N. C.; Daly, D.; Shmeliov, A.; Khan, U.; Duesberg, G.; et al. ACS Nano 2016, 10, 3702. doi:10.1021/acsnano.6b00218

    55. [55]

      (55) Tsai, C.-Y.; Liu, Y.-L. Electrochim. Acta 2021, 379, 138180. doi:10.1016/j.electacta.2021.138180

    56. [56]

      (56) Munaoka, T.; Yan, X.; Lopez, J.; To, J. W. F.; Park, J.; Tok, J. B. H.; Cui, Y.; Bao, Z. Adv. Energy Mater. 2018, 8, 1703138. doi:10.1002/aenm.201703138

    57. [57]

      (57) Hu, Y.; Shao, D.; Chen, Y.; Peng, J.; Dai, S.; Huang, M.; Guo, Z.-H.; Luo, X.; Yue, K. ACS Appl. Energy Mater. 2021, 4, 10886. doi:10.1021/acsaem.1c01849

    58. [58]

      (58) Cai, Y.; Liu, C.; Yu, Z.; Ma, W.; Jin, Q.; Du, R.; Qian, B.; Jin, X.; Wu, H.; Zhang, Q.; et al. Adv. Sci. 2023, 10, 2205590. doi:10.1002/advs.202205590

    59. [59]

      (59) Liu, H.; Wu, Q.; Guan, X.; Liu, M.; Wang, F.; Li, R.; Xu, J. ACS Appl. Energy Mater. 2022, 5, 4934. doi:10.1021/acsaem.2c00329

    60. [60]

      (60) Garsuch, R. R.; Le, D.-B.; Garsuch, A.; Li, J.; Wang, S.; Farooq, A.; Dahn, J. R. J. Electrochem. Soc. 2008, 155, A721. doi:10.1149/1.2956964

    61. [61]

      (61) Li, Z.; Zhang, Y.; Liu, T.; Gao, X.; Li, S.; Ling, M.; Liang, C.; Zheng, J.; Lin, Z. Adv. Energy Mater. 2020, 10, 1903110. doi:10.1002/aenm.201903110

    62. [62]

      (62) Liu, J.; Zhang, Q.; Zhang, T.; Li, J.-T.; Huang, L.; Sun, S.-G. Adv. Funct. Mater. 2015, 25, 3599. doi:10.1002/adfm.201500589

    63. [63]

      (63) Zeng, W.; Wang, L.; Peng, X.; Liu, T.; Jiang, Y.; Qin, F.; Hu, L.; Chu, P. K.; Huo, K.; Zhou, Y. Adv. Energy Mater. 2018, 8, 1702314. doi:10.1002/aenm.201702314

    64. [64]

      (64) Oh, D. Y.; Nam, Y. J.; Park, K. H.; Jung, S. H.; Kim, K. T.; Ha, A. R.; Jung, Y. S. Adv. Energy Mater. 2019, 9, 1802927. doi:10.1002/aenm.201802927

    65. [65]

      (65) Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. F. Adv. Energy Mater. 2021, 11, 2003836. doi:10.1002/aenm.202003836

    66. [66]

      (66) Nguyen, C. C.; Yoon, T.; Seo, D. M.; Guduru, P.; Lucht, B. L. ACS Appl. Mater. Inter. 2016, 8, 12211. doi:10.1021/acsami.6b03357

    67. [67]

      (67) Parikh, P.; Sina, M.; Banerjee, A.; Wang, X.; D'Souza, M. S.; Doux, J.-M.; Wu, E. A.; Trieu, O. Y.; Gong, Y.; Zhou, Q.; et al. Chem. Mater. 2019, 31, 2535. doi:10.1021/acs.chemmater.8b05020

    68. [68]

      (68) Browning, K. L.; Browning, J. F.; Doucet, M.; Yamada, N. L.; Liu, G.; Veith, G. M. Phys. Chem. Chem. Phys. 2019, 21, 17356. doi:10.1039/c9cp02610j

    69. [69]

      (69) Browning, K. L.; Sacci, R. L.; Doucet, M.; Browning, J. F.; Kim, J. R.; Veith, G. M. ACS Appl. Mater. Inter. 2020, 12, 10018. doi:10.1021/acsami.9b22382

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    15. [15]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(5)
  • Abstract views(414)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return