Citation: ZilinHu, YaoshenNiu, XiaohuiRong, Yongsheng Hu. Ni3+抑制具有阴离子氧化还原活性钠离子电池正极材料的电压衰减[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230600. doi: 10.3866/PKU.WHXB202306005
-
由于钠资源丰富,钠离子电池在大规模储能方面显示出巨大的潜力。随着近年来研究的深入,在正极材料中引入适量的阴离子氧化还原可以有效地提升钠离子电池的能量密度,同时减少高成本过渡金属元素如V、Co和Ni等的用量。有研究表明,材料循环过程中不可逆的氧损失以及Mn4+/Mn3+氧化还原的激活,导致了层状氧化物正极材料持续的电压衰减。本工作通过在Nax[Li,Ni,Mn]O2基钠离子电池正极材料中引入Ni3+作为Mn4+/Mn3+氧化还原屏障,利用Ni3+/Ni2+的氧化还原代替Mn4+/Mn3+的氧化还原,成功抑制了材料的电压衰减。电化学测试结果显示,改性材料在不损失容量的前提下,循环稳定性得到明显提升。X射线光电子能谱结果也验证了Ni3+的引入有利于维持材料多周循环后Mn价态的稳定。
-
-
[1]
(1) Li, Y.; Lu, Y.; Zhao, C.; Hu, Y.-S.; Titirici, M.-M.; Li, H.; Huang, X.; Chen, L. Energy Stor. Mater. 2017, 7, 130. doi:10.1016/j.ensm.2017.01.002
-
[2]
(2) Zhao, E.; Nie, K.; Yu, X.; Hu, Y. S.; Wang, F.; Xiao, J.; Li, H.; Huang, X. Adv. Funct. Mater. 2018, 28, 1707543. doi:10.1002/adfm.201707543
-
[3]
(3) Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Adv. Energy Mater. 2018, 8, 1703012. doi:10.1002/aenm.201703012
-
[4]
(4) Zhao, C.; Lu, Y.; Yue, J.; Pan, D.; Qi, Y.; Hu, Y.-S.; Chen, L. J. Energy Chem. 2018, 27, 1584. doi:10.1016/j.jechem.2018.03.004
-
[5]
(5) Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, 1225. doi:10.1149/1.1407247
-
[6]
(6) Lee, D. H.; Xu, J.; Meng, Y. S. Phys. Chem. Chem. Phys. 2013, 15, 3304. doi:10.1039/c2cp44467d
-
[7]
(7) Kim, D.; Kang, S.-H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Adv. Energy Mater. 2011, 1, 333. doi:10.1002/aenm.201000061
-
[8]
(8) Clément, R. J.; Xu, J.; Middlemiss, D. S.; Alvarado, J.; Ma, C.; Meng, Y. S.; Grey, C. P. J. Mater. Chem. A 2017, 5, 4129. doi:10.1039/c6ta09601h
-
[9]
(9) Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2016, 55, 7445. doi:10.1002/anie.201602202
-
[10]
(10) Xu, J.; Lee, D. H.; Clément, R. J.; Yu, X.; Leskes, M.; Pell, A. J.; Pintacuda, G.; Yang, X.-Q.; Grey, C. P.; Meng, Y. S. Chem. Mater. 2014, 26, 1260. doi:10.1021/cm403855t
-
[11]
(11) Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. Chem. Commun. 2014, 50, 3677. doi:10.1039/c3cc49856e
-
[12]
(12) Wu, X.; Guo, J.; Wang, D.; Zhong, G.; McDonald, M. J.; Yang, Y. J. Power Sources 2015, 281, 18. doi:10.1016/j.jpowsour.2014.12.083
-
[13]
(13) Kubota, K.; Yoda, Y.; Komaba, S. J. Electrochem. Soc. 2017, 164, A2368. doi:10.1149/2.0311712jes
-
[14]
(14) Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Adv. Energy Mater. 2018, 8, 1703415. doi:10.1002/aenm.201703415
-
[15]
(15) Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Inorg. Chem. 2012, 51, 6211. doi:10.1021/ic300357d
-
[16]
(16) Qi, X.; Wang, Y.; Jiang, L.; Mu, L.; Zhao, C.; Liu, L.; Hu, Y.-S.; Chen, L.; Huang, X. Part. Part. Syst. Charact. 2016, 33, 538. doi:10.1002/ppsc.201500129
-
[17]
(17) Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Adv. Mater. 2017, 29, 1700210. doi:10.1002/adma.201700210
-
[18]
(18) Zheng, L.; Obrovac, M. N. Electrochim. Acta 2017, 233, 284. doi:10.1016/j.electacta.2017.03.033
-
[19]
(19) Zheng, S.; Zhong, G.; McDonald, M. J.; Gong, Z.; Liu, R.; Wen, W.; Yang, C.; Yang, Y. J. Mater. Chem. A 2016, 4, 9054. doi:10.1039/c6ta02230h
-
[20]
(20) Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. Adv. Energy Mater. 2014, 4, 1301453. doi:10.1002/aenm.201301453
-
[21]
(21) Du, K.; Zhu, J.; Hu, G.; Gao, H.; Li, Y.; Goodenough, J. B. Energy Environ. Sci. 2016, 9, 2575. doi:10.1039/c6ee01367h
-
[22]
(22) Rong, X.; Liu, J.; Hu, E.; Liu, Y.; Wang, Y.; Wu, J.; Yu, X.; Page, K.; Hu, Y.-S.; Yang, W.; et al. Joule 2018, 2, 125. doi:10.1016/j.joule.2017.10.008
-
[23]
(23) de la Llave, E.; Talaie, E.; Levi, E.; Nayak, P. K.; Dixit, M.; Rao, P. T.; Hartmann, P.; Chesneau, F.; Major, D. T.; Greenstein, M.; et al. Chem. Mater. 2016, 28, 9064. doi:10.1021/acs.chemmater.6b04078
