Citation: ZilinHu,  YaoshenNiu,  XiaohuiRong,  Yongsheng Hu. Ni3+抑制具有阴离子氧化还原活性钠离子电池正极材料的电压衰减[J]. Acta Physico-Chimica Sinica, ;2024, 40(6): 230600. doi: 10.3866/PKU.WHXB202306005 shu

Ni3+抑制具有阴离子氧化还原活性钠离子电池正极材料的电压衰减

  • Corresponding author: XiaohuiRong,  Yongsheng Hu, 
  • Received Date: 1 June 2023
    Revised Date: 29 June 2023
    Accepted Date: 17 July 2023

    Fund Project: The project was supported by the National Key R&D Program of China (2022YFB2402500), the National Natural Science Foundation of China (51725206, 52122214, 52072403, 52002394), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020006), the Beijing Municipal Natural Science Foundation (2212022), the Young Elite Scientists Sponsorship Program by CAST (2022QNRC001).

  • 由于钠资源丰富,钠离子电池在大规模储能方面显示出巨大的潜力。随着近年来研究的深入,在正极材料中引入适量的阴离子氧化还原可以有效地提升钠离子电池的能量密度,同时减少高成本过渡金属元素如V、Co和Ni等的用量。有研究表明,材料循环过程中不可逆的氧损失以及Mn4+/Mn3+氧化还原的激活,导致了层状氧化物正极材料持续的电压衰减。本工作通过在Nax[Li,Ni,Mn]O2基钠离子电池正极材料中引入Ni3+作为Mn4+/Mn3+氧化还原屏障,利用Ni3+/Ni2+的氧化还原代替Mn4+/Mn3+的氧化还原,成功抑制了材料的电压衰减。电化学测试结果显示,改性材料在不损失容量的前提下,循环稳定性得到明显提升。X射线光电子能谱结果也验证了Ni3+的引入有利于维持材料多周循环后Mn价态的稳定。
  • 加载中
    1. [1]

      (1) Li, Y.; Lu, Y.; Zhao, C.; Hu, Y.-S.; Titirici, M.-M.; Li, H.; Huang, X.; Chen, L. Energy Stor. Mater. 2017, 7, 130. doi:10.1016/j.ensm.2017.01.002

    2. [2]

      (2) Zhao, E.; Nie, K.; Yu, X.; Hu, Y. S.; Wang, F.; Xiao, J.; Li, H.; Huang, X. Adv. Funct. Mater. 2018, 28, 1707543. doi:10.1002/adfm.201707543

    3. [3]

      (3) Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Adv. Energy Mater. 2018, 8, 1703012. doi:10.1002/aenm.201703012

    4. [4]

      (4) Zhao, C.; Lu, Y.; Yue, J.; Pan, D.; Qi, Y.; Hu, Y.-S.; Chen, L. J. Energy Chem. 2018, 27, 1584. doi:10.1016/j.jechem.2018.03.004

    5. [5]

      (5) Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2001, 148, 1225. doi:10.1149/1.1407247

    6. [6]

      (6) Lee, D. H.; Xu, J.; Meng, Y. S. Phys. Chem. Chem. Phys. 2013, 15, 3304. doi:10.1039/c2cp44467d

    7. [7]

      (7) Kim, D.; Kang, S.-H.; Slater, M.; Rood, S.; Vaughey, J. T.; Karan, N.; Balasubramanian, M.; Johnson, C. S. Adv. Energy Mater. 2011, 1, 333. doi:10.1002/aenm.201000061

    8. [8]

      (8) Clément, R. J.; Xu, J.; Middlemiss, D. S.; Alvarado, J.; Ma, C.; Meng, Y. S.; Grey, C. P. J. Mater. Chem. A 2017, 5, 4129. doi:10.1039/c6ta09601h

    9. [9]

      (9) Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2016, 55, 7445. doi:10.1002/anie.201602202

    10. [10]

      (10) Xu, J.; Lee, D. H.; Clément, R. J.; Yu, X.; Leskes, M.; Pell, A. J.; Pintacuda, G.; Yang, X.-Q.; Grey, C. P.; Meng, Y. S. Chem. Mater. 2014, 26, 1260. doi:10.1021/cm403855t

    11. [11]

      (11) Yoshida, H.; Yabuuchi, N.; Kubota, K.; Ikeuchi, I.; Garsuch, A.; Schulz-Dobrick, M.; Komaba, S. Chem. Commun. 2014, 50, 3677. doi:10.1039/c3cc49856e

    12. [12]

      (12) Wu, X.; Guo, J.; Wang, D.; Zhong, G.; McDonald, M. J.; Yang, Y. J. Power Sources 2015, 281, 18. doi:10.1016/j.jpowsour.2014.12.083

    13. [13]

      (13) Kubota, K.; Yoda, Y.; Komaba, S. J. Electrochem. Soc. 2017, 164, A2368. doi:10.1149/2.0311712jes

    14. [14]

      (14) Kubota, K.; Kumakura, S.; Yoda, Y.; Kuroki, K.; Komaba, S. Adv. Energy Mater. 2018, 8, 1703415. doi:10.1002/aenm.201703415

    15. [15]

      (15) Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Inorg. Chem. 2012, 51, 6211. doi:10.1021/ic300357d

    16. [16]

      (16) Qi, X.; Wang, Y.; Jiang, L.; Mu, L.; Zhao, C.; Liu, L.; Hu, Y.-S.; Chen, L.; Huang, X. Part. Part. Syst. Charact. 2016, 33, 538. doi:10.1002/ppsc.201500129

    17. [17]

