Citation: ZilinHu,  YaoshenNiu,  XiaohuiRong,  Yongsheng Hu. Ni3+抑制具有阴离子氧化还原活性钠离子电池正极材料的电压衰减[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230600. doi: 10.3866/PKU.WHXB202306005 shu

Ni3+抑制具有阴离子氧化还原活性钠离子电池正极材料的电压衰减

  • Corresponding author: XiaohuiRong,  Yongsheng Hu, 
  • Received Date: 1 June 2023
    Revised Date: 29 June 2023
    Accepted Date: 17 July 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2022YFB2402500), the National Natural Science Foundation of China (51725206, 52122214, 52072403, 52002394), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020006), the Beijing Municipal Natural Science Foundation (2212022), the Young Elite Scientists Sponsorship Program by CAST (2022QNRC001).

  • 由于钠资源丰富,钠离子电池在大规模储能方面显示出巨大的潜力。随着近年来研究的深入,在正极材料中引入适量的阴离子氧化还原可以有效地提升钠离子电池的能量密度,同时减少高成本过渡金属元素如V、Co和Ni等的用量。有研究表明,材料循环过程中不可逆的氧损失以及Mn4+/Mn3+氧化还原的激活,导致了层状氧化物正极材料持续的电压衰减。本工作通过在Nax[Li,Ni,Mn]O2基钠离子电池正极材料中引入Ni3+作为Mn4+/Mn3+氧化还原屏障,利用Ni3+/Ni2+的氧化还原代替Mn4+/Mn3+的氧化还原,成功抑制了材料的电压衰减。电化学测试结果显示,改性材料在不损失容量的前提下,循环稳定性得到明显提升。X射线光电子能谱结果也验证了Ni3+的引入有利于维持材料多周循环后Mn价态的稳定。
  • 加载中
    1. [1]

      (1) Li, Y.; Lu, Y.; Zhao, C.; Hu, Y.-S.; Titirici, M.-M.; Li, H.; Huang, X.; Chen, L. Energy Stor. Mater. 2017, 7, 130. doi:10.1016/j.ensm.2017.01.002

    2. [2]

      (2) Zhao, E.; Nie, K.; Yu, X.; Hu, Y. S.; Wang, F.; Xiao, J.; Li, H.; Huang, X. Adv. Funct. Mater. 2018, 28, 1707543. doi:10.1002/adfm.201707543

    3. [3]

      (3) Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Adv. Energy Mater. 2018, 8, 1703012. doi:10.1002/aenm.201703012

    4. [4]

      (4) Zhao, C.; Lu, Y.; Yue, J.; Pan, D.; Qi, Y.; Hu, Y.-S.; Chen, L. J. Energy Chem. 2018, 27, 1584. doi:10.1016/j.jechem.2018.03.004

    5. [5]

      (5) Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, 1225. doi:10.1149/1.1407247

    6. [6]

      (6) Lee, D. H.; Xu, J.; Meng, Y. S. Phys. Chem. Chem. Phys. 2013, 15, 3304. doi:10.1039/c2cp44467d

    7. [7]

      (7) Kim, D.; Kang, S.-H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Adv. Energy Mater. 2011, 1, 333. doi:10.1002/aenm.201000061

    8. [8]

      (8) Clément, R. J.; Xu, J.; Middlemiss, D. S.; Alvarado, J.; Ma, C.; Meng, Y. S.; Grey, C. P. J. Mater. Chem. A 2017, 5, 4129. doi:10.1039/c6ta09601h

    9. [9]

      (9) Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2016, 55, 7445. doi:10.1002/anie.201602202

    10. [10]

      (10) Xu, J.; Lee, D. H.; Clément, R. J.; Yu, X.; Leskes, M.; Pell, A. J.; Pintacuda, G.; Yang, X.-Q.; Grey, C. P.; Meng, Y. S. Chem. Mater. 2014, 26, 1260. doi:10.1021/cm403855t

    11. [11]

      (11) Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. Chem. Commun. 2014, 50, 3677. doi:10.1039/c3cc49856e

    12. [12]

      (12) Wu, X.; Guo, J.; Wang, D.; Zhong, G.; McDonald, M. J.; Yang, Y. J. Power Sources 2015, 281, 18. doi:10.1016/j.jpowsour.2014.12.083

    13. [13]

      (13) Kubota, K.; Yoda, Y.; Komaba, S. J. Electrochem. Soc. 2017, 164, A2368. doi:10.1149/2.0311712jes

    14. [14]

      (14) Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Adv. Energy Mater. 2018, 8, 1703415. doi:10.1002/aenm.201703415

    15. [15]

      (15) Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Inorg. Chem. 2012, 51, 6211. doi:10.1021/ic300357d

    16. [16]

      (16) Qi, X.; Wang, Y.; Jiang, L.; Mu, L.; Zhao, C.; Liu, L.; Hu, Y.-S.; Chen, L.; Huang, X. Part. Part. Syst. Charact. 2016, 33, 538. doi:10.1002/ppsc.201500129

    17. [17]