-
[24]
(24) Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.-S.; et al. Joule 2019, 3, 503. doi:10.1016/j.joule.2018.10.022
-
[25]
(25) Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. J. Mater. Chem. A 2014, 2, 16851. doi:10.1039/c4ta04351k
-
[26]
(26) Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W. E.; et al. Joule 2019, 3, 518. doi:10.1016/j.joule.2018.11.014
-
[27]
(27) Mortemard de Boisse, B.; Nishimura, S.-i.; Watanabe, E.; Lander, L.; Tsuchimoto, A.; Kikkawa, J.; Kobayashi, E.; Asakura, D.; Okubo, M.; Yamada, A. Adv. Energy Mater. 2018, 8, 1800409. doi:10.1002/aenm.201800409
-
[28]
(28) Li, Y.; Wang, X.; Gao, Y.; Zhang, Q.; Tan, G.; Kong, Q.; Bak, S.; Lu, G.; Yang, X. Q.; Gu, L.; et al. Adv. Energy Mater. 2018, 9, 1803087. doi:10.1002/aenm.201803087
-
[29]
(29) Song, B.; Tang, M.; Hu, E.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y.; Phillip, N. D.; Liu, X.; Shadike, Z.; Li, C.; et al. Chem. Mater. 2019, 31, 3756. doi:10.1021/acs.chemmater.9b00772
-
[30]
(30) Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. Nat. Chem. 2016, 8, 692. doi:10.1038/nchem.2524
-
[31]
(31) Zhao, C.; Wang, Q.; Lu, Y.; Hu, Y.-S.; Li, B.; Chen, L. J. Phys. D 2017, 50, 183001. doi:10.1088/1361-6463/aa646d
-
[32]
(32) Rong, X.; Gao, F.; Lu, Y.; Yang, K.; Hu, Y. Chin. Chem. Lett. 2018, 29, 1791. doi:10.1016/j.cclet.2018.11.023
-
[33]
(33) Ku, K.; Hong, J.; Kim, H.; Park, H.; Seong, W. M.; Jung, S.-K.; Yoon, G.; Park, K.-Y.; Kim, H.; Kang, K. Adv. Energy Mater. 2018, 8, 1800606. doi:10.1002/aenm.201800606
-
[34]
(34) Hong, J.; Seo, D.-H.; Kim, S.-W.; Gwon, H.; Oh, S.-T.; Kang, K. J. Mater. Chem. 2010, 20, 10179. doi:10.1039/c0jm01971b
-
[35]
(35) Evstigneeva, M. A.; Nalbandyan, V. B.; Petrenko, A. A.; Medvedev, B. S.; Kataev, A. A. Chem. Mater. 2011, 23, 1174. doi:10.1021/cm102629g
-
[36]
(36) Li, Y.; Deng, Z.; Peng, J.; Chen, E.; Yu, Y.; Li, X.; Luo, J.; Huang, Y.; Zhu, J.; Fang, C.; et al. Chem. Eur. J. 2018, 24, 1057. doi:10.1002/chem.201705466
-
[37]
(37) Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi:10.1038/ncomms3365
-
[38]
(38) Xia, H.; Lu, L.; Ceder, G. J. Power Sources 2006, 159, 1422. doi:10.1016/j.jpowsour.2005.12.01
-
[1]
-
-
[1]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[2]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[3]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[4]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[5]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[6]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[7]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[8]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[9]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[10]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[11]
Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020
-
[12]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[13]
Hong LI , Xiaoying DING , Cihang LIU , Jinghan ZHANG , Yanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370
-
[14]
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
-
[15]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
-
[16]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[17]
Dongqi Cai , Fuping Tian , Zerui Zhao , Yanjuan Zhang , Yue Dai , Feifei Huang , Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031
-
[18]
Jiayu Tang , Jichuan Pang , Shaohua Xiao , Xinhua Xu , Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021
-
[19]
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
-
[20]
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(379)
- HTML views(25)