      (17) Wang, P. F.; Yao, H. R.; Liu, X. Y.; Zhang, J. N.; Gu, L.; Yu, X. Q.; Yin, Y. X.; Guo, Y. G. Adv. Mater. 2017, 29, 1700210. doi:10.1002/adma.201700210

    18. [18]

      (18) Zheng, L.; Obrovac, M. N. Electrochim. Acta 2017, 233, 284. doi:10.1016/j.electacta.2017.03.033

    19. [19]

      (19) Zheng, S.; Zhong, G.; McDonald, M. J.; Gong, Z.; Liu, R.; Wen, W.; Yang, C.; Yang, Y. J. Mater. Chem. A 2016, 4, 9054. doi:10.1039/c6ta02230h

    20. [20]

      (20) Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. Adv. Energy Mater. 2014, 4, 1301453. doi:10.1002/aenm.201301453

    21. [21]

      (21) Du, K.; Zhu, J.; Hu, G.; Gao, H.; Li, Y.; Goodenough, J. B. Energy Environ. Sci. 2016, 9, 2575. doi:10.1039/c6ee01367h

    22. [22]

      (22) Rong, X.; Liu, J.; Hu, E.; Liu, Y.; Wang, Y.; Wu, J.; Yu, X.; Page, K.; Hu, Y.-S.; Yang, W.; et al. Joule 2018, 2, 125. doi:10.1016/j.joule.2017.10.008

    23. [23]

      (23) de la Llave, E.; Talaie, E.; Levi, E.; Nayak, P. K.; Dixit, M.; Rao, P. T.; Hartmann, P.; Chesneau, F.; Major, D. T.; Greenstein, M.; et al. Chem. Mater. 2016, 28, 9064. doi:10.1021/acs.chemmater.6b04078

    24. [24]

      (24) Rong, X.; Hu, E.; Lu, Y.; Meng, F.; Zhao, C.; Wang, X.; Zhang, Q.; Yu, X.; Gu, L.; Hu, Y.-S.; et al. Joule 2019, 3, 503. doi:10.1016/j.joule.2018.10.022

    25. [25]

      (25) Yabuuchi, N.; Hara, R.; Kubota, K.; Paulsen, J.; Kumakura, S.; Komaba, S. J. Mater. Chem. A 2014, 2, 16851. doi:10.1039/c4ta04351k

    26. [26]

      (26) Dai, K.; Wu, J.; Zhuo, Z.; Li, Q.; Sallis, S.; Mao, J.; Ai, G.; Sun, C.; Li, Z.; Gent, W. E.; et al. Joule 2019, 3, 518. doi:10.1016/j.joule.2018.11.014

    27. [27]

      (27) Mortemard de Boisse, B.; Nishimura, S.-i.; Watanabe, E.; Lander, L.; Tsuchimoto, A.; Kikkawa, J.; Kobayashi, E.; Asakura, D.; Okubo, M.; Yamada, A. Adv. Energy Mater. 2018, 8, 1800409. doi:10.1002/aenm.201800409

    28. [28]

      (28) Li, Y.; Wang, X.; Gao, Y.; Zhang, Q.; Tan, G.; Kong, Q.; Bak, S.; Lu, G.; Yang, X. Q.; Gu, L.; et al. Adv. Energy Mater. 2018, 9, 1803087. doi:10.1002/aenm.201803087

    29. [29]

      (29) Song, B.; Tang, M.; Hu, E.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y.; Phillip, N. D.; Liu, X.; Shadike, Z.; Li, C.; et al. Chem. Mater. 2019, 31, 3756. doi:10.1021/acs.chemmater.9b00772

    30. [30]

      (30) Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.; Ceder, G. Nat. Chem. 2016, 8, 692. doi:10.1038/nchem.2524

    31. [31]

      (31) Zhao, C.; Wang, Q.; Lu, Y.; Hu, Y.-S.; Li, B.; Chen, L. J. Phys. D 2017, 50, 183001. doi:10.1088/1361-6463/aa646d

    32. [32]

      (32) Rong, X.; Gao, F.; Lu, Y.; Yang, K.; Hu, Y. Chin. Chem. Lett. 2018, 29, 1791. doi:10.1016/j.cclet.2018.11.023

    33. [33]

      (33) Ku, K.; Hong, J.; Kim, H.; Park, H.; Seong, W. M.; Jung, S.-K.; Yoon, G.; Park, K.-Y.; Kim, H.; Kang, K. Adv. Energy Mater. 2018, 8, 1800606. doi:10.1002/aenm.201800606

    34. [34]

      (34) Hong, J.; Seo, D.-H.; Kim, S.-W.; Gwon, H.; Oh, S.-T.; Kang, K. J. Mater. Chem. 2010, 20, 10179. doi:10.1039/c0jm01971b

    35. [35]

      (35) Evstigneeva, M. A.; Nalbandyan, V. B.; Petrenko, A. A.; Medvedev, B. S.; Kataev, A. A. Chem. Mater. 2011, 23, 1174. doi:10.1021/cm102629g

    36. [36]

      (36) Li, Y.; Deng, Z.; Peng, J.; Chen, E.; Yu, Y.; Li, X.; Luo, J.; Huang, Y.; Zhu, J.; Fang, C.; et al. Chem. Eur. J. 2018, 24, 1057. doi:10.1002/chem.201705466

    37. [37]

      (37) Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi:10.1038/ncomms3365

    38. [38]

      (38) Xia, H.; Lu, L.; Ceder, G. J. Power Sources 2006, 159, 1422. doi:10.1016/j.jpowsour.2005.12.01

  • 加载中
    1. [1]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    4. [4]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    8. [8]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    9. [9]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    12. [12]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    16. [16]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    17. [17]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    18. [18]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(2)
  • Abstract views(379)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return