      (17) Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Adv. Mater. 2017, 29, 1700210. doi:10.1002/adma.201700210

    18. [18]

      (18) Zheng, L.; Obrovac, M. N. Electrochim. Acta 2017, 233, 284. doi:10.1016/j.electacta.2017.03.033

    19. [19]

      (19) Zheng, S.; Zhong, G.; McDonald, M. J.; Gong, Z.; Liu, R.; Wen, W.; Yang, C.; Yang, Y. J. Mater. Chem. A 2016, 4, 9054. doi:10.1039/c6ta02230h

    20. [20]

      (20) Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. Adv. Energy Mater. 2014, 4, 1301453. doi:10.1002/aenm.201301453

    21. [21]

      (21) Du, K.; Zhu, J.; Hu, G.; Gao, H.; Li, Y.; Goodenough, J. B. Energy Environ. Sci. 2016, 9, 2575. doi:10.1039/c6ee01367h

    22. [22]

      (22) Rong, X.; Liu, J.; Hu, E.; Liu, Y.; Wang, Y.; Wu, J.; Yu, X.; Page, K.; Hu, Y.-S.; Yang, W.; et al. Joule 2018, 2, 125. doi:10.1016/j.joule.2017.10.008

    23. [23]

      (23) de la Llave, E.; Talaie, E.; Levi, E.; Nayak, P. K.; Dixit, M.; Rao, P. T.; Hartmann, P.; Chesneau, F.; Major, D. T.; Greenstein, M.; et al. Chem. Mater. 2016, 28, 9064. doi:10.1021/acs.chemmater.6b04078

    24. [24]

      (24) Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.-S.; et al. Joule 2019, 3, 503. doi:10.1016/j.joule.2018.10.022

    25. [25]

      (25) Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. J. Mater. Chem. A 2014, 2, 16851. doi:10.1039/c4ta04351k

    26. [26]

      (26) Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W. E.; et al. Joule 2019, 3, 518. doi:10.1016/j.joule.2018.11.014

    27. [27]

      (27) Mortemard de Boisse, B.; Nishimura, S.-i.; Watanabe, E.; Lander, L.; Tsuchimoto, A.; Kikkawa, J.; Kobayashi, E.; Asakura, D.; Okubo, M.; Yamada, A. Adv. Energy Mater. 2018, 8, 1800409. doi:10.1002/aenm.201800409

    28. [28]

      (28) Li, Y.; Wang, X.; Gao, Y.; Zhang, Q.; Tan, G.; Kong, Q.; Bak, S.; Lu, G.; Yang, X. Q.; Gu, L.; et al. Adv. Energy Mater. 2018, 9, 1803087. doi:10.1002/aenm.201803087

    29. [29]

      (29) Song, B.; Tang, M.; Hu, E.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y.; Phillip, N. D.; Liu, X.; Shadike, Z.; Li, C.; et al. Chem. Mater. 2019, 31, 3756. doi:10.1021/acs.chemmater.9b00772

    30. [30]

      (30) Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. Nat. Chem. 2016, 8, 692. doi:10.1038/nchem.2524

    31. [31]

      (31) Zhao, C.; Wang, Q.; Lu, Y.; Hu, Y.-S.; Li, B.; Chen, L. J. Phys. D 2017, 50, 183001. doi:10.1088/1361-6463/aa646d

    32. [32]

      (32) Rong, X.; Gao, F.; Lu, Y.; Yang, K.; Hu, Y. Chin. Chem. Lett. 2018, 29, 1791. doi:10.1016/j.cclet.2018.11.023

    33. [33]

      (33) Ku, K.; Hong, J.; Kim, H.; Park, H.; Seong, W. M.; Jung, S.-K.; Yoon, G.; Park, K.-Y.; Kim, H.; Kang, K. Adv. Energy Mater. 2018, 8, 1800606. doi:10.1002/aenm.201800606

    34. [34]

      (34) Hong, J.; Seo, D.-H.; Kim, S.-W.; Gwon, H.; Oh, S.-T.; Kang, K. J. Mater. Chem. 2010, 20, 10179. doi:10.1039/c0jm01971b

    35. [35]

      (35) Evstigneeva, M. A.; Nalbandyan, V. B.; Petrenko, A. A.; Medvedev, B. S.; Kataev, A. A. Chem. Mater. 2011, 23, 1174. doi:10.1021/cm102629g

    36. [36]

      (36) Li, Y.; Deng, Z.; Peng, J.; Chen, E.; Yu, Y.; Li, X.; Luo, J.; Huang, Y.; Zhu, J.; Fang, C.; et al. Chem. Eur. J. 2018, 24, 1057. doi:10.1002/chem.201705466

    37. [37]

      (37) Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi:10.1038/ncomms3365

    38. [38]

      (38) Xia, H.; Lu, L.; Ceder, G. J. Power Sources 2006, 159, 1422. doi:10.1016/j.jpowsour.2005.12.01

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    15. [15]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    16. [16]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    17. [17]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    18. [18]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    19. [19]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    20. [20]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

Metrics
  • PDF Downloads(2)
  • Abstract views(536)